Featured Content
We are happy to share the Error Analysis tool with the open source community. The tool is based on our earlier work for failure explanation in ML systems and was developed with the help of our amazing partners in Azure Machine Learning and Microsoft Mixed Reality.
The webinar will present examples of how these learnings are shaping our research on developing principles and tools for bringing the AI principle of reliability and safety to reality. In particular, it will showcase an ecosystem of open-source tools that are intended to accelerate the machine learning (ML) development life cycle by identifying and mitigating failures in a faster, systematic, and rigorous way.
Episode 102 | December 11, 2019 - With all the buzz surrounding AI, it can be tempting to envision it as a stand-alone entity that optimizes for accuracy and displaces human capabilities. But Dr. Besmira Nushi, a senior researcher in the Adaptive Systems and Interaction group at Microsoft Research, envisions AI as a cooperative entity that enhances human capabilities and optimizes for team performance. On the podcast, Dr. Nushi talks about what it takes to develop collaborative AI systems and unpacks the unique challenges machine learning engineers face in their version of the software development cycle. She also reveals why understanding the “terrain of failure” can help researchers develop AI systems that perform as well in the real world as they do in the lab.
Artificial intelligence technologies hold great promise as partners in the real world. They’re in the early stages of helping doctors administer care to their patients and lenders determine the risk associated with loan applications, among other examples. But what happens…