Mining Dependency in Distributed Systems through unstructured log analysis
- Jian-Guang Lou ,
- Qiang Fu ,
- Yi Wang ,
- Jiang Li
the 2nd Workshop on Analysis of System Logs (selected as BEST PAPER and published in SIGOPS OS Review) |
Published by Association for Computing Machinery, Inc.
Dependencies among system components are crucial to locating root errors in a distributed system. In this paper, we propose an approach to mine inter-component dependencies from unstructured logs. The technique requires neither additional system instrumentation nor any application specific knowledge. In the approach, we first parse each log message into its log key and parameters. Then, we find dependent log key pairs belong to different components by leveraging co-occurrence analysis and parameter correspondence. After that, we use Bayesian decision theory to estimate the dependency direction of each dependent log key pair. We further apply time delay consistency to remove false positive detections. Case studies on Hadoop show that the technique successfully identifies the dependencies among the distributed system components.
Copyright © 2007 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or [email protected]. The definitive version of this paper can be found at ACM's Digital Library --http://www.acm.org/dl/.