Inference-Time Scaling for Complex Tasks: Where We Stand and What Lies Ahead

MSR-TR-2025-16 |

Published by Microsoft

Inference-time scaling can enhance the reasoning capabilities of large language models (LLMs) on complex problems that benefit from step-by-step problem solving. Although lengthening generated scratchpads has proven effective for mathematical tasks, the broader impact of this approach on other tasks remains less clear. In this work, we investigate the benefits and limitations of scaling methods across nine state-of-the-art models and eight challenging tasks, including math and STEM reasoning, calendar planning, NP-hard problems, navigation, and spatial reasoning. We compare conventional models (e.g., GPT-4o) with models fine-tuned for inference-time scaling (e.g., o1) through evaluation protocols that involve repeated model calls, either independently or sequentially with feedback. These evaluations approximate lower and upper performance bounds and potential for future performance improvements for each model, whether through enhanced training or multi-model inference systems. Our extensive empirical analysis reveals that the advantages of inference-time scaling vary across tasks and diminish as problem complexity increases. In addition, simply using more tokens does not necessarily translate to higher accuracy in these challenging regimes. Results from multiple independent runs with conventional models using perfect verifiers show that, for some tasks, these models can achieve performance close to the average performance of today’s most advanced reasoning models. However, for other tasks, a significant performance gap remains, even in very high scaling regimes. Encouragingly, all models demonstrate significant gains when inference is further scaled with perfect verifiers or strong feedback, suggesting ample potential for future improvements.

Publication Downloads

Eureka ML Insights

September 16, 2024

This repository contains the code for the Eureka ML Insights, a framework for standardizing evaluations of large foundation models, beyond single-score reporting and rankings. The framework is designed to help researchers and practitioners run reproducible evaluations of generative models using a variety of benchmarks and metrics efficiently. The framework allows the user to define custom pipelines for data processing, inference, and evaluation, and provides a set of pre-defined evaluation pipelines for key benchmarks.