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ABSTRACT
This paper addresses the multichannel directional speech
enhancement problem with geometrically constrained inde-
pendent vector analysis (GCIVA), where we aim to combine
the high separation performance from blind source separation
and the capability of directional focus from beamforming.
The proposed method exploits geometric constraints com-
posed from the spatial information of sources to guide the
target speech to the desired output channel. A convergence-
guaranteed parameter estimation algorithm is derived from
the framework of auxiliary function-based IVA (AuxIVA)
to take advantage of fast convergence, low computational
cost, and no step-size tuning. We propose a dual-microphone
speech enhancement system based on the proposed method
and investigate its effectiveness with objective metrics. The
experimental evaluations revealed that the proposed system
outperformed the conventional beamforming and the standard
AuxIVA in a large margin in terms of source-to-distortion and
source-to-interference ratios.

Index Terms— Speech enhancement, independent vector
analysis, geometric constraints, multichannel, auxiliary func-
tion approach

1. INTRODUCTION

Speech enhancement is a crucial technology for extracting the
target speech from recorded noisy signals since the presence
of diffuse noise and directional interference can significantly
degrade the performances of many speech processing applica-
tions. Various speech enhancement algorithms [1] have been
developed with the goal of overcoming this problem.

Blind source separation (BSS) is one promising approach,
which copes with multichannel scenarios. BSS algorithms,
including a variety of independent component analysis (ICA)
methods [2, 3, 4, 5], estimate source signals using only the ob-
served signals based on the assumption that source signals are
statistically independent with each other. Independent vec-
tor analysis (IVA) [3, 4] is one such method, which models
the whole frequency components as a multivariate variable
following a spherical multivariate distribution so that permu-
tation ambiguity can be avoided by exploiting higher-order
dependencies of signals. Owing to the high separation per-
formance, IVA has attracted much attention and been widely
studied, which promotes the practicability of the approach in
various scenarios. A fast and stable algorithm based on the
auxiliary function approach, referred to as AuxIVA [6], has
been recently developed and experimentally demonstrated to
perform well in both offline and online cases with low com-
putational costs [7, 8, 9, 10]. However, when considering a
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practical application of speech enhancement, an additional
process is necessary for selecting the target speech after the
separation, which is typically performed by utilizing the spa-
tial information, i.e., the direction of arrival (DOA) of the tar-
get. Moreover, it is reported that block permutation problem
[11] occurs between the low- and high-frequency bands in
IVA, which results in the degradation of the performance.

To improve the performance of BSS algorithms and avoid
the permutation problem, exploiting spatial information to
guide the demixing matrices is one promising method. [12]
derives IVA in a maximum a posteriori (MAP) fashion so that
a spatially informed prior of demixing matrices can be incor-
porated into the optimization. Another well-known frame-
work is the geometrically constrained BSS [13, 14, 15, 16].
In this framework, beamforming-based geometric constraints
derived from prior spatial information of source signals and
the sensor geometry are combined with the optimization
problem of BSS, which makes it possible to manually control
the spatial and frequency responses of the demixing filter
estimated by BSS. In [17], a penalty term restricting the Eu-
clidean angle between the separation filter and the far-field
steering vector calculated from the desired source DOA is
combined with IVA to force the desired signal always be-
ing outputted at the corresponding channel, which has been
shown to improve the performance of IVA in directional
speech enhancement. However, there are two drawbacks to
prevent this method from a wide adoption to real applica-
tions. Firstly, a relatively large number of microphones are
needed to meet the constraints of forming a sharp beam and
suppressing interferences at the same time. Secondly, the
step-size parameter of the gradient-based algorithm must be
carefully tuned to make the system work under different real
use cases.

In this paper, we propose an approach of geometrically
constrained IVA (GCIVA), which combines linear constraints
that restrict far-field responses of demixing filters [13] with
IVA. To preserve the advantages of fast convergence and
no step-size tuning from AuxIVA, we derive a convergence-
guaranteed algorithm based on the auxiliary function ap-
proach with adopting the idea of vectorwise coordinate de-
scent (VCD) [18] to obtain the closed-form solution. The pro-
posed method is called “GCAV (Geometrically Constrained
Auxiliary-function with VCD)-IVA”. We introduce a dual-
microphone system based on the proposed method. In the
system, the interference channel is constrained in such a
way that a null is formed toward the target direction which
is assumed known. Regarding the constraint on the target
channel, it is found that a null constraint toward the estimated
interference DOA is the best option, where the standard Aux-
IVA is used for this DOA estimation purpose. Experimental
results show that the proposed GCAV-IVA system can offer
higher performance than the conventional beamforming and
the standard AuxIVA in the dual-microphone setting.
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2. FORMULATION OF GEOMETRICALLY
CONSTRAINED IVA

Let us consider a determined situation where I sources are
observed by I microphones. Let xi(ω, t) and yj(ω, t) denote
the short-time Fourier transform (STFT) coefficients of the
signal observed at the i-th microphone and the j-th estimated
sources, respectively. Here ω and t are the frequency and time
indices, respectively. We denote the frequency-wise vector
representation of the observations and the estimated sources
by

x(ω, t) = [x1(ω, t), . . . , xI(ω, t)]
T ∈ CI , (1)

y(ω, t) = [y1(ω, t), . . . , yJ(ω, t)]T ∈ CJ , (2)

where J = I and (·)T denotes the transpose. When the
STFT window length is sufficiently longer than the impulse
responses between sources and microphones, the relationship
between the observations and the estimated sources can be ex-
pressed with the time-invariant instantaneous mixture model
as:

y(ω, t) = W (ω)x(ω, t), (3)

where W (ω) = [w1(ω), . . . ,wI(ω)]H is an I × I demixing
matrix and (·)H denotes Hermitian transpose.

IVA assumes that sources follow a multivariate distribu-
tion and thus dependencies over frequency components can
be exploited to avoid the permutation problem. The demixing
matrices W = {W (ω)}ω are estimated by minimizing the
following objective function

JIVA(W) =

J∑
j=1

E[G(yj(t))]−
Ω∑
ω=1

log |detW (ω)|, (4)

where Ω denotes the number of frequency bins. E[·] denotes
the expectation operator and yj(t) is the source-wise vector
representation defined as

yj(t) = [yj(1, t), . . . , yj(Ω, t)]
T ∈ CΩ. (5)

Here, G(yj(t)) is the contrast function having a relationship
of G(yj(t)) = − log p(yj(t)), where p(yj(t)) represents a
multivariate probability density function of the j-th source.
One typical choice of the contrast function is using spherical
multivariate distribution [3, 4, 6], which is expressed as

G(yj(t)) = GR(rj(t)), (6)

rj(t) = ||yj(t)||2 =

√∑
ω

|yj(ω, t)|2. (7)

Here, || · ||2 denotes L2 norm of a vector.
Now, let us consider a geometric constraint [13] that re-

stricts the far-field response of the j-th demixing filter esti-
mated by IVA at the direction θ, which is described as

Jc(W) =

J∑
j=1

λj

Ω∑
ω=1

|wH
j (ω)dj(ω, θ)− cj |2. (8)

Here, dj(ω, θ) is the steering vector pointing to the direction

θ, cj is the nonnegative-valued constraint, and λj ≥ 0 is a
parameter weighing the importance of the constraint. This
concept is used in the linearly constrained minimum variance
(LCMV) beamformer [19]. Note that (8) with cj = 1 forces
the spatial filter to form a conventional delay-and-sum beam-
former steering at the direction θ to preserve the target source
while a small value of cj essentially creates a spatial null to-
wards the target direction θ aiming at suppressing the target
source and preserving all other sources. The null constraint on
the target direction can also serve as a blocking matrix (BM)
[20], so that the corresponding channel can produce good esti-
mate of interference and noise. Such estimate would have po-
tential benefit of better handling under/overdetermined cases
compared to traditional BSS methods. The objective function
of the proposed GCIVA is summarized as

J(W) = JIVA(W) + Jc(W). (9)

3. INFERENCE ALGORITHM WITH
AUXILIARY FUNCTION APPROACH

In this section, we derive an iterative algorithm for param-
eter estimation of (9) with the auxiliary function approach
[21], which has already been employed in IVA and yielded the
fast convergence and stable performance. In the approach, an
auxiliary function J+(W,V) is designed in such a way that
J(W) = minV J

+(W,V) is satisfied. Then, instead of di-
rectly optimizing the original objective function (9), which
is difficult to be analytically solved, the auxiliary function
J+(W,V) is minimized in terms of W and V alternatingly.
Since the geometric constraints are linear, we can simply ob-
tain the auxiliary function that upper-bounds (9) by combin-
ing the original AuxIVA’s auxiliary function [6] with these
linear constraints:

J+(W,V)
c
=

J∑
j=1

Ω∑
ω=1

{1

2

∑
j

wH
j (ω)V j(ω)wj(ω)

− log |detW (ω)|
}

+ Jc(W), (10)

where V j(ω) is the weighted covariances expressed as

V j(ω) = E
[G′

R(rj(t))

rj(t)
x(ω)xH(ω)

]
(11)

and =c denotes equality up to constant terms. Here, (·)′ de-
notes the derivative operator.

The update rule for V is obtained straightforwardly by ap-
plying (7) into (11). Here we focus on deriving the update
rule forW . The indices of ω and θ are omitted hereafter for
the notation simplicity. Due to the linear constraint terms, the
equation ∂J+(W,V)/∂w∗j = 0 cannot be solved as Hybrid
Exact-Approximate Joint Diagonalization (HEAD) problem
anymore, where (·)∗ denotes the complex conjugate. To ob-
tain the optimal wj of (10) with fixed V , inspired by the vec-
torwise coordinate descent (VCD) method [18], we embrace
the idea of arranging the term log |detW | by using the prop-
erty of cofactor expansion

B = [b1, . . . , bJ ]
def
=(detW )W−1, (12)

where bj is the j-th column of the adjugate matrix of W de-
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fined as

Bpq = (−1)p+qW̃ qp. (13)

Here, the index pq denotes the (p, q) entry of B and W̃ qp

is the (q, p) minor determinant of W . We can then obtain
detW = wH

j bj . The partial derivative of (10) w.r.t. w∗j is
calculated as

∂J+(W,V)

∂w∗j
= Djwj −

bj

wH
j bj
− λjcjdj , (14)

where Dj = V j + λjdjd
H
j . Note that (14) has the same

form with the equation (13) in [18], whose closed-form solu-
tion can be derived in the same procedure introduced in [18].
We omit the derivation here due to the space limitation. The
update rules of wj are summarized as follow:

uj = D−1
j W−1ej , (15)

ûj = λjcjD
−1
j dj , (16)

hj = uH
jDjuj , (17)

ĥj = uH
jDjûj , (18)

wj =


1√
hj

uj + ûj (if ĥj = 0),

ĥj

2hj

[
− 1 +

√
1 +

4hj

|ĥj |2

]
uj + ûj (o.w.).

(19)

Here, ej is the j-th column of the I × I identity matrix.
These update rules are equivalent to those employed in Aux-
IVA when λj = 0. It is noteworthy that the algorithm takes
benefits of the auxiliary function approach, namely, no step-
size tuning and fast convergence. Moreover, the algorithm
having similar updating procedures with AuxIVA allows us
to adopt autoregressive estimation [9] to develop online sys-
tems, which is indispensable in real-time and low-latency ap-
plications. In the following sections, we adopt the proposed
GCAV-IVA method to a dual-microphone system and evalu-
ate the effectiveness via simulation.

4. SYSTEM FOR A DUAL-MICROPHONE CASE

To develop a dual-mirophone system, we take the following
conditions into consideration:

• The correct DOA of the target speaker θt is known;
• Null constraints are employed, i.e. cj = 0 or close

to zero. It is a practical choice since only two micro-
phones are available.

Fig. 1 shows an overview of the proposed system. Under
the conditions above, we always apply a null constraint to
the interference channel, where the null is formed toward the
target speaker direction. For the target channel, we evaluate
three options in the next section.

1. No constraint.
2. Null constraint at the interference direction from the or-

acle in 2-speaker case or at a dummy interference direc-
tion in 1-speaker case. This option is only for reference
purpose.

3. Null constraint at the interference direction estimated
by a separate AuxIVA system.

GCAV-IVA
target

interference
known

Fig. 1. Basic system structure.

The motivation of third option is that, as demonstrated in Sec-
tion 5, we find that the constraining both channels can lead to
a higher enhancement performance. In this option, the in-
terference DOA is obtained from a separate AuxIVA system.
Since a BSS system can be interpreted as a set of adaptive
null-beamformers [22], the directional nulls, which can be
identified from the directivity patterns, usually point out the
directions where the sources come from [14, 23, 24]. In the
system, the DOA of the j-ch output sources is given as

θ̂j = argmin
θ

Ω/2∑
ω=1

|wH
j (ω)d(ω, θ)|. (20)

The interference DOA θ̂i can then be obtained by selecting
the one far away from the target DOA θt:

θ̂i = argmax
θ̂j

[
|θ̂j − θt|

]
, j = 1, 2 (21)

5. EXPERIMENTAL EVALUATIONS

5.1. Data and settings

To evaluate the effectiveness of the proposed GCAV-IVA
method and the dual-microphone system, we conducted
speech enhancement experiments in two situations: 2-speaker
case where both target and interference speaker exist and 1-
speaker case where only the target speaker exists.

We used speech samples of 4 speakers (2 females and
2 males) excerpted from Voice Conversion Challenge 2018
(VCC2018) database [25], which included 81 sentences for
each speaker. The audio files were about 3-7 seconds long.
The mixture signals were created by simulating two-channel
recordings of two sources where the room impulse responses
(RIRs) were synthesized using the image method [26]. Fig.
2 shows the positions of the sources and microphones. The
interval of microphones was set at 5 cm. 2 DOA settings
were investigated in the 2-speaker case, and 3 settings were
investigated in the 1-speaker case. We tested two different re-
verberant conditions where the reverberation time (RT60) was
about 200 ms and 470 ms, which were controlled by setting
the reflection coefficient of the walls at 0.4 and 0.8. To sim-
ulate the more realistic acoustic environment, 4 types of dif-
fuse noise excerpted from DEMAND database [27], includ-
ing park, office, cafeteria, and metro, were added to reverber-
ant speech signals. We generated 1920 and 960 test samples
for the 2-speaker and 1-speaker cases with various target-to-
interference energy ratios and speech-to-noise energy ratios.
The signal-to-noise ratios (SNRs) of the test samples in the
2-speaker case and 1-speaker case were between [-2, 6] dB
and [0, 6] dB, respectively.

All the speech signals were sampled at 16 kHz. The STFT
was computed using a Hanning window whose length was
set at 32 ms, and the window shift was 16 ms. We compared
the minimum power distortionless response (MPDR) beam-
former [28] calculated with the far-field steering vectors,
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Fig. 2. Configurations of sources and microphones, where
“×” and “4” denote source positions used for 2-speaker and
1-speaker case, respectively. Red “×” denotes the target.

Table 1. Summary of tested GCAV-IVA systems.
System # θi c0 c1 λ0 λ1

(1) No constraint —
(2) Known 0 0

2 10(3) 0.5 0.2
(4) Estimated by AuxIVA 0 0
(5) 0.5 0.2

Fig. 3. DOA estimation results achieved by performing Aux-
IVA update for 3 times under reverberant conditions where
RT60 = 200 ms (upper) and RT60 = 470 ms (bottom). Red
lines show true DOAs. Blue and green graphs are estimated
DOA histograms for two directions.

the AuxIVA using GR(rj(t)) = rj(t), and the GCAV-IVA
method with various constraints. The specific settings of
the tested systems are summarized in Table 1. Source-to-
distortion ratios (SDR), source-to-interferences ratios (SIR)
and sources-to-artifacts ratios (SAR) [29] were computed
to evaluate the enhancement performance. For MPDR and
GCAV-IVA, we evaluated the output from the target chan-
nel, whereas for AuxIVA, we evaluated outputs from all the
channels and took the best score as the result.

5.2. DOA estimation results

First we investigated the potential of the standard AuxIVA as
a DOA estimator. The AuxIVA had 3 update iterations and
the DOA range was set at [0◦, 180◦] with an interval of 5◦.
Fig. 3 shows the estimation results in a histogram format,
which were calculated from the 2-speaker dataset. It is re-
vealed that more than 60% of the estimated directions is lo-
cated in the range of ±20◦ against the true DOA. In the next
subsection, we will demonstrate the benefit of the DOA esti-

Table 2. SDR, SIR, and SAR [dB] of 2-speaker case.

Method RT60 = 200 ms RT60 = 470 ms
SDR SIR SAR SDR SIR SAR

unproc 1.46 1.61 23.02 0.78 1.47 12.11
MPDR 3.82 4.89 12.30 3.55 5.33 9.95
AuxIVA 7.12 8.98 14.05 4.96 7.42 10.51
GCAV-IVA(1) 8.42 11.19 13.33 6.47 10.33 9.86
GCAV-IVA(2) 8.71 11.50 13.53 6.51 10.34 9.89
GCAV-IVA(3) 8.75 11.62 13.49 6.55 10.50 9.84
GCAV-IVA(4) 8.72 11.52 13.52 6.53 10.36 9.93
GCAV-IVA(5) 8.80 11.69 13.51 6.57 10.50 9.88

Table 3. SDR, SIR, and SAR [dB] of 1-speaker case.

Method RT60 = 200 ms RT60 = 470 ms
SDR SIR SAR SDR SIR SAR

unproc 3.03 3.37 21.61 2.14 3.06 12.48
MPDR 1.29 2.79 9.50 2.14 4.03 8.98
AuxIVA 6.04 8.00 13.12 4.07 6.65 10.04
GCAV-IVA(1) 7.00 10.20 11.73 5.47 10.20 8.76
GCAV-IVA(2) 7.37 10.33 12.23 5.60 10.30 8.90
GCAV-IVA(3) 7.32 10.40 12.20 5.55 10.36 8.75
GCAV-IVA(4) 7.39 10.27 12.37 5.71 10.41 9.03
GCAV-IVA(5) 7.43 10.41 12.31 5.73 10.56 8.93

mation in speech enhancement experiments.

5.3. Speech enhancement results

Table 2 and Table 3 summarize the speech enhancement re-
sults. The proposed GCAV-IVA method exceeded the con-
ventional MPDR in terms of all criteria and achieved higher
scores than AuxIVA in terms of SDRs and SIRs, which con-
firmed the advantage of the geometric constraints. Compar-
ing the results achieved by system (1) with other systems, we
found that constraining two channels led to higher enhance-
ment performances, even in the situation where any inter-
ference speaker doesn’t exist, i.e., 1-speaker case. The re-
sults also indicate that carefully tuned cj was able to produce
slightly higher SDR and SIR scores. Interestingly, the sys-
tem exploiting interference DOA estimation outperformed the
one using true DOAs. One possible reason is that, since the
DOA estimate coming from the AuxIVA points out the direc-
tion including the most statistically independent components,
suppressing that direction can result in a higher SIR.

6. CONCLUSIONS

In this paper, we proposed a geometrically constrained BSS
method called GCAV-IVA, which combines IVA with a set
of linear constraints restricting the far-field response of the
demixing filter. We derived a convergence-guaranteed algo-
rithm with the auxiliary function approach and showed the up-
date rules of the parameter estimation by exploiting the idea
introduced in the VCD method. A dual-microphone system,
including GCAV-IVA for speech enhancement and AuxIVA
for DOA estimation, was introduced and experimentally in-
vestigated. The experimental results confirmed that the pro-
posed method outperformed the conventional MPDR beam-
former and AuxIVA.
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