Context-Reinforced Semantic Segmentation
- Yizhou Zhou ,
- Xiaoyan Sun ,
- Zheng-Jun Zha ,
- Wenjun Zeng
IEEE Conference on Computer Vision and Pattern Recognition |
Published by IEEE
Recent efforts have shown the importance of context on deep convolutional neural network based semantic segmentation. Among others, the predicted segmentation map (pmap) itself which encodes rich high-level semantic cues (e.g. objects and layout) can be regarded as a promising source of context. In this paper, we propose a dedicated module, Context Net, to better explore the context information in p-maps. Without introducing any new supervisions, we formulate the context learning problem as a Markov Decision Process and optimize it using reinforcement learning during which the p-map and Context Net are treated as environment and agent, respectively. Through adequate explorations, the Context Net selects the information which has long-term benefit for segmentation inference. By incorporating the Context Net with a baseline segmentation scheme, we then propose a Context-reinforced Semantic Segmentation network (CiSS-Net), which is fully end-to-end trainable. Experimental results show that the learned context brings 3.9% absolute improvement on mIoU over the baseline segmentation method, and the CiSS-Net achieves the state-of-the-art segmentation performance on ADE20K, PASCAL-Context and Cityscapes.