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Abstract

This dissertation describes a number of algorithms developed to increase the
robustness of automatic speech recognition systems with respect to changes in the
environment. These algorithms attempt to improve the recognition accuracy of speech
recognition systems when they are trained and tested in different acoustical
environments, and when a desk-top microphone (rather than a close-talking microphone)
is used for speech input.  Without such processing, mismatches between training and
testing conditions produce an unacceptable degradation in recognition accuracy.

Two kinds of environmental variability are introduced by the use of desk-top
microphones and different training and testing conditions:  additive noise and spectral tilt
introduced by linear filtering.  An important attribute of the novel compensation
algorithms described in this thesis is that they provide joint rather than independent
compensation for these two types of degradation.

Acoustical compensation is applied in our algorithms as an additive correction in the
cepstral domain. This allows a higher degree of integration within SPHINX, the Carnegie
Mellon speech recognition system, that uses the cepstrum as its feature vector. Therefore,
these algorithms can be implemented very efficiently.  Processing in many of these
algorithms is based on instantaneous signal-to-noise ratio (SNR), as the appropriate
compensation represents a form of noise suppression at low SNRs and spectral
equalization at high SNRs.

The compensation vectors for additive noise and spectral transformations are
estimated by minimizing the differences between speech feature vectors obtained from a
"standard" training corpus of speech and feature vectors that represent the current
acoustical environment.  In our work this is accomplished by a minimizing the distortion
of vector-quantized cepstra that are produced by the feature extraction module in SPHINX.

In this dissertation we describe several algorithms including the SNR-Dependent
Cepstral Normalization, (SDCN) and the Codeword-Dependent Cepstral Normalization
(CDCN). With CDCN, the accuracy of SPHINX when trained on speech recorded with a
close-talking microphone and tested on speech recorded with a desk-top microphone is
essentially the same obtained when the system is trained and tested on speech from the
desk-top microphone.

An algorithm for frequency normalization has also been proposed in which the
parameter of the bilinear transformation that is used by the signal-processing stage to
produce frequency warping is adjusted for each new speaker and acoustical environment.
The optimum value of this parameter is again chosen to minimize the vector-quantization
distortion between the standard environment and the current one.  In preliminary studies,
use of this frequency normalization produced a moderate additional decrease in the
observed error rate.
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Introduction1
Unconstrained automatic speech recognition (ASR) is a very difficult problem.

Early ASR systems obtained a reasonable performance by artificially constraining the
problem. Those systems were speaker dependent, and dealt with isolated speech for small
vocabularies, while current speech recognizers produce higher performance under less
constrained environments.  SPHINX (Lee et al. [45]), the system recently developed at
CMU, is the first speaker-independent large-vocabulary continuous-speech recognition
system. The technology has now reached the point where ASR systems may become
useful in everyday applications although there are other considerations that must be
addressed for speech to become a viable and facile man-machine communication
medium:

• Spontaneous speech. For a system to be useful in a day-to-day application it
has to accept spontaneous speech. Most current ASR systems deal with read
speech only because spontaneous speech is often ungrammatical and ill-
structured.

• Semantics and pragmatics in speech understanding. For a specific task,
the perplexity, average number of words active at any given time, can be
reduced substantially if semantic and pragmatic information is used in
addition to a grammar.

• Acoustical and environmental robustness: ASR systems exhibit
unacceptable degradations in performance when the acoustical environments
used for training and testing the system are not the same. It would be
desirable to have a system that works independently of recording conditions
(using different rooms, microphones, noise levels).

In this dissertation we focus on the last issue, the robustness with respect to changes
in the acoustical environment, and we describe several algorithms that make SPHINX

more environment independent.
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1.1. Acoustical Environmental Variability and its Consequences

In this section we discuss the different causes of acoustical and environmental
variability. There are some attributes of the environment that remain relatively constant
through the course of an utterance such as the recording equipment, the amount of room
reverberation, and the acoustical characteristics of the particular speaker using the
system. Other factors, like the noise and signal levels, will be assumed to vary slowly
compared to the rate at which speech changes.

1Current HMM recognizers usually focus on short-term attributes of the speech
signal (over segments of about 20 ms that are called frames) while long-term properties
are often ignored.  We will discuss several different external factors that change the
environment and therefore affect the performance of a speech recognition system: input
level, additive noise, spectral tilt, physiological differences, and interference by the
speech of other speakers (the cocktail party effect).

1.1.1. Input Level

Input level changes from utterance to utterance and even within the same utterance.
Speakers normally do not speak with the same volume, distance from, and orientation to
the microphone. Gain normalization cannot be done on a frame-by-frame basis since the
input level is a long-term feature of speech.

1.1.2. Additive Noise

The performance of speech recognition systems degrades drastically when training
and testing are carried out with different noise levels. When the signal-to-noise ratio

2(SNR) is less than +10 dB the speech is severely corrupted and not even training and
testing on the same noisy environment can ameliorate the problem.

In most cases background noise can be modeled as an additive stationary
perturbation that is uncorrelated with the signal. We are excluding from this analysis non-
stationary perturbations frequent in an office environment such as door slams, key strokes
and other conversations. The stationarity of the background noise is another long-term
property of our corrupted speech.

1HMM, Hidden Markov Models, is the dominant technology in automatic speech recognition. See
Chapter 2 for an overview.

2Signal-to-noise Ratio is the ratio between the power of the signal and the power of the noise, and it is
usually given in dB.



5

1.1.3. Spectral Tilt

Spectral tilt is the distortion observed in the spectrum when the speech signal is
passed through an LTI (linear time-invariant) filter.  In the log-spectral domain the net
effect of spectral tilt is an additive offset to the transfer function.  There are various
sources of spectral tilt:

• Speaker-specific spectral characteristics. Differences in vocal tract
physiology will lead to different long-term average frequency responses.
Accurate speaker verification and identification systems have been built that
use long-term spectral averages as their features.

• Speech Styles. It has been discovered recently [7] that spectral tilt is one of
the major effects of the use of different speech styles (e.g. normal, soft, fast,
and shouted speech, and speech spoken in the presence of noise [Lombard-
effect speech]).

• Room acoustics and reverberation. The effect of reverberation can be
modeled as a linear filter that depends on the geometry and materials of the
room and the speaker location.

• Recording equipment. If a different microphone is used, the overall transfer
function will change.

Spectral tilt is a major cause of performance degradation.  The spectral distortion
3measures used in speech recognition are severely affected by spectral tilt.

1.1.4. Physiological Differences

Differences in the physiology of the vocal tract will produce variability in the
speech signal. Although formant frequencies are probably among the most invariant
features in vowel discrimination, there is great variability among speakers due to
differences in vocal tract sizes and shapes.

It is well known that the formant frequencies for a voiced sound will depend on the
phonetic context (short-term variability) as well as on the anatomical characteristics of
the speaker (long-term variability). Male voices exhibit lower formants than those of
females, who in turn exhibit lower formants than those of children. The nominal resonant
frequencies of the vocal tract depend strongly on the size of the vocal tract as well as on
some other anatomical parameters.

π3 2Spectral distortion measures typically compute {f[S (ω)] − f[S (ω)]} dω where the function f(x) is xa b∫−π
or a compressing function of x (the logarithm is a popular choice).
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1.1.5. Interference from Other Speakers

The interference that takes place when different speakers talk simultaneously is
sometimes referred to as the cocktail party effect. In most speech recognition systems the
input signal is modeled as an excitation (specifically an impulse train or white noise)
driving a time-varying all-pole filter. Since this model assumes that only a single voice is
present, interference from other speakers cause a dramatic degradation in recognition
accuracy. While automatic recognition systems fail, humans do remarkably well in
attending to and interpreting the speech of the desired speaker.

1.2. Previous Research in Signal Processing for Robust Speech
Recognition

Robust speech recognition is a young and rapidly growing field. Most of the early
work toward robustness has been derived from classical techniques developed in the
context of speech enhancement (Lim [49] offers a good summary of those techniques). In
this section we describe different kinds of techniques used to enhance speech in the
presence of additive noise.

1.2.1. Techniques Based on an Autoregressive Model

Autoregressive analysis (AR), is a set of techniques that assume that the signal
spectrum can be represented by the all-pole transfer function

G
A (z) = (1.1)

p
−i1 + α z∑ i

i=1

When such a signal is corrupted by additive noise, zeroes will appear as well as poles in
the transfer function representing the signal. The goal of these approaches is to find the
autoregressive (AR) parameters of the speech signal and the noise. Lim [48] proposed a
speech enhancement technique that iterated back and forth between an estimate of the
clean waveform obtained by Wiener filtering of the noisy speech and the AR parameters
obtained from that clean waveform. Proof of the convergence of these techniques was
later provided by Feder et al. [21]. Although this processing produced an increase in
SNR, the processed speech was less intelligible, and the resulting estimates exhibited a
large variance.

Hansen and Clements [32] [33] extended Lim’s work by applying inter-frame and
intra-frame constraints to reduce the variance of the estimates of the restored speech.
When applied to speech recognition, they obtained a somewhat higher recognition rate.
The work of Mansour and Juang [52] is also based on an AR model of speech.
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The main problem with these approaches is that small inaccuracies of the all-pole
model are magnified by this algorithm at high noise levels. Also, the restored speech may
exhibit artificial resonances that do not correspond to real speech frames.

1.2.2. Techniques Based on Manipulation of Distortion Measures

A number of researchers have attempted to combat additive noise and spectral tilt
by developing special distortion measures that are more robust to this type of variability.
Gray et al. [30] presents an early study on different distortion measures for speech

4processing which favors the cepstral distance . A more recent study was presented by
Nocerino et al. [59].

5Instead of using the Euclidean distance , some authors have proposed Mahalanobis
6distance distances for cepstral feature vectors.  Tokhura [78] showed that since different

cepstral coefficients are uncorrelated with each other, it suffices to use a weighted
Euclidean distance. The weights were the inverse of the variance of each cepstral
coefficient obtained from the pooled data. For recordings on dial-up telephone lines this
method proved to be quite effective.

7Juang et al. [41] proposed the use of bandpass liftering , in which the cepstral
coefficients were weighted by a raised sine function. They argued that reducing the
contribution of low-order cepstral coefficients was beneficial because of their large
variance, and that reducing the contribution of the highest-order cepstral coefficients
improved the discrimination capabilities of ASR systems.  Again this algorithm proved
effective for dial-up telephone lines for digit recognition.

Other types of lifters were proposed by Hermansky [34], Itakura and Umezaki [39].
Junqua and Wakita [42] did a comparative study of lifters for robust recognition.

Mansour and Juang [52] proposed a set of distortion measures that gives
consideration to the angle between two vectors, rather than just the norm of the
difference. This distortion measure was very effective for combating dial-up telephone
speech corrupted with additive synthetic noise for an alphanumeric isolated-word task.

4The cepstrum, originally proposed by Bogert et al. [4], is the inverse Fourier transform of the logarithm
of the spectrum. The cepstrum is a popular choice for speech recognition front-ends.

5 2 1/2The Euclidean distance between two vectors x and y is d = [ (x[k] − y[k]) ] .∑
6 TThe Mahalanobis distance between vectors x and y is d = (x − y) C (x − y) where C is the inverse of

the covariance matrix of x and y.

7The word liftering comes from filtering with the first syllable reversed. The term was coined by Bogert
et al. [4] in his work defining the cepstrum (spectrum backwards) as the inverse Fourier transform of the
logarithm of the Fourier transform.
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Soong and Sondhi [73] proposed a frequency-weighted measure that accounted for
the broadening of the peaks at low SNR. Goncharoff and Chandran [29] and Noda
[60] did similar studies based on spectral warping.

Although relatively successful, one paradox of all these weighted Euclidean
distortions is that they intend to combat distortions due to a shift in the mean (spectral
tilt) by a variance normalization. Although these authors reported improvement on
speech recorded over many different telephone lines over the case of no processing, we
found in pilot experiments that Juang’s liftering, Tokhura’s weighted distance and
Hermansky RPS distortion did not produce any useful improvement in recognition
accuracy for our system using our database, perhaps because the frequency warping
transformation used in SPHINX alters the variance of the cepstral coefficients.

1.2.3. The Use of Auditory Models

Since the human auditory system is very robust to changes in acoustical
environments, some researchers have attempted to develop signal-processing schemes
that mimic the functional organization of the peripheral auditory system. For example,
Seneff [70] and Zue et al. [83], Hunt and Lefebvre [37], Ghitza [25] [26] and Cohen
[9] all used models based on the human auditory system as front-end processors for their
recognition systems.

While these methods appear to be able to produce some improvement in robustness
for speech in noise, the mechanisms that enable this to occur are not well understood. In

8fact, Ghitza [26] found that the use of DFT coefficients resulted in higher accuracy and
robustness than the highly complex filter-bank. He found the power of the model for
robustness to be in the non-linear stages. In later work, Hunt and Lefebvre [38] analyzed
the performance of different weighting schemes that used linear discriminant analysis
(LDA) to combine heterogeneous speech features. In their experiments, a front-end based
on LDA techniques attained a higher degree of robustness than the auditory model they
described in [37] for the same task while being substantially more computationally
efficient.

Cohen [9] designed a front-end based on some of the functions of the peripheral
auditory system. When tested on the IBM TANGORA system, his front-end performed
substantially better than a filter bank for speech recorded with a Crown PZM6A
microphone.

While the use of models of the peripheral auditory system also provide a relative

8Discrete Fourier Transform.
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improvement for the case of mismatches in training and testing over the baseline-
processing case, the reasons for this are again not well understood. Also, these techniques
are typically very computationally expensive. Although we believe that great insight can
be obtained by analyzing the functioning of the human auditory system, we believe that
other alternative approaches are likely to be more practical in the shorter term.

1.2.4. Techniques Based on Short-Time Spectral Amplitude Estimation

A number of algorithms have been developed to estimate a clean speech spectrum
from the noisy speech spectrum. Spectral subtraction techniques were introduced by Boll
[5] and Berouti et al. [3] in the context of speech enhancement. The noise spectrum was

subtracted from the corrupted speech spectrum. While increasing the SNR, the speech
intelligibility was not improved.

Recent implementations of spectral subtraction for speech recognition systems
include the work of Van Compernolle [11] [10] and Stern and Acero [74]. Van
Compernolle improved the robustness of the IBM speech recognition system when a
desk-top microphone was used. The feature vector in the IBM system consists of the
outputs of an auditory model. He proposed the use of channel equalization with a special
implementation of spectral subtraction in the logarithm domain.  The work of Stern and
Acero was similar, although it was based on cepstral parameters derived from an LPC
analysis.

Although ad-hoc techniques like spectral subtraction provide a moderate
improvement, they are not derived with any optimum criterion.  Porter and Boll

9[67] proposed to estimate DFT coefficients via MMSE techniques, and this approach
produced an improvement in performance over their original spectral-subtraction
methods. They also showed that estimating the log-spectrum was more effective than
estimating the spectrum directly as far as improving accuracy in the recognizer. The use
of filter-bank outputs instead of DFT coefficients (Boll et al. [6]) resulted in even higher
accuracy because of the smoothing effect across frequency.

The use of MMSE criteria provides more reliable estimates of the original speech
signal at low SNR than the use of maximum likelihood estimation.  These techniques are
very effective, although they still suffer from the same plague that affects all approaches:
at low SNR some of the processed speech does not represent legitimate speech.

9The minimum mean squared error criterion (MMSE) is used to derive estimates that minimize the
expected squared error between the estimate and the random variable to be estimated.
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1.2.5. Techniques Based on Mixture Densities

Some authors have very recently proposed to characterize the feature vectors input
to speech recognizers by mixtures of Gaussian probability densities as a way of
increasing noise robustness. Techniques based on short-time spectral amplitude
estimation produced some frames at low SNRs that did not represent legitimate speech
frames, because different frequency components were implicitly assumed to be
independent of each other. From the plethora of density functions for which different
components are not independent of each other, mixtures of Gaussian densities are a
popular choice in the speech recognition community.

10Ephraim et al. introduced MAP [16] and MMSE estimates [17] for speech
enhancement with the aid of HMMs. Both speech and noise were modeled as AR

11processes whose parameters were computed via an EM algorithm that maximized the
likelihood across the whole utterance. The enhanced signal exhibited a substantial
increase in SNR, although the process was very computationally expensive because the
time waveform was reconstructed for every iteration.

Nadas et al. [56] used a mixture model of the outputs of an ear model in the
TANGORA IBM speech recognition system. In their algorithm, the MIXMAX labeler, an
MAP approach was used to select the most likely mixture component given the noisy
speech frame. An EM algorithm was used to maximize the sum of Gaussian densities
until convergence was reached. The MIXMAX labeler was shown to increase the
robustness of TANGORA significantly but, since they assumed that the corrupted speech at
each frequency band was the maximum of the noise and the clean speech at that band,
low energy speech frames were not modeled accurately.

Erell and Weintraub [19] also proposed an approach that was based on a mixture
model for filter-bank outputs.  They reported improved performance over techniques that
did not incorporate correlation between frequency bands. Since the parameter vector in
DECIPHER, the SRI system, was the cepstrum, they computed an MMSE estimate that
weighted the contributions from all the mixtures, instead of labeling directly as Nadas
did. Their model for the noise degradation was more elaborate than that used by Nadas,
but their system did not have the system integration that Nadas’ had because they had to
cluster the acoustic space in both the spectral domain and cepstral domain.

10The maximum a posteriori criterion (MAP) selects the parameter that has the highest probability given
the observed input. In this case, we select the most likely mixture component given the input frame.

11The EM, estimate-maximize, algorithm is an iterative algorithm to solve problems of maximum
likelihood with incomplete data. The reader is referred to Appendix F for details.
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Nadas et al. [57] proposed an adaptive labeling scheme that applied a time-varying
12transformation to the input speech frames in an effort to minimize the accumulated VQ

distortion. Since this approach is directed towards normalizing different transfer
functions as well as noise levels, the adaptive labeling increased the robustness of
TANGORA with different microphones and recording conditions. However, analysis of
convergence is hard for a constantly drifting process.

Varga et al. [79] proposed an interesting approach in which instead of estimating the
speech in noise, the HMMs were modified to allow for the presence of noise via noise
masking. In [80] Varga and Moore actually used an HMM for the noise and another
HMM for the speech. The Viterbi algorithm involved a search in a 3D space in this case,
and non-stationary noises could be modeled. Although this idea is very powerful, their
model for noise degradation was not very accurate, as it was based on many hard
thresholds. Also, the computational complexity was very high.

Furui [24] investigated an unsupervised speaker adaptation method that was based
on hierarchical spectral clustering of cepstral coefficients.  The goal of the approach was
to minimize the VQ distortion between the target acoustic space and a universal acoustic
space. He suggested that this technique could also be used to increase the robustness of
the system in noisy environments.

1.2.6. Other Techniques

There are a number of different approaches to the problem of speech recognition
systems that are robust to noise. Some of these other techniques include neural networks
and the use of microphone arrays.

Tamura and Waibel [76] suggested the use of a neural network for speech
enhancement that was trained to minimize the difference between noisy and clean
waveforms. In [77] Tamura and Nakamura used different affine transformations between
hidden layers that corresponded to different phonemes. Neural network technology may
be promising for robust speech recognition too, but for that they should operate on the
transformed domain, spectrum or cepstrum, and not on the waveform.

Some efforts are being pursued in enhancing speech by using a microphone array
(Flanagan et al. [22], Silverman [72], Van Compernolle [12]). The goal of this approach
is to develop a directivity pattern so that noise sources arriving from a different angle
than the desired speech are attenuated.  While microphone arrays need to be explored in

12Vector Quantization (VQ) is a procedure that assigns each input frame to the closest prototype vector
from a finite set. The measure of proximity in SPHINX is the Euclidean distance.  See Chapter 2 for details.
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the future, we believe that there is still room for improvement with a monophonic signal.
In addition, these two approaches can complement each other.

While most previous efforts are geared towards suppressing stationary noise, some
authors have focused on the difficult problem of speaker separation (Min et al. [53],
Zelinski [82], Naylor and Boll [58]). These approaches work acceptably when the speech
from both speakers is voiced and their pitch frequencies are far apart.

1.2.7. Discussion

One important factor in the selection of techniques to use was computational
complexity, because we need to evaluate usefulness of speech input for personal
computers. In this dissertation we opted not to work with auditory models nor iterative
techniques based on AR models since they both present a high degree of computational
complexity. Furthermore, although these techniques provide an increased degree of
robustness over the case of no processing, they have not been shown to be superior to the
other techniques described.

At the other end of the continuum in computational complexity are the weighted
distortion measures. Unfortunately, we have found in pilot experiments that the distortion
measures proposed in the literature provided essentially no improvement over the case of
standard Euclidean distance for our database evaluated with SPHINX.

Since in this study we were concerned with the capabilities and limitations of
techniques that used only one microphone, we did not investigate microphone-array
techniques. We also did not address the issue of non-stationary noise either because we
consider it an extremely difficult problem.

In this dissertation we will primarily explore approaches based on short-time
spectral amplitude estimation and techniques that use mixture densities. They offer an
attractive compromise between efficiency and accuracy.

1.3. Towards Environment-Independent Recognition

The goal of our research is to increase the robustness of the speech recognition
systems with respect to changes in the environment. Since mismatches between training
and testing conditions lead to a considerable degradation in performance, systems
presently must be retrained for every different environment used. Even in the case of
retraining, environments with a higher noise level suffer a loss of accuracy as compared
to clean environments because some information is lost when noise is added. Going
beyond that will require more sophisticated techniques.
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A system can be labeled as environment-independent if the recognition accuracy for
a new environment is the same or higher than that obtained when the system is retrained
for that environment. Attaining such performance will be the goal of this dissertation.

In this section we will introduce the need for joint compensation of noise and
equalization and an integrated approach for normalization in the cepstral domain.

1.3.1. Joint Compensation for Noise and Equalization

Most of the techniques described in the previous section to reduce the effects of
mismatches between training and testing conditions deal only with additive noise.
Nevertheless, we have also noted that spectral tilt can affect the performance of speech-
recognition systems as well.

In this dissertation we develop a set of algorithms to accomplish the joint
normalization of noise and spectral tilt. Although some efforts have previously been
made to combinethe two types of processing (e.g. Van Compernolle [10], Erell and
Weintraub [19]), both phenomena were treated independently. We will show that there is
indeed an interaction between these phenomena and that further benefit is obtained if
joint normalization is performed.

We will present several algorithms that adapt to new acoustical environments by
estimating the noise and spectral tilt from input data.  For this we use the concept of a
universal acoustic space that is transformed to match the acoustic space of the current
environment. We show that a few seconds of speech are sufficient to adapt to a different
acoustical environment.

1.3.2. Processing in the Cepstral Domain: A Unified View

While successful noise-suppression algorithms operate in the frequency domain,
most successful continuous speech recognizers operate in the cepstral domain. In this
dissertation we will describe algorithms that perform the noise suppression in the cepstral
domain, so that a larger degree of integration can be achieved for cepstral-based systems.
In fact, the level of integration is so high that the algorithms can be implemented in an
extremely efficient manner by a straight-forward modification of the vector quantizer
module.

We show that compensation for noise and spectral tilt can be achieved by an
additive correction in the cepstral domain. In addition to this bias compensation, a
variance normalization is also possible. Finally, we propose a frequency normalization
operation that can be expressed as a matrix multiplication operation.
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13We show in this dissertation that conditioning on the instantaneous SNR is
advantageous. We show that the instantaneous SNR captures a great deal of the
information needed to perform the compensation.

Although frequency normalization may appear to be outside the scope of the
problems of robustness to changes in the environment, we show that using the processing
in the cepstral domain together with the concept of normalization of the acoustic space
allow us to perform some adaptation to the long-term characteristics of the speaker. In
this dissertation we present a novel method to accomplish this via adaptive warping of
the frequency axis.

1.3.3. Measuring Performance Evaluation

Although many of the techniques described in the previous section are successful at
some level, it has been difficult to compare them with each other because there does not
exist a standard corpus for algorithm comparisons in the field of noise robustness like the
one developed by DARPA for research in continuous speech recognition.  The way many
authors evaluate their algorithms is by comparing recognition accuracies for different
noise levels for a system that has been trained with clean speech, with and without
processing for robustness. While these measurements may demonstrate the effectiveness
of a given method, they do not provide a basis for comparison with other authors’ work
because different authors use different tasks and noise levels. With a few exceptions,
most authors do not consider the accuracy of the system when it is trained and tested on
the noisy speech. We believe that this is an important benchmark for the evaluation of
algorithms. To this end, we recorded a training database stereophonically using two
different microphones: a close-talking microphone and a desk-top microphone.

Another common characterization of noisy speech databases is that of SNR.
Although under some circumstances SNR can provide a good estimate of the degree of
difficulty of a speech database that has been recorded in the presence of white noise, it
does not characterize the database when the noise is colored or when the speech has been
passed through a filter that has altered the frequency response, as is the case for real
environments. We will use the simple average of speech and noise spectra as a
characterization of a stereo database.

13We define the instantaneous SNR as the ratio of the short-time energy of the speech at a certain time
over the average energy of the noise.  For this work, we assume the noise to be stationary, so that the noise
energy is supposed to be constant and can be estimated from previous frames.
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1.4. Dissertation Outline

Chapter 2 describes the structure of the speech recognition system and the
databases. Chapter 3 reviews some of the specifics of implementations of spectral
subtraction and equalization, as well as other standard techniques described in the
literature.

Chapter 4 presents the need for a joint compensation of noise and spectral tilt. Two
algorithms will be presented: one in the frequency domain and the other in the cepstral
domain. The latter introduces the idea of a normalization that depends exclusively on the
instantaneous SNR of the input speech and is the basis for the SNR-Dependent Cepstral
Normalization (SDCN) algorithm.

Chapter 5 introduces the Codeword-Dependent Cepstral Normalization (CDCN)
algorithm to solve the problem of changes in the environment by using the idea of
normalization of the acoustic space. CDCN also exhibits a better behavior for frames
with low SNR.

Chapter 6 introduces several algorithms that build on SDCN and CDCN in an effort
to obtain more accurate and efficient algorithms. We present the Interpolated SDCN
algorithm and the Fixed CDCN algorithm as an evolution of the algorithms in Chapter 5.

In Chapter 7 we describe a method to perform frequency normalization within the
context of cepstral processing in SPHINX. We use the bilinear transform to find the
warping parameter of the frequency axis that minimizes the VQ distortion. Finally,
Chapter 8 contains a summary of results, and Chapter 9 contains our conclusions and
suggestions for future work.



16

Experimental Procedure2
In this chapter we will give an overview of the SPHINX system, describe the

database we used in this work, SNR characterizations, and the baseline results. It is
important to note that in this study we were not concerned with elevating the absolute
performance for a specific task but rather with comparing the relative merits of different
algorithms.

2.1. An Overview of SPHINX

The SPHINX system was developed at CMU by Lee et al. [46]. It was the pioneer in
speaker-independent large-vocabulary continuous-speech recognition, and it is still
considered to be the most accurate system in that aspect. We will briefly describe the
different blocks that compose the system, with greater emphasis in the signal processing
and vector quantization, since these are aspects that this thesis concentrates on.

A block diagram of the early stages of SPHINX is shown in Figure 2-1.

2.1.1. Signal Processing

All speech recognition systems use a parametric representation rather than the
waveform itself. Typically the parameters carry information on the envelope of the
spectrum. SPHINX uses frequency-warped LPC cepstrum as its parameter set, that are
computed as follows:

• Speech is digitized at a sampling rate of 16 kHz.

• A Hamming window of 320 samples (20 ms) is used every 10 ms.
−1• A preemphasis filter H(z) = 1 − 0.97 z is applied.

• 14 Autocorrelation coefficients are computed.

• 14 LPC coefficients are derived from the Levinson-Durbin recursion.
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Figure 2-1: Block diagram of SPHINX front-end.

• 32 LPC cepstral coefficients are computed using the standard recursion

• These cepstral coefficients are frequency warped by using the bilinear
transform producing 12 warped LPC cepstral coefficients.

• To account for differences in overall input level, the maximum value of the
14power g in the utterance was subtracted for all frames so that after power

normalization the maximum g is 0.

Although adjacent frames are indeed correlated with each other, the SPHINX system
assumes that every frame is statistically independent of the rest. In addition to the static

14g is the zeroth order cepstral coefficient.
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information provided by the cepstrum, SPHINX also uses dynamic information
represented by the first order difference of cepstral vectors: d = x − x . Seei i+2 i−2

Appendix B for a more detailed description of this processing.

2.1.2. Vector Quantization

Vector quantization (VQ) (Gray [31]) is a data reduction technique that maps a real
vector onto a discrete symbol. Although it was originally proposed for speech coding, it
has gained a great deal of popularity in speech recognition recently. A vector quantizer is
defined by a codebook and a distortion measure:

• The discrete alphabet, called codebook, contains L vectors, and it is a
quantized representation of the vector space.

• The distortion measure estimates the degree of proximity of two vectors. An
input vector is mapped to a symbol of this alphabet by choosing the closest
codebook vector. In SPHINX the distortion measure used is the Euclidean
distance.

SPHINX uses three different codebooks: one for the cepstrum, one for the first
difference of cepstral vectors and the last one for power and the first difference of the
power. By having each codebook contain 256 vectors, every frame of speech is
condensed to 3 bytes. The distortion measure used is the Euclidean distance.  The
prototype vectors are estimated via a hierarchical clustering algorithm similar to the K-
means algorithm developed by Linde et al. [50], which is an approximate maximum-
likelihood method.

2.1.3. Hidden Markov Models

Hidden Markov Models (HMM), the dominant technology in continuous speech
recognition, constitutes the recognition engine used in SPHINX. Rabiner and Juang
[69] present a good review of HMMs, Picone [66] offers a summary of HMM
applications to speech recognition.

Briefly, an HMM is a collection of states connected by transitions. Each transition
carries two sets of probabilities:

• A transition probability which provides the probability for taking a transition
from one state to the next, and

• An output probability density function (pdf), which defines the conditional
probability of emitting each output symbol from a finite alphabet given that
that transition is taken.

HMMs have become a widely-used approach for speech recognition due to the
existence of maximum likelihood techniques to estimate the parameters of the models
and algorithms that efficiently find the most likely state sequence.
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2.1.4. Speech Units

Although the natural choice for a speech unit is the word, it is an impractical one
due to the large number of words and the fact that numerous repetitions of each are
needed to train the system adequately. A common speech unit is the phoneme, typically
a 3-state left-to-right HMM, because it is easily trainable and because there are a small
number of them (45 in an early version of SPHINX). Since the same phoneme in different
contexts can be very different, SPHINX uses generalized triphone models as a way to
model both the left and the right context.

Models for words are obtained by concatenating the models of the appropriate
generalized triphones. It was found that using function-word-dependent phones helped
improve recognition accuracy of function words such as the, a, in, with that occur
frequently and are poorly articulated.

Finally the model for a complete utterance is obtained by a concatenation of the
word models.  A grammar can be incorporated in the HMM as another network whose
nodes are words with different transition probabilities.

2.2. The Census Database

Although the bulk of research using the SPHINX system at Carnegie Mellon has
made use of the well-known Resource Management database, we elected to use a
different database, the census database, for our evaluations of signal processing. There
are two reasons for this:

• The Resource Management database, with its large vocabulary size and
many utterances, required about a week to train satisfactorily, which was
excessively long since the entire system had to be retrained each time a new
signal-processing algorithm was introduced.

• We specifically wanted to compare simultaneous recordings from close-
talking and desk-top microphones in our evaluations. We believe that it is
important to evaluate speech-recognition systems in the context of natural
acoustical environments with natural noise sources, rather than using speech
that is recorded in a quiet environment into which additive noise and spectral
tilt are artificially injected.

We will now specify the speaker population, the database contents, the environment
in which it was recorded and the recognition system we used to evaluate our algorithms.
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2.2.1. Speaker Population

Since the system is to be speaker-independent, a large number of speakers are
needed to train SPHINX. The census database has two disjoint segments:

• The training segment of the census database contains utterances from 74
speakers (53 male and 21 female).

• The testing segment contains utterances from 10 different speakers (7 male
and 3 female) not present in the training.

All the speakers were selected from staff and students at CMU. The male/female
ratio in the database reflects that of the general CMU population.

2.2.2. Database Contents

The database consisted of strings of letters, numbers, and a few control words, that
were naturally elicited in the context of a task in which speakers spelled their names,
addresses, and other personal information, and entered some random letter and digit
strings. Specifically, each speaker read :

• 5 alphanumeric ("an") utterances that contained letters, digits and some
control words (enter, erase, go, help, no, repeat, rubout, start, stop, yes)
randomly. Some sample utterances are N-S-V-H-6-T-49 and
ENTER-4-5-8-2-1.

• 9 census ("cen") utterances containing respectively last name, first name,
street number, street name, city, zip code, home phone number, birth date,
and Social Security Number.  Some sample utterances are R-O-B-E-R-T
and P-I-T-T-S-B-U-R-G-H.

Since some of these utterances were discarded due to bad recordings, the total
number of utterances for the training database is 1018. The testing segment of the
database contains 140 utterances.

2.2.3. Alphanumeric Database

A total of 104 vocabulary items appeared in the vocabulary, of which 41 were
uttered fewer than 10 times. No grammar was used in any of the experiments. This
census task presents a greater degree of difficulty than the Resource Management task
because:

15• The perplexity is larger. The census database with no grammar has a

15Perplexity is an information theoretic measure of the amount of constraint imposed by a finite-state
grammar. If no grammar is used, the perplexity coincides with the size of the vocabulary.  If a grammar is
used to restrain the search space, the perplexity will be lower than the size of the vocabulary. In general
higher perplexity tasks produce higher error rates.
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perplexity of 104, while the perplexity of the word-pair grammar used in the
resource management database is 60.

• The census vocabulary exhibits greater intrinsic acoustic confusability than
the resource management vocabulary, because short words used in the
census task such as the ones in the E-set (B, C, D, E, G, P, T) present a
higher degree of acoustical similarity than the longer words in resource
management.

2.2.4. The Environment

The census database was recorded simultaneously in stereo using both the
Sennheiser HMD224 close-talking microphone that has been a standard in previous
DARPA evaluations, and a desk-top Crown PZM6fs microphone. The recordings were
made in one of the CMU speech laboratories (the "Agora" lab), which has high ceilings,
concrete-block walls, and a carpeted floor.  Although the recordings were made behind
an acoustic partition, no attempt was made to silence other users of the room during
recording sessions, and there is consequently a significant amount of audible interference
from other talkers, key clicks from other workstations, slamming doors, and other sources
of interference, as well as the reverberation from the room itself.  Since the database was
limited in size, it was necessary to perform repeated evaluations on the same test
utterances.

2.2.5. The Recognition System

We also performed these evaluations using a more compact and easily-trained
version of Sphinx with only 329 triphone models, omitting such features as duration,
function-word and function-phrase models, between-word triphone models, and
corrective training.  We were willing to tolerate the somewhat lower absolute recognition
accuracy that this version of Sphinx provided because of the reduced time required by the
training process. Using the census database, the more compact Sphinx system, and DEC
3100 workstation, we were able to reduce the training time to the point that an entire
train-and-test cycle could be performed in about 10 hours.

2.3. Objective Measurements

In this section we will summarize some definitions of Signal-to-Noise Ratio (SNR)
given in the literature (See Jayant and Noll [40]) and present a new measurement that we
believe provides more information about the environment.

Since the speech present in both microphone recordings was the same (as the
database was recorded in stereo simultaneously), the main differences between them
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would be the noise levels and general tilt of the spectrum.  We will see that conventional
SNR figures of merit can only measure the difference in overall noise power, while a
more detailed representation may be desired.

2.3.1. Measurements for Stationary Signals: SNR

SNR is defined as the ratio between the signal variance and the noise variance for a
given signal x[n]. The noise variance is typically estimated as an average over a segment
of a waveform that contains only noise samples.

If the speech database contains silent segments and we don’t exclude them in the
calculation of the signal power, the SNR figure will depend on how much silence our
database contains, which is clearly undesirable for any objective measure. The fact that
noise samples should be excluded in the computation brings up the issue of
speech/silence discrimination.

The problem of discriminating speech and noise can be considered as a pattern
recognition problem with two classes. Independently of what algorithm we use for this,
the probability of labeling speech as noise and vice versa will be non-zero. The problem
will become more severe as the noise level gets closer to the signal level, since the
difference in means between the two distributions will be smaller.

In the case of our stereo database, the Sennheiser HMD224 close-talking
microphone (CLSTK) exhibited an SNR of 38.4 dB whereas the Crown PZM6fs
(CRPZM) had an SNR of 19.7 dB. A 20 ms Hamming window was used in the
calculations.

2.3.2. Measurements for Nonstationary Signals: SEGSNR and MAXSNR

The above defined SNR is an adequate characterization of a channel if both signal
and noise are stationary. For the time being we will be concerned with stationary noise,
but it is well known that the speech signal is clearly non-stationary. By using the SNR as
a measure, the high energy segments of the signal are dominating the computation. If this
average is computed for a complete database, the overall SNR will be dominated by the
speakers speaking most loudly.

To alleviate the fact that the speech signal is nonstationary and that the same amount
of noise has different perceptual values depending on the ambient signal level, Noll
[40] proposed the segmental SNR. The segmental SNR is based on a log-weighting that
converts component SNR values to dB prior to averaging, so that very high SNR
segments do not camouflage other segments with low SNR. A window has to be used in
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which speech is considered stationary (in our case a 20 ms Hamming window) as a basis
for short-time integration. For our database the CLSTK and CRPZM exhibited a
SEGSNR of 31.2 dB and 16.0 dB respectively.

Another measure proposed in the literature is SNRMAX, the maximum SNR in dB.
This peak SNR has the advantage that it is not affected by the amount of silence the
database has. On the other hand, just like when measuring maxima of pdfs, it is necessary
to specify how the length of the window used (from one utterance to the whole database)
and how the maximum is computed. We computed the SNRMAX as the average over all
utterances in the test set of the maximum SNR. The results for the CLSTK and CRPZM
were 50.3 dB and 29.6 dB respectively.

2.3.3. Frequency-Weighted SNR

This refinement recognizes that noise in certain frequency bands is less harmful than
that in other bands of an input signal, and that signal in certain bands contributes more to
intelligibility/recognition rate than in other bands. These measures have been extensively
used in telephony:

• The C-message weighting function for speech represents the frequency
response of the 500-type telephone set, as well as the hearing characteristics
of the average telephone user.

• The psophometric weighting function, the European CCITT standard, is very
similar to the C-message weighting function.

• For the Articulation Index used in the early speech work, the speech signal is
observed in 20 sub-bands approximately distributed according to a Bark

16scale , with each band contributing equally to intelligibility. Component
SNR values in dB (limited to a maximum allowable of 30 dB) are averaged:

20

AI = 0.05 [ min{SNR , 30} /30]∑ i
i=1

If, for example, the recordings include a 60 Hz hum, the SNR figure will be low
although the recognition rate can still be high if those frequencies are filtered out. A
measurement that would exclude those frequency bands would give a better estimate of
the difficulty of the database from the standpoint of recognition accuracy.

The SPHINX system uses a technique similar to the AI based on frequency warping
and a preemphasis filter that improve its accuracy.  We argue that it is more meaningful
to use a measure that uses this sort of frequency-weighted SNR in its calculation.

16The Bark scale is a warping of the frequency axis that is intended to better represent the frequency
selectivity of the peripheral auditory system than a linear frequency scale.
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2.3.4. A Proposed Solution: Average Speech and Noise Spectra

Since no single SNR measure will tell us anything about a tilt in the spectrum or
about how the speech and noise energies are distributed across frequencies, we
introduced a way of characterizing the databases that presents the results as a function of
frequency.

To discriminate speech/non-speech frames we used a simple threshold on the zeroth
cepstral component g, which is closely related to the energy of the frame. The minimum
g in the utterance was computed and all the frames below g + 0.8 were consideredmin min

noise while all the frames above g + 1.5 were considered speech. The frames betweenmin

these two thresholds are not included in the calculation.  The cepstrum vectors of all
frames classified as noise are averaged together, and so are the frames classified as
speech. The DFTs of the resulting cepstral averages for the census database are plotted in
Figure 2-2 for the Sennheiser HMD224 (CLSTK) and Crown PZM6fs (CRPZM), and the
curves were normalized so that the noise level was 10 dB.  The thresholds for classifying
noise and speech were chosen empirically.  The curves in Figure 2-2 computed by this
method were not very sensitive to variations of the thresholds around the selected values.
The classification done by this method was conservative in the sense that the system
seldom misclassified speech as noise or vice versa. The price to pay was to have a region
in which the frame was not classified as either noise or speech, but this was not important
in this case as only an average is needed. In Chapter 6 we described a more elaborate
method for noise estimation (Van Compernolle [11]) that performed similarly.

By comparing the curves in Figure 2-2, it can be seen that speech is about 25 dB
above the noise level using the close-talking Sennheiser microphone.  The signals from
the Crown PZM, on the other hand, exhibit an SNR of less than 10 dB for frequencies
below 1500 Hz and about 15 dB for frequencies above 2000 Hz. Furthermore, the
response of the Crown PZM exhibits a greater spectral tilt than that of the Sennheiser,
perhaps because the noise-canceling transducer on the Sennheiser also suppresses much
of the low-frequency components of the speech signal. The so-called spectral tilt is the
difference between the speech spectrum of the two microphone recordings.

The separation between curves in Figure 2-2 is smaller in magnitude than the
SEGSNR, because these average spectra are computed by averaging the log-energies of
all frequency bands rather than the energies themselves, as used in the SEGSNR
calculation.
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Figure 2-2: Average speech and noise spectra from the Alphanumeric
database obtained using the headset-mounted Sennheiser HMD224
Microphone and the  Crown PZM6fs microphone.  The separation of the
two curves in each panel provides an indication of signal-to-noise ratio
for each microphone as a  function of frequency.  It can also be seen that
the Crown PZM6sf produces greater spectral tilt.

2.3.5. Discussion of SNR Measures

In summary, the characterization of a speech database should not depend on aspects
of the speech signal that are irrelevant such as

• Silent Periods and Background Noise. The objective measurement should
reflect the quality of the recording, which does not depend on the length of
the silent periods or background noise.

• Bandpass filtering. The level of an unfiltered speech signal mainly depends
on the frequency components below 500 Hz while those frequencies only
carry a part of the information. High-pass filters with cut-off frequencies of
around 300 Hz are used in telephone communications.

We would expect that the acoustical characterization of some speech material will
give some indication of how well a speech recognition system or a human can perform on
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it. In other words, the characterization should be correlated with the recognition rate and
intelligibility. The use of average spectra provides a better indication of the difficulty of
the database than measurements such as the SEGSNR because :

• It provides the SEGSNR for every frequency (noise in some frequencies is
more harmful than in others), as opposed to averaging the SNR across all
frequencies.

• It provides an indication of the tilt in the spectrum, which can degrade
performance significantly, even for the same SEGSNR.

CLSTK CRPZM

MAXSNR 50.3 dB 29.6 dB

SNR 38.4 dB 19.7 dB

SEGSNR 31.2 dB 16.0 dB

AVGSPT 24.4 dB 13.3 dB

Table 2-1: Analysis of different SNR measures for the census database.
In all cases a 20 ms Hamming window was used. All the figures are
computed as the average in dB across all the utterances in the database of
different measures: maximum signal energy in the utterance for
MAXSNR, the average signal energy for SNR, the average log-energy of
the signal for SEGSNR. AVGSPT is the average separation of curves in
Figure 2-2

Table 2-1 shows the different SNR measures described for the census database. The
differences between SNR, SEGSNR and AVGSPT are whether average of energies or
log-energies are used across time and/or frequency.

2.4. Baseline Recognition Accuracy

We first consider the "baseline" recognition accuracy of the SPHINX system
obtained using the two microphones with the standard signal processing routines.  Table
2-2 summarizes the recognition accuracy obtained by training and testing using each of
the two microphones.  Recognition accuracy is reported using the standard DARPA
scoring procedure reported by Pallett [62], with penalties for insertions and deletions as
well as for substitutions.  It can be seen that training and testing on the Crown PZM
produces an error rate that is 60% worse than the error rate produced when the system is
trained and tested on the Sennheiser microphone.  When the system is trained using one
microphone and tested using the other, however, the performance degrades to a very low
level.

Hence we can identify two goals of signal processing for greater robustness:  we
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need to drastically improve the performance of the system for the "cross conditions", and
to elevate the absolute performance of the system when it is trained and tested using the
Crown PZM.

Test CLSTK Test CRPZM

Train CLSTK 85.3 % 18.6%

Train CRPZM 36.9% 76.5%

Table 2-2: Baseline recognition rate of the Sphinx system when trained
and tested on the census vocabulary using each of the two microphones.

2.4.1. Error Analysis

In order to better understand why performance degraded when the microphone was
changed from the CLSTK to the CRPZM, even when the CRPZM was used for training
as well as testing, we analyzed the errors that occurred in the CRPZM that did not occur
in the CLSTK. We studied the spectrograms and listened carefully to all utterances for
which training and testing with the CRPZM produced errors that did not appear when the
system was trained and tested on the CLSTK.  The estimated causes of the "new" errors
using the CRPZM are summarized in Table 2-3.  Not too surprisingly, the major
consequence of using the CRPZM was that the effective SNR was lowered.  As a result,
there were many confusions of silence or noise segments with weak phonetic events.
These confusions accounted for some 55 percent of the additional errors, with crosstalk
(either by competing speakers or key clicks from other workstations) identified as the
most significant other cause of new errors.

Type of error Percent errors

Weak-event insertion 41.5

Weak-event deletion 13.2

Crosstalk 20.0

Others 25.3

Table 2-3: Analysis of causes of "new" errors introduced by use of the
Crown PZM microphone.
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2.5. Other Databases

Although the main database used in this work is the census database, we collected
recordings using other microphones as well. In all cases the system was trained using the
Sennheiser HMD224 (CLSTK). The "second" microphones (with which the system was
not trained) were:

• The Crown PCC160 desk-top phase-coherent cardioid microphone
(CRPCC160). (This is the new DARPA "standard" desk-top microphone.)

• An independent test set using the Crown PZM6fs.

• The Sennheiser 518 dynamic cardioid, hand-held microphone (SENN518).

• The Sennheiser ME80 electret supercardioid stand-mounted microphone
(SENNME80).

• An HME lavalier microphone that also used an FM receiver (HME).
We recorded 140 utterances from 10 speakers for every microphone above and they were
used in evaluating some algorithms after they had been developed.

We now summarize the salient acoustical attributes of these databases. The
microphone recordings can be ranked according to decreasing SNR: the standard
Sennheiser HMD224 (CLSTK), the Sennheiser 518, the Sennheiser ME80, HME FM,
Crown PCC160 and Crown PZM6fs. Recordings with the Crown PCC160, Crown
PZM6fs and HME FM exhibit considerable spectral tilt. A noticeable coloration of the
noise spectrum is present for the Crown PZM6sf and the HME FM.
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2.5.1. Sennheiser HMD224 - Crown PCC160

The average spectra for stereo recordings using the Sennheiser HMD224 and the
Crown PCC160 are shown in Figure 2-3, and the SNR measurements are presented in
Table 2-4. The baseline accuracy for the Sennheiser HMD224 and the Crown PCC160
were 82.4% and 70.2% respectively.

CLSTK CRPCC160

MAXSNR 52.8 dB 36.1 dB

SNR 41.2 dB 26.0 dB

SEGSNR 33.4 dB 20.9 dB

Table 2-4: Comparison of MAXSNR, SNR and SEGSNR measurements
for the alphanumeric database recorded with the Sennheiser HMD224
and the Crown PCC160.
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Figure 2-3: Average speech and noise spectra from the Alphanumeric
database obtained using the headset-mounted Sennheiser HMD224
Microphone and the Crown PCC160 microphone.  The separation of the
two curves in each panel  provides an indication of signal-to-noise ratio
for each microphone as a  function of frequency.
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2.5.2. Sennheiser HMD224 - Crown PZM6fs

The average spectra for stereo recordings using the Sennheiser HMD224 and the
Crown PZM6fs are shown in Figure 2-4, and the SNR measurements are presented in
Table 2-5. The baseline accuracy for the Sennheiser HMD224 and the Crown PZM6fs
were 84.8% and 41.8% respectively.

CLSTK CRPZM6fs

MAXSNR 53.0 dB 33.4 dB

SNR 41.5 dB 23.4 dB

SEGSNR 33.6 dB 18.9 dB

Table 2-5: Comparison of MAXSNR, SNR and SEGSNR measurements
for the alphanumeric database recorded with the Sennheiser HMD224
and the Crown PZM6fs.
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Figure 2-4: Average speech and noise spectra from the Alphanumeric
database obtained using the headset-mounted Sennheiser HMD224
Microphone and the  Crown PZM6fs microphone.  The separation of the
two curves in each panel provides an indication of signal-to-noise ratio
for each microphone as a  function of frequency.
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2.5.3. Sennheiser HMD224 - Sennheiser 518

The average spectra for stereo recordings using the Sennheiser HMD224 and the
Sennheiser 518 are shown in Figure 2-5, and the SNR measurements are presented in
Table 2-6. The baseline accuracy for the Sennheiser HMD224 and the Sennheiser 518
were 87.2% and 84.5% respectively.

CLSTK SENN518

MAXSNR 51.8 dB 44.8 dB

SNR 40.4 dB 34.0 dB

SEGSNR 32.6 dB 27.4 dB

Table 2-6: Comparison of MAXSNR, SNR and SEGSNR measurements
for the alphanumeric database recorded with the Sennheiser HMD224
and the Sennheiser  518.
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Figure 2-5: Average speech and noise spectra from the Alphanumeric
database obtained using the headset-mounted Sennheiser HMD224
Microphone and the  Sennheiser 518 microphone.  The separation of the
two curves in each panel provides an indication of signal-to-noise ratio
for each microphone as a  function of frequency.
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2.5.4. Sennheiser HMD224 - Sennheiser ME80

The average spectra for stereo recordings using the Sennheiser HMD224 and the
Sennheiser ME80 are shown in Figure 2-6, and the SNR measurements are presented in
Table 2-7. The baseline accuracy for the Sennheiser HMD224 and the Sennheiser ME80
were 83.7% and 71.4% respectively.

CLSTK SENNME80

MAXSNR 52.2 dB 41.2 dB

SNR 40.7 dB 30.0 dB

SEGSNR 33.0 dB 23.2 dB

Table 2-7: Comparison of MAXSNR, SNR and SEGSNR measurements
for the alphanumeric database recorded with the Sennheiser HMD224
and the Sennheiser  ME80.
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Figure 2-6: Average speech and noise spectra from the Alphanumeric
database obtained using the headset-mounted Sennheiser HMD224
Microphone and the  Sennheiser ME80 microphone.  The separation of the
two curves in each panel provides an indication of signal-to-noise ratio
for each microphone as a  function of frequency.
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2.5.5. HME FM - Crown PCC160

The average spectra for stereo recordings using the Sennheiser HMD224 and the
HME FM are shown in Figure 2-7, and the SNR measurements are presented in Table
2-8. The baseline accuracy for the HME FM and the Crown PCC160 were 55.9% and
56.3% respectively.

HMEFM CRPCC160

MAXSNR 36.7 dB 35.1 dB

SNR 26.4 dB 25.1 dB

SEGSNR 21.2 dB 20.1 dB

Table 2-8: Comparison of MAXSNR, SNR and SEGSNR measurements
for the alphanumeric database recorded with the HME FM and the
Crown PCC160.
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Figure 2-7: Average speech and noise spectra from the Alphanumeric
database obtained using the HME FM Microphone and the Crown
PCC160 microphone. The separation of the two curves in each panel
provides an indication of signal-to-noise ratio for each microphone as a
function of frequency.
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2.6. Summary

In this chapter a description of the experimental procedures to be used in the thesis
is presented. We are fortunate to be able to use the state-of-the-art recognition engine.
We described in more detail the front-end in SPHINX, and especially the cepstrum and
VQ stages, since they will be central to the work in the rest of the dissertation.

After providing an overview of the SPHINX system, we proceeded to describe the
census database for speaker-independent continuous speech that will be used in this
thesis. The database was recorded in stereo simultaneously with two different
microphones: a standard close-talking microphone and a desk-top one.  This allow us to
compare results in a more direct way.

Several possible characterizations of the database were proposed as a measure of its
difficulty. While standard signal-to-noise ratio calculations provide a useful
measurement, the proposed average spectra is a more detailed and useful
characterization.

We then presented the baseline performance of the census database with SPHINX.
The main results were that mismatches in training and testing conditions lead to a
considerable degradation in performance. The motivation here is to increase the
robustness of speech recognition systems that are tested under a number of different
acoustical environments.

Finally, additional databases with different sets of microphones were recorded in
stereo. The average spectra, SNR calculations and baseline performance were computed
for all of them.
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Processing in the Frequency Domain3
In this chapter we will review some of the techniques proposed in the literature to

deal with the problem of robustness to noise and tilt in the spectrum. These techniques
were adapted to our present system and modified when necessary. Several approaches
have been tried in conjunction with our census database and the SPHINX system.
Specifically, we will describe the use of multi-style training in the case of multiple
acoustical environments, and combinations of spectral subtraction and equalization
algorithms.

3.1. Multi-Style Training

Multi-style training is a technique used in pattern recognition problems to increase
robustness with respect to some variability or styles. Instead of using a model for that
variability, the approach consists of including in the training a database that contains the
variability.

This technique has been successfully used with Hidden Markov Models because of
their powerful modeling abilities in different contexts.  Lippmann et al. [51] pooled all
the data from speakers speaking under different styles (fast, soft, angry, loud,

17Lombard ) to increase the robustness of the recognition system to different speech
styles. Lee and Hon [45] showed that by including speech from a large number of
different speakers in a training set, speaker independence can be achieved.

An experiment was carried out in which the system was trained on all the speech
recorded from both the CLSTK and the CRPZM microphones (see Table 3-1). The multi-

17When the speaker is in an especially noisy environment, the produced speech, called Lombard speech,
exhibits different characteristics than normal speech. This effect can also be simulated by recording speech
from talkers in a quiet environment while they are listening to high-level noise presented through
headphones.



36

style training is using twice as many training utterances, although they are not
independent since they were recorded stereophonically. As expected, robustness is
gained by using multi-style training but at the expense of sacrificing performance with
respect to the case of train and test on the same conditions.

Test CLSTK Test CRPZM

Train CLSTK 85.3% 18.6%

Train CRPZM 36.9% 76.5%

Multi-Style 78.5% 67.9%

Table 3-1: Comparison of the baseline performance of the system under
different training conditions: close-talking microphone, Crown PZM
microphone and multi-style training. Testing is done for the two
microphones.

By analyzing these results it is evident that greater robustness has been obtained by
the multi-style training procedure. That is, the difference in performance between the two
microphones is considerably smaller than it was under normal training conditions.
Unfortunately we also see that we have to pay the price of having to tolerate lower
recognition rates than the ones in which training and testing are done with the same
microphone.

These results were not surprising as it has already been shown that although multi-
style training increases the robustness of the recognition system, the accuracy is lower
than the one obtained with training and testing on the same condition (speech style,
speaker). Robustness to different speech styles is achieved at the expense of allowing
some degradation in performance over the case of training and testing on the same
conditions (Lippmann et al. [51]). Speaker independent systems typically exhibit an
error rate that is 3 or 4 times as large as speaker dependent systems given that the same
amount of training data is available in both cases (Pallett et al. [63]) for a given system.

To achieve microphone-independent recognition with multi-style training,
recordings from more microphones and acoustical environments will be necessary. Lee
and Hon [45] used 80 speakers to achieve speaker independence and it is not clear how
many different acoustical environments would be necessary to obtain microphone
independence. We can expect that as recordings from more microphones are used in
training, a greater degradation in performance should be observed over the case of
training and testing on the same acoustical environment.

Although multi-style training is a possible solution to microphone robustness, it
would be desirable to attain the robustness without the penalty of a lower overall
performance. We believe that any solution to a problem of robustness will almost always
imply obtaining a good model for the observed degradations.
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3.2. Channel Equalization

Spectral equalization is a filtering operation used to compensate for spectral tilt.
Several researchers have used some kind of spectral equalization when dealing with
particular problems. It has been applied in the following contexts:

• Speaker Verification. Atal [2] was the first author to propose some kind of
long-term normalization for a speaker verification system. The average of
the cepstrum vector throughout the utterance was subtracted from each
individual vector in an attempt to reduce the possibility that an imposter
could be misclassified. Furui [23] confirmed in another speaker-recognition
experiment that subtracting a long-term average maintained a good
recognition rate while providing robustness against channels with different
frequency responses. Li and Porter [47] did some kind of speaker
normalization for speaker verification.

• Speech Styles. Chen [7] has shown recently that the addition of a fixed mean
vector to the cepstrum reduced the effects of different speech styles (soft,
fast, shout, normal, Lombard).

• Dereverberation. Deconvolution in the cepstral domain has been used by
Stockham et al. [75] to reduce the spectral tilt effect of low-quality
recordings by Caruso caused by reverberation and resonances of the
recording equipment.

• Differences in microphone and recording conditions. Morii and Stern
[54] compensated for different spectral means between recordings done with
a close-talking microphone and a desk-top one in speech recognition

18experiments by equalizing with a fixed transfer function . They observed a
significant improvement in performance, although having to return to the
time domain after each operation made the strategy rather inefficient.

All these approaches have in common the removal of a mean spectral vector and in
all cases that mean vector was the sample mean. While some success has been achieved
in specific domains of application, little integrating effort has been done to combine
different sources of variability into environment independent speech recognition.

18The transfer function of the equalizer was simply the ratio between the average power spectral density
functions obtained for the two sets of recordings. The filtering was carried out by a method similar to the
OLA (overlap and add) method.
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3.3. Noise Suppression by Spectral Subtraction

Spectral subtraction refers to a family of techniques designed to suppress or reduce
the noise in a signal. Although it was originally proposed in the context of speech
enhancement (Boll [5], Berouti et al. [3]), there has been a great deal of recent interest in
its application to robust speech recognition. In the latter case, the end user of the
processed speech is not a human being but a computer.

We present in this section an introduction to spectral subtraction with its use in
speech enhancement and recognition. Then a framework for processing in the log-
spectrum is presented.

3.3.1. Spectral Subtraction for Speech Enhancement

Spectral subtraction is a family of techniques that attempt to subtract the noise
energy from the noisy speech energy at every frequency band.  It can be formalized
mathematically by assuming that the speech signal x[m] is corrupted by additive noise

19n[m] that is uncorrelated with x[m] :

y[m] = x[m] + n[m] (3.1)

Let’s define Y(ω), X(ω), and N(ω) as the power spectral densities (PSD) of the signals
y[m], x[m] and n[m] respectively. Since the signal and the noise are uncorrelated with
each other, the following relationship holds for every frequency band ω :k

Y(ω ) = X(ω ) + N(ω ) (3.2)k k k

∧
If we obtain an estimate of the PSD of the corrupted signal Y(ω) at a certain frame, and

∧
an estimate of the PSD of the noise N(ω) from regions where no speech is present, we
could obtain an estimate of the PSD of the desired signal as

∧ ∧ ∧
X(ω ) = Y(ω ) − N(ω ) (3.3)k k k

∧
and thus the name of spectral subtraction.  Since this estimate X(ω ) can go negative,k

Equation (3.3) is modified to disallow it by means of a half-wave rectification:
∧ ∧ ∧
X(ω ) = max{Y(ω ) − N(ω ), 0} (3.4)k k k

We now show that under the assumption that the power spectrum is normally
distributed, the ML estimate for the undegraded signal yields (3.4), the basic spectral
subtraction rule. We can obtain an expression for the joint pdf as a product of the
individual pdfs:

19All notational conventions are summarized in Appendix A
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∧ ∧
p(Y(ω ), N(ω ) | Y(ω ), N(ω ))k k k k

∧ ∧ ∧
= p(Y(ω ) | Y(ω ), N(ω ), N(ω )) p(N(ω ) | Y(ω ), N(ω ))k k k k k k k

∧ ∧
= p(Y(ω ) | Y(ω )) p(N(ω ) | N(ω )) (3.5)k k k k

where we have used the facts that the estimate of the corrupted signal depends only on
the corrupted signal itself, and not on the noise nor its statistics. Likewise, the estimate of
the noise is assumed to be independent of the corrupted signal (by doing the estimation
when no signal is present for instance). By using the Gaussian assumption, the likelihood
will be expressed as

∧ ∧
l(Y(ω ), N(ω ) | Y(ω ), N(ω )) = − ln{2πσ σ }k k k k y n

∧ ∧
2 2(Y(ω ) − Y(ω )) (N(ω ) − N(ω ))k k k k− − (3.6)

2 22σ 2σy n

∧ ∧
whose maximization clearly yields Y(ω ) = Y(ω ), N(ω ) = N(ω ) if Y(ω )> N(ω ) andk k k k k k

∧ ∧ ∧
hence X(ω ) = Y(ω ) − N(ω ).k k k

The idea of spectral subtraction was originally proposed by Boll [5] in the context of
speech enhancement. The spectrum of the restored signal had the same phase as that of
the corrupted signal, and a magnitude that was set equal to the difference between the
magnitude spectra of y[m] and n[m]. All spectra were estimated via DFTs.  Boll used

20overlapping Hanning windows and the overlap-and-add method to obtain the restored
signal. His approach differs from the basic concept described above in that magnitude
subtraction rather than power subtraction was used.  Since speech recognition systems
don’t use the phase information, we will not be concerned with that issue here. The noise
spectrum was estimated by averaging the magnitude of several noise frames. At low SNR
the processed speech exhibited a residual noise, characterized by random spikes. He
proposed additional residual noise reduction schemes, especially during non-speech
activity.

Berouti et al. [3] proposed a modified version of the power subtraction rule (3.4) in
which the amount of noise subtraction depended on the SNR of the particular frame. The
oversubtraction was done to combat the residual noise that Berouti called musical noise.
The enhanced speech obtained by these methods exhibited a greater SNR, although this
processing didn’t increase the intelligibility.

20The Hanning window is a raised cosine h[m] = 1 − cos (2πm / (N − 1)) for 0 ≤ m ≤ N−1 and 0
otherwise.
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3.3.2. Noise Subtraction in Speech Recognition

The recent use of spectral subtraction in ASR has proved more successful than in
the arena of speech enhancement. Morii [54] showed in pilot experiments with SPHINX

that the accuracy of the system did not deteriorate as rapidly if the waveform was
enhanced by spectral subtraction techniques.  Since most speech recognition systems use
some kind of spectral representation as the feature space, it is unnecessary to recreate the
speech signal, and one should do the subtraction directly in the transformed domain.

Porter and Boll [67] proposed MMSE estimators of DFT bins for use in speech
recognition. In their work, the authors proposed a statistical characterization by assuming
that the real and imaginary parts of the Fourier transform are independent and Gaussian
distributed. Under these assumptions it can be shown that the magnitude of the spectrum
exhibits a Rayleigh distribution. An MMSE estimator is defined for a compression
function of the magnitude spectrum as the non-linearity that minimizes:

∧
2E{[f (X(ω )) − f (X(ω ))] | Y(ω ), N(ω )} (3.7)c k c k k k

∧
whose solution c(S(ω )) equalsk

c(X(ω )) exp(−X(ω )/N(ω )) I (2√Y(ω )X(ω )/N(ω )) p(X(ω )) dX(ω )k k k 0 k k k k k∫
(3.8)

exp(−X(ω )/N(ω )) I (2√Y(ω )X(ω )/N(ω )) p(X(ω )) dX(ω )k k 0 k k k k k∫
thwhere I (x) is the zero order Bessel function. Instead of assuming a model for the0

distribution of speech p(X(ω )), the integrals were approximated by a sum for all thek

samples of speech within a specified database.  Porter and Boll tried several compression
functions f (), and among them the logarithm was the one that provided the highestc

recognition accuracy.  However, even after processing the error rate was still 5 times the
error rate for clean speech.

Ephraim and Malah [14] used the same Equation (3.8) but since they assumed a
Gaussian a priori density for speech, they were able to get a closed-form expression for
(3.8), although quite complicated. Ephraim and Malah [15] also claimed that greater
enhancement would be obtained if the logarithm was used as a compression function.

3.3.3. Spectral Subtraction in the Logarithm Domain

It is useful to work in the logarithm domain because distortion measures that operate
in the log-spectrum have been shown to work better than the ones that operate with the
regular spectrum (Gray et al. [30]). Boll et al. [6] applied the MMSE estimator he
derived for DFT bins in [67] to the log-amplitudes of the outputs of a mel-scale filterbank
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21 and obtained a greater degree of robustness. The differences with his previous
approach (Porter and Boll [67]) were that the logarithm of the spectrum was used instead
of the magnitude, and that filterbank outputs rather than DFT coefficients were used.
The difference in recognition accuracy between the MMSE technique and Boll’s own
spectral subtraction technique was not as dramatic as it was when the magnitude of DFT
bins were used. Two things can be learned from this experience:

• Filterbank outputs are preferred to DFT coefficients since they provide better
performance. Although using different databases, the work by Boll
[5] [6] indicates that the smoothing effect across frequency provided by the
filterbank is very beneficial in reducing the variance of the estimate.

• Measures in the logarithm domain are more robust for recognition and they
are also more consistent with the processing done in the VQ stage of
SPHINX.

These results, together with the fact that a large number of speech recognition
systems choose some kind of cepstral representation (in the logarithm domain), led us to
investigate how the spectral subtraction rule would be in the logarithm domain.

The logarithms of the power spectral densities of the noisy speech Y(ω ), the cleank

speech X(ω ) and the noise N(ω ) are represented by Y(ω ), X(ω ) and N(ω )k k k k k

respectively. Under this notation the relationship Y(ω ) = X(ω ) + N(ω ) can be expressedk k k

as

X(ω )kY(ω ) = ln Y(ω ) = ln (X(ω ) + N(ω )) = ln N(ω ) + ln ( + 1)k k k k k N(ω )k
= N(ω )+ ln ( exp(X(ω ) − N(ω )) + 1) (3.9)k k k

Let us further define the normalized values Y(ω ) = Y(ω ) − N(ω ) andk k k

X(ω ) = X(ω ) − N(ω ), that have the interpretation of channel SNR. Now the powerk k k

addition in the logarithm domain is given by Y(ω ) = ln ( exp(X(ω )) + 1). Similarly wek k

can derive the power subtraction in the logarithm domain as X(ω ) = ln ( exp(Y(ω )) − 1).k k

Of course this expression is only defined for Y(ω )>0 or equivalently Y(ω )> N(ω ). Thek k k

power spectral subtraction rule (3.4) can be translated into the logarithm domain as

S (ω ) = max{ln ( exp(Y(ω )) − 1),−∞}.k k

It is clear by examining the spectral subtraction rule in the logarithm domain that

21A mel-scale filterbank has the center frequencies of the filters spaced non-linearly approximating the
peripheral auditory system.
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making X(ω ) = − ∞ will yield an infinite value for VQ distortions that will in turn resultk

in errors in the recognizer.  The −∞ appears because we have implicitly assumed that the
original signal was completely noise-free, which is not realistic.  Since our clean speech
will still have some noise (quantization, aliasing, estimation error, etc) the SNR will be
high but not infinite.  Our goal is to increase the SNR of the corrupted signal to the level
it was before.

If this a priori information is taken into account, the spectral subtraction rule in the
logarithm domain will have the form

∧
X(ω ) = max{ln ( exp(Y(ω )) − 1), X (ω ) − N(ω )} (3.10)k k th k k

∧
where N(ω ) is the estimate of the noise level and X (ω ) is the signal floor level. Thisk th k

new spectral subtraction will take the input log-power Y(ω ) and produce an estimate ofk

the log-power of the clean signal X(ω ) given byk
∧ ∧ ∧
X(ω ) = max{X (ω ), ln ( exp(Y(ω )) − exp(N(ω )))}. Figure 3-1 shows a typical curvek th k k k

that can be implemented as a table lookup. Van Compernolle [10] also proposed the same
transformation.
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3.4. Experiments with Sphinx

In this section we describe a series of experiments performed using the census
database, running the SPHINX system with a number of spectral equalization and noise
suppression algorithms. In spectral subtraction and equalization it is assumed that the
speech signal x [m] is degraded by linear filtering and/or uncorrelated additive noise, as
depicted in Figure 3-2.  The goal of the compensation is to reverse the effects of these
degradations.

n[m]

y[m]h[m]x[m]

 "Clean"
speech

Degraded
speech Linear

Distortion

Additive
Noise

Figure 3-2: Model of the degradation.

Spectral equalization techniques attempt to compensate for the filter h[m], while
spectral subtraction techniques attempt to remove the effects of the noise from the signal.
We compare the performance of several different implementations of spectral subtraction
and equalization techniques in Table 3-7, which we refer as EQUAL, PSUB, MMSE1
and MSUB.  These algorithms were applied only to the CRPZM speech, as the goal of
the compensation schemes is to be able to use the HMM models trained with the CLSTK.
In this section we describe these algorithms and examine the extent to which they make
the SPHINX system more environmentally robust.

To illustrate their performance, we will consider three-dimensional spectrograms of
one sample utterance for all algorithms. In Figures 3-3 and 3-4 we show 3-D plots of the
word yes recorded with the CLSTK and the CRPZM microphone respectively. These 3-D
plots are a time-frequency representation of the signal obtained by taking the DFT of the
cepstral vectors computed by SPHINX’s front-end.  The frequency axis is warped by the
bilinear transform (See Chapter 7). Since VQ labels reflect different spectral shapes, the
labels assigned to the noise segment of the CRPZM (up to 330 ms, and beyond 750 ms)
are very different than the ones assigned for the CLSTK. This is a major cause for the
errors observed in Table 3-2.
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Figure 3-3: 3D Spectrogram of the utterance yes recorded with the
CLSTK microphone with no processing.

3.4.1. EQUAL Algorithm

EQUAL is a spectral equalization algorithm that compensates for the effects of the
linear filtering, but not the additive noise, and was first described in [74] (Stern and
Acero). This algorithm is inspired by work done by Stockham et al. [75] in blind
deconvolution. Compensation for linear convolution is accomplished by multiplying the

22spectrum of the input signal by the spectrum of the compensating filter . Therefore the
cleaned log-spectrum X(ω ) can be estimated from the input log-spectrum Y(ω ) and thek k

equalization Q(ω ):k

∧
X(ω ) = Y(ω ) + Q(ω ) (3.11)k k k

The equalization Q(ω ) is estimated as the difference between the average log-spectra fork

the two microphones, computed during speech activity (an approximate MMSE estimate,
unless all the frames in the calculation can be considered noise free). Alternatively, the
compensation can be applied as an additive correction in the cepstral domain to the
CRPZM speech.

In Figure 3-5 we can see the spectrum of the sample utterance for the CRPZM after
processing by this algorithm. By comparing the processed frame at time 400 ms of Figure
3-5 with that of Figure 3-4, we see that some spectral tilt has been removed. There is still

22Since the cepstrum is the inverse Fourier transform of the logarithm of the magnitude of the spectrum,
and we are not interested in the phase for recognition, this corresponds to a simple additive correction of
the cepstrum vector.
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Figure 3-4: 3D Spectrogram of the utterance yes recorded with the
CRPZM microphone with no processing. Spectra at times  190 ms (silence
region), 400 ms (vowel) and 650 ms (fricative) are plotted for both the
CLSTK and the CRPZM.
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TRAIN CLSTK CLSTK CRPZM CRPZM
TEST CLSTK CRPZM CLSTK CRPZM

BASE 85.3% 18.6% 36.9% 76.5%

Table 3-2: Baseline recognition accuracy for the CLSTK and CRPZM.

some residual spectral tilt, because a single equalization function is used for all the
speakers and utterances, whereas a different one would be needed (The spectral tilt varies
from speaker to speaker, due to changes in the relative location of the mouth and the
microphone.). The results in Table 3-3, show some improvement in performance for the
cross conditions over the baseline case.

3.4.2. PSUB Algorithm

PSUB is an implementation of the power spectral subtraction rule in the logarithm
domain (3.10). The transformation is accomplished by converting the cepstral
coefficients to log-power coefficients using a 32-point inverse DFT (for the 32 real and
even cepstral coefficients), performing the subtraction in these 32 frequency bands and
converting once again to the cepstral domain by another DFT.

The estimate of the noise is computed by averaging the cepstrum vectors whose
23total energy fell under a threshold for g . In our case this threshold is empirically set to

the minimum g in the utterance plus 1.0, although the performance was not very sensitive
to small variations of this value.

Finally, we note that the noise floor was picked in such a way that the dynamic
range for the utterance in g was always 10.0 (equivalent to 44 dB). This was the optimum
value as found by experimentation. We have found that the recognition accuracy was not
very sensitive to this level.

In Figure 3-6 we see the spectrum of the example utterance for the CRPZM after
processing by this algorithm, including the presence at low SNR of what Berouti et al.
[3] called musical noise. Although the mean has been lowered, the residual noise

exhibits spikes uncharacteristic of speech frames (See frames at time 190 ms and 650
ms). Since the vector quantizer essentially clusters spectral shapes, these spikes will
cause large errors in the VQ labeler that in turn will translate into errors in the recognizer.
Nevertheless, the evaluation results in Table 3-4 show some additional improvement in

23In this case speech/noise discrimination was done on a frame-by-frame basis, assuming that different
speech frames were statistically independent.  Furthermore, since only g was used for the classification, the
optimum scheme is a comparison with a threshold.
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Figure 3-5: 3D Spectrogram of the utterance yes recorded with the
CRPZM microphone with EQUAL algorithm. Spectra at times  190 ms
(silence region), 400 ms (vowel) and 650 ms (fricative) are plotted for
both the CLSTK and the CRPZM.
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TRAIN CLSTK CLSTK CRPZM CRPZM
TEST CLSTK CRPZM CLSTK CRPZM

BASE 85.3% 18.6% 36.9% 76.5%

EQUAL N/A 38.3% 50.9% 76.5%

Table 3-3: Comparison of the baseline performance and the EQUAL
spectral equalization algorithm. EQUAL was only applied to the CRPZM.

performance over the baseline condition when the PSUB algorithm is applied to the
CRPZM speech.

3.4.3. MSUB Algorithm

To ameliorate the problem of the musical noise present in the PSUB algorithm we
developed the MSUB algorithm, first described by Stern and Acero in [74]. We
introduced over-subtraction at low SNR to further suppress the musical noise following
an idea originally suggested by Berouti et al. [3]. We note that we subtract the
magnitudes of spectra as did Boll [5] rather than the more intuitively appealing spectral
power because we found that magnitude subtraction provided greater recognition
accuracy. The amount of over-subtraction or under-subtraction is a function of the
instantaneous SNR according to the transformation shown in Figure 3-7. This
transformation was developed empirically by analyzing 3-D spectrograms obtained with
the MSUB algorithm.

In Figure 3-8 we show the spectrum of the example utterance for the CRPZM after
processing by the MSUB algorithm. We note that MSUB suppresses the musical noise
present in the PSUB algorithm (See frames at time 190 ms and 650 ms).  The evaluation
results in Table 3-5 show the effectiveness of using the magnitude rather than the power,
and the use of the overall instantaneous SNR in determining under and over subtraction.
The MSUB algorithm performs considerably better than the PSUB algorithm.

3.4.4. MMSE1 Algorithm

While the vector quantizer uses an MMSE criterion, the noise suppression
algorithms derived so far are not goal-directed. Perhaps overall system performance
could be improved if both modules would use the same MMSE criterion. Porter and Boll
[67] realized this fact and used an MMSE estimator based on Equations (3.7) and (3.8).
He suggested the use of the logarithm as a compression function. We will follow a
similar approach here.

Let N(ω ) be the log-energy of the noise in band k, and Y(ω ) the log-energy of thek k

corrupted signal in band k. We define the SNR in band k or normalized input Y(ω ) as:k
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Figure 3-6: 3D Spectrogram of the utterance yes recorded with the
CRPZM microphone with PSUB algorithm. Spectra at times  190 ms
(silence region), 400 ms (vowel) and 650 ms (fricative) are plotted for
both the CLSTK and the CRPZM.
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TRAIN CLSTK CLSTK CRPZM CRPZM
TEST CLSTK CRPZM CLSTK CRPZM

BASE 85.3% 18.6% 36.9% 76.5%

PSUB N/A 38.6% 70.6% 70.1%

Table 3-4: Comparison of the baseline performance with the PSUB
power subtraction algorithm. PSUB was only applied to the CRPZM.
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Figure 3-7: Amount of over and under subtraction used in the MSUB
algorithm as a function of the instantaneous SNR.

Y(ω ) = Y(ω ) − N(ω ) (3.12)k k k

∧
Then, the estimate of the log-energy of the restored signal in band k, X(ω ), can bek

expressed as follows:

∧
X(ω ) = Y(ω ) + f (Y(ω )) (3.13)k k k

Porter and Boll [67] used the assumption that the magnitude of the noisy speech had
a Rayleigh distribution in order to derive his estimator. In our work, the transformation f
was derived directly from the stereo database as the transformation that minimized:

∧
2 2E{[X(ω ) − X(ω )] } = E{[X(ω ) − Y(ω ) − f (Y(ω ))] } (3.14)k k k k k

where the Y(ω ) are taken from the CRPZM speech and X(ω ) from the CLSTK speechk k

for the same utterance. The function f is the one that makes the CRPZM speech as similar
to the CLSTK as possible in the sense of minimum mean squared error.  To compute the
new transformation curves, for every pair of stereo utterances from the database a gain
normalization was performed so that the maximum zeroth cepstral component g in both
utterances is 0.
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Figure 3-8: 3D Spectrogram of the utterance yes recorded with the
CRPZM microphone with MSUB algorithm. Spectra at times  190 ms
(silence region), 400 ms (vowel) and 650 ms (fricative) are plotted for
both the CLSTK and the CRPZM.
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TRAIN CLSTK CLSTK CRPZM CRPZM
TEST CLSTK CRPZM CLSTK CRPZM

BASE 85.3% 18.6% 36.9% 76.5%

PSUB N/A 38.6% 70.6% 70.1%

MSUB N/A 63.6% 71.7% 71.3%

Table 3-5: Comparison of the baseline performance with the PSUB
power subtraction and the MSUB magnitude subtraction algorithms.
PSUB and MSUB  were only applied to the CRPZM.

The expectation is replaced by a summation over all the frames in the training
corpus for all 32 frequency bands.  The function f was discretized into 25 intervals
separated 1 dB each.  The result of the optimization was the value of f for j = 0, . . . , 25 in
steps of ∆ = 1dB.SNR

N−1 k=32

[X (ω ) − Y (ω )] δ[Y (ω ) − j∆ ]∑ ∑ i k i k i k SNR
i=0 k=0f[j] = (3.15)

N−1 k=32

δ[Y (ω ) − j∆ ]∑ ∑ i k SNR
i=0 k=0

where X (ω ) and Y (ω ) represent the log-energy of frame i at frequency band k for thei k i k

CLSTK and CRPZM respectively. Y (ω ) is the quantized SNR in frequency band k ofi k

frame i in the CRPZM, and δ[i] is the delta of Kronecker. The sum is carried out for all
the N frames in the database.

The MMSE1 algorithm applies the transformation to the 32 frequency bands of the
CRPZM speech that minimizes the mean squared error relative to the CLSTK speech.
The calculation of the compensating transformation was simpler with the use of the
stereo database than with the equations derived by Porter and Boll [67] and Ephraim and
Malah [14], without suffering from modeling inaccuracies.

In Figure 3-9 we can see the spectrum of the sample utterance for the CRPZM after
processing by the MMSE1 algorithm. This algorithm performs noticeably better than the
PSUB at low SNR (See frames at time 190 ms and 650 ms), although not as well as the
MSUB algorithm. The evaluation results are shown in Table 3-6. The MMSE criterion
outperforms the power subtraction rule as we expected. However, the MSUB algorithm
still has higher accuracy despite not being goal-directed. We believe that the power of the
MSUB algorithm stems from using different transformation curves for every frame SNR,
as opposed to one single curve.
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Figure 3-9: 3D Spectrogram of the utterance yes recorded with the
CRPZM microphone with cascade of EQUAL and MMSE1 algorithms.
Spectra at times  190 ms (silence region), 400 ms (vowel) and 650 ms
(fricative) are plotted for both the CLSTK and the CRPZM.
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TRAIN CLSTK CLSTK CRPZM CRPZM
TEST CLSTK CRPZM CLSTK CRPZM

BASE 85.3% 18.6% 36.9% 76.5%

PSUB N/A 38.6% 70.6% 70.1%

MSUB N/A 63.6% 71.7% 71.3%

MMSE1 N/A 48.7% 68.7% 71.4%

Table 3-6: Comparison of baseline performance with the PSUB, MSUB
and MMSE1 algorithms. These algorithms were only applied to the
CRPZM.

3.4.5. Cascade of EQUAL and MSUB

We applied a cascade of our channel equalization algorithm EQUAL and our noise
suppression algorithms MMSE1 and MSUB, in an attempt to obtain an increased
performance, since each algorithm combats a different kind of distortion.

Since equalization is a linear operation and the noise suppression algorithms are not,
we opted to first perform the EQUAL algorithm and then the noise suppression. To apply
the MMSE1 algorithm, another transformation function was calculated that minimized
the squared error between the CLSTK speech and the equalized CRPZM speech. Figure
3-10 shows the sample utterance after this cascade of EQUAL and MMSE1. By
comparing the frame at time 400 ms in Figures 3-10 and 3-9 we see that this processing is
effective in combating spectral tilt too. The recognition results in Table 3-7 show the
combined benefits of EQUAL and MMSE1. Unfortunately this combination does not
perform better than the MSUB algorithm that only does noise suppression.

Following the success of the cascade of EQUAL and MMSE1, we proceeded to
apply the cascade of EQUAL with our best noise subtraction algorithm MSUB.  Again,
we first performed the equalization and then the noise subtraction.  In Figure 3-11 we
present the sample utterance after this combined processing. The recognition results of
this cascade of EQUAL and MSUB shown in Table 3-7 are disappointing, since the
combined version is not doing better than the single MSUB. We believe that this is
because of the non-linear interaction of noise and spectral tilt.
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Figure 3-10: 3D Spectrogram of the utterance yes recorded with the
CRPZM microphone with the cascade of EQUAL and MMSE1
algorithms. Spectra at times  190 ms (silence region), 400 ms (vowel) and
650 ms (fricative) are plotted for both the CLSTK and the CRPZM.
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Figure 3-11: 3D Spectrogram of the utterance yes recorded with the
CRPZM microphone with the cascade of EQUAL and MSUB  algorithms.
Spectra at times  190 ms (silence region), 400 ms (vowel) and 650 ms
(fricative) are plotted for both the CLSTK and the CRPZM.
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3.4.6. Results and Discussion

The results of EQUAL, PSUB, MMSE1 and MSUB are shown in Table 3-7.  There
are several observations:

• The use of a priori information in MMSE1 resulted in a higher accuracy than
the empirical power spectral subtraction rule in PSUB.

• The dependence on the instantaneous SNR was very beneficial, as noted by
the difference in performance between PSUB and MSUB.

• The cascade of spectral equalization EQUAL and noise suppression MMSE1
performed considerably better than either of those alone. Unfortunately, this
cascade did not yield any further improvement in recognition accuracy over
the MSUB algorithm that only accomplishes noise suppression.
Furthermore, a cascade of EQUAL and MSUB did not increase the accuracy
over the MSUB algorithm alone. We conjecture that since noise is an
additive distortion and channel equalization is a multiplicative distortion in
the frequency domain, the two effects interact nonlinearly.

TRAIN CLSTK CLSTK CRPZM CRPZM
TEST CLSTK CRPZM CLSTK CRPZM

BASE 85.3% 18.6% 36.9% 76.5%

EQUAL N/A 38.3% 50.9% 76.5%

PSUB N/A 38.6% 70.6% 70.1%

MSUB N/A 63.6% 71.7% 71.3%

MMSE1 N/A 48.7% 68.7% 71.4%

EQ+MMSE1 N/A 61.4% 75.8% 74.3%

EQ+MSUB N/A 62.1% 73.7% 71.4%

Table 3-7: Performance of different equalization and spectral  subtraction
algorithms. All the algorithms were applied only to the CRPZM.

As a way of unifying all the approaches, we can view the different subtraction
algorithms as different transformation curves that relate the effective SNR of the input
and output for every frequency channel. We note that the MSUB algorithm is not
represented by a single curve by but a family of curves that depended on the
instantaneous SNR of the frame. Some of these curves are shown in Figure 3-12.
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Figure 3-12: Input-Output transformation curves for PSUB, MSUB and
MMSE1. The channel SNR is defined as the log-power of the signal in a
frequency band minus the log-power of the noise in that band. The
transformation for MSUB is not a single curve but a family of curves that
depend on the total SNR for a given frame.
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3.5. Summary

In this chapter we have presented several algorithms to increase the robustness of
the system for the "cross conditions". Multi-Style training is a plausible alternative to the
problem of robustness although at the expense of a lower recognition accuracy than when
training and testing are done on the same environment.

The algorithm EQUAL applied a spectral equalization to the speech recorded with
the CRPZM microphone to compensate for differences in transfer functions between
training and test corpora.

A number of noise suppression techniques were discussed in this chapter. First, we
described in detail the power spectral subtraction rule.  An algorithm called PSUB
directly implemented this rule in the logarithm domain. The MSUB algorithm was
developed to combat the musical noise characteristic of standard spectral subtraction.
Magnitude subtraction was used in MSUB as opposed to power subtraction because it
provided a higher accuracy.  The need for a uniform criterion in the front-end led us to
try noise suppression techniques based on an MMSE criterion.

Cascading of equalization and spectral subtraction combined the improvements of
both techniques although the recognition accuracy was still worse than for the MSUB
algorithm. A cascade of EQUAL and MSUB did not perform better presumably because
of the non-linear interaction of the equalization and noise subtraction.

For the most part these algorithms provide increasing degrees of compensation, but
their recognition accuracy under the "cross" conditions is still worse than that obtained
with the system is trained and tested on the CRPZM. The problem of the nonlinear
interaction of the subtraction and normalization processes motivated us to consider new
algorithms which jointly compensate for noise and filtering.  We discuss several such
algorithms in the next chapter.
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Joint Compensation for

Noise and Filtering4
In this chapter we introduce the concept of joint normalization of noise and spectral

tilt as well as the idea of preprocessing in the cepstral domain as opposed to the
frequency domain. We first define the model of the environment that will be used in the
remaining of the thesis and we introduce techniques that accomplish the processing in the
cepstral domain.

We develop the MMSEN algorithm as an extension of the MMSE1 algorithm of
Chapter 3. The MMSEN algorithm is able to cope with colored noise and spectral tilt
jointly, and yields higher accuracy than a cascade of equalization and MMSE1.

By looking at the cepstral domain instead of the frequency domain we introduce the
SDCN algorithm, that performs a cepstral compensation that depends on the SNR of the
input frame exclusively. This algorithm is simple and effective.

4.1. A Model of the Environment

In this section we introduce the model of the environment as well as some notation
conventions that will be used in the remaining of this dissertation. We will present
relationships in the cepstral domain and define the concept of correction vectors.

The model of Figure 4-1 describes the two kinds of degradation that we have seen in
the previous chapter: additive noise and linear filtering. We further assumed that the

24noise, which is colored in general, was independent of the signal. Although we could
have chosen to add the noise first and filter later, the model of Figure 4-1 introduces no

24White noise presents an even distribution of power for all frequencies, whereas colored noise has more
power in some frequency bands than others.
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loss of generality and has the advantage that observation of y[m] when no signal is
present provides us the noise directly and not filtered noise. For this work we will assume
that the filter h[m] is time-invariant and that the noise is stationary so that the parameters
of the model are assumed to be fixed during the course of our observation.

n[m]

y[m]h[m]x[m]

 "Clean"
speech

Degraded
speech Linear

Distortion

Additive
Noise

Figure 4-1: Model of the degradation.

If the input to the linear time-invariant filter h[m] is a stationary random process
x[m] with Power Spectral Density (PSD) X(ω), we know [64] that the PSD of the output
process v[m] is

2V (ω) = X (ω) |H (ω) | (4.1)

Furthermore, if a stationary random process n[i] that is uncorrelated with v[i] is added to
it, the PSD of the resulting random process y[i] is

Y (ω) = V (ω) + N(ω) (4.2)

Combining (4.1) and (4.2) we obtain an expression that relates the PSD of the input,
noise, output and the transfer function of the filter:

2Y (ω) = X (ω) |H (ω) | + N(ω) (4.3)

Let’s express Equation (4.3) in the cepstral domain rather than in the frequency
domain. To do that, we need to define the following cepstrum vectors x, n, y and q as the
following Inverse Discrete Fourier Transforms (IDFT):

x = IDFT { ln X (ω ) } (4.4)k
n = IDFT { ln N (ω ) } (4.5)k
y = IDFT { ln Y (ω ) } (4.6)k

2q = IDFT { ln |H(ω ) | } (4.7)k

Taking natural logarithms and IDFT on (4.3) and after some algebraic manipulation
using (4.4)-(4.7), we obtain:

y = x + q + r (x, n,q) (4.8)

or alternatively

y = n + s (x, n,q) (4.9)

where the correction vectors r (x, n,q) and s (x, n,q) are given by
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DFT [n − q − x]r (x, n,q) = IDFT {ln (1 + e )} (4.10)
DFT [x + q − n]s (x, n,q) = IDFT {ln (1 + e )} (4.11)

where (4.8) and (4.9) can be used interchangeably. The correction vectors r and s are
uniquely related given the knowledge of n, q and x. In this work we will mainly use r
and the expression (4.8).

Although Equations (4.8) and (4.9) involve only vector additions, the presence of
the correction vectors of Equations (4.10) and (4.11) may at first indicate that the
relationship was simpler in the frequency domain than in the cepstral domain. However,
these vectors could be precomputed.

In summary, the model in Figure 4-1 can be characterized in the frequency domain
by (4.3), or alternatively in the cepstral domain by (4.8) and (4.9) with the newly
introduced correction vectors in (4.10) and (4.11).

4.2. Processing in the Frequency Domain: The MMSEN Algorithm

Although the approaches developed in Chapter 3 were relatively successful, they
present some problems. The amount of noise subtraction given by the transformation
curves of Figure 3-12 is the same for all frequencies, which is unable to deal with colored
noise as in our case. To cope with these problems, we propose the MMSEN algorithm.

The MMSEN algorithm applies an independent transformation for every frequency
band that minimizes the mean squared error between the CLSTK and the CRPZM
speech. Equation (3.12) is still valid and Equation (3.13) becomes

∧
X(ω ) = Y(ω ) + f (Y(ω )) (4.12)k k k k

where there are 32 independent f transformations that are chosen to minimizek

∧
2 2E{[X(ω ) − X(ω )] } = E{[X(ω ) − Y(ω ) − f (Y(ω ))] } (4.13)k k k k k k

Solution to Equation (4.13) yields

N−1

[S (ω ) − X (ω )] δ[Y (ω ) − j∆ ]∑ i k i k i k SNR
i=0f [j] = (4.14)k

N−1

δ[Y (ω ) − j∆ ]∑ i k SNR
i=0

where X (ω ) and Y (ω ) represent the log-energy of frame i at frequency band k for thei k i k

CLSTK and CRPZM respectively. Y (ω ) is the SNR in frequency band k of frame i ini k

the CRPZM. The sum is carried out for all the N frames in the database.
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To compute the new transformation curves, for every pair of stereo utterances from
the database a gain normalization was performed so that the maximum c [0] in bothmax

utterances is 0.  For every frequency band the difference between the CLSTK and the
CRPZM was computed as a function of the channel SNR. Figure 4-2 shows the
transformation curves for frequency bands of 0, 1, 2, 3, 4, 5, 6, and 8 kHz and its
comparison with the MMSE curve averaged over all frequencies.

We can see that at low frequencies (below 4 kHz), the amount of noise subtraction
is greater than at high frequencies (above 4 kHz) and thus the algorithm is able to handle
the colored noise present in the CRPZM speech. As far as spectral tilt is concerned, low
frequencies (below 4 kHz) are attenuated while high frequencies (above 4 kHz) are
boosted and therefore channel equalization is achieved.

The results of this new MMSEN algorithm are presented in Table 4-1. Since only
the CRPZM speech is modified, the most important figure for comparison purposes is the
one obtained with CLSTK training and CRPZM testing. We believe that the MMSEN
performs better than the EQUAL + MMSE1 algorithm because it deals better with the
colored noise and it provides spectral equalization as well as noise subtraction in a joint
fashion (Compare Figures 3-10 and 4-3, especially at time 190 ms). Actually, application
of matched pairs tests, McNemar’s test and analysis of variance by ranks (Gillick [27],
Pallett et al. [63]) showed that the difference between 61.3% and 66.4% is statistically
significant with a confidence level higher than 95%.

The MMSEN algorithm performs also moderately better than the MSUB algorithm,
although the difference is not statistically significant. Both algorithms use a family of
curves as opposed to a single transformation curve, the difference is that in the MMSEN
algorithm the dependence is on the frequency band while in the MSUB algorithm the
dependence is on the input SNR. Conceivably a greater improvement could be attained if
both dependencies are used together.

The same example that was presented in the previous chapter is shown in Figure 4-3
when processed by the MMSEN algorithm.  The resulting noise is now approximately
white, unlike the residual noise in the PSUB and MMSE1 algorithms, because of the
different transformation used for every frequency band.
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Figure 4-2: Comparison between the transformation curve MMSE fixed
for all frequencies and the corresponding transformations for different
frequencies: 0, 1, 2, 3, 4, 5, 6 and 8 kHz. The curves give the input-output
relation between the SNR at a frequency band. It can be seen that more
noise subtraction is done at low frequencies than at high frequencies.
Also, low frequencies are attenuated more at high SNR, to compensate
for spectral tilt.
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TRAIN CLSTK CLSTK CRPZM CRPZM
TEST CLSTK CRPZM CLSTK CRPZM

BASE 85.3% 18.6% 36.9% 76.5%

EQ+MMSE1 N/A 61.4% 75.8% 74.3%

MSUB N/A 63.6% 71.7% 71.3%

MMSEN N/A 66.4% 75.5% 72.3%

Table 4-1: Performance of the MMSEN compared with the Baseline and
the MMSE1 and MSUB algorithms.

4.3. Processing in the Cepstral Domain: The SDCN Algorithm

The MMSEN algorithm performs joint noise subtraction and spectral equalization,
the processing has to be done in the frequency domain for a number of bands (32 in our
case). Many other systems that obtain mel-scale filter bank outputs typically have
between 20 and 40 channels. Since SPHINX uses the LPC-cepstrum, the environmental
normalization requires two DFTs plus 32 table look-ups. The question that arises is
whether it is possible to perform this normalization directly in the cepstral domain.

The SNR-Dependent Cepstral Normalization algorithm, SDCN, is an algorithm that
operates directly in the cepstral domain by adding a compensation vector that depends
exclusively on the SNR of the input frame. A justification for this idea within our model
of the environment is given now.

Let z be a noisy estimate of y as defined in (4.8) obtained through our spectral
estimation algorithm:

z = y + e (4.15)

where e, the estimation error, is a random vector.  Our goal is to recover the uncorrupted
vector x of an utterance given the observation z and our knowledge of the environment n
and q.

x = z − e − q − r(x, n,q) (4.16)

Unfortunately, given the non-linear expression (4.10), it is not possible to obtain a close-
form solution for x. One possible approximation would be to assume that the correction
vector

w = − e − q − r(x, n,q) (4.17)

depends exclusively on the instantaneous SNR of the input frame:
∧x = z + w(SNR) (4.18)

This is the basic equation for the SDCN algorithm.
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Figure 4-3: 3D Spectrogram of the utterance yes recorded with the
CRPZM microphone with MMSEN algorithm. Spectra at times  190 ms
(silence region), 400 ms (vowel) and 650 ms (fricative) are plotted for
both the CLSTK and the CRPZM.
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Let’s consider a physical interpretation of the algorithm.  Although inspection of
Equation (4.18) may lead to think that a crude approximation of Equation (4.10) has been
made, we will show that the SDCN algorithm is asymptotically correct.  At high SNR,
inspection of Equations (4.3), (4.8) and (4.10) indicates that x [0] + q [0] » n[0], r ≈ 0,
and y ≈ x + q. On the other hand at low SNR, x [0] + q [0] « n[0] and y ≈ n. Hence, the
SDCN algorithm performs spectral equalization at high SNR and noise suppression at
low SNR. However, it is evident that at intermediate SNR, the SDCN algorithm can only
be an approximation. Another simplification that we undertake is to estimate the input
SNR as z [0] − n [0]. Although this is not the true instantaneous signal-to-noise ratio, it is
related to it and easier to compute in our case.

The problem now is how to estimate the compensation vectors w(SNR). The goal is
to transform the CRPZM speech so that it looks like the CLSTK speech. Therefore
according to this criterion, the correction vectors were estimated by computing the
average difference between cepstral vectors for the CRPZM speech versus the cepstral
vectors for the CLSTK speech on a frame-by-frame basis as a function of the input SNR.

N−1

(x [j] − z [j]) δ[SNR − k∆ ]∑ i i i SNR
i=0w[ j, k] = (4.19)

N−1

δ[SNR − k∆ ]∑ i SNR
i=0

where s and x represent the cepstrum vectors at frame i for the CLSTK and CRPZMi i

respectively. SNR is the SNR of frame i in the CRPZM. The sum is carried out for alli

the N frames in the database.

In the general case the correction vectors can be estimated by computing the
difference between the cepstral vectors of the test environment and the ones of a standard
acoustical environment from simultaneous stereo recordings.  The resulting correction
vectors for our census database are shown in Figure 4-4.

Figure 4-5 shows the same example that was presented in the previous chapter when
processed by the SDCN algorithm. We note that frames with low SNR (Compare frames
at time 190 ms and 650 ms for Figures 4-3 and 4-5) are smoother in this case than in the
MMSEN case.

The performance of the SDCN algorithm is shown in Table 4-2, together with the
baseline condition and the previously described MMSEN.  This algorithm offers the
highest accuracy of all the ones described so far. However, tests of statistical significance
showed that the difference between 66.4% and 67.2% may be due to chance.

As can be seen in Figure 4-4, the high-order components of w are small in
magnitude and don’t vary substantially with the SNR. Inspired by this fact, an experiment
was carried out with the SDCN algorithm in which only the first p components of w were
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Figure 4-4: Correction vector w[i] in Np as a function of the
instantaneous SNR in dB. Note the different scale used for w[0] and w[1],
as they are the correction vectors varying the most. Correction vector
w[12] is not shown.

used for the compensation. The results are shown in Figure 4-6 for the case of training on
the CLSTK and testing on the CRPZM. It is quite remarkable that only w[0] and w[1] are
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Figure 4-5: 3D Spectrogram of the utterance yes recorded with the
CRPZM microphone with SDCN algorithm. Spectra at times 190 ms
(silence region), 400 ms (vowel) and 650 ms (fricative) are plotted for
both the CLSTK and the CRPZM.
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TRAIN CLSTK CLSTK CRPZM CRPZM
TEST CLSTK CRPZM CLSTK CRPZM

BASE 85.3% 18.6% 36.9% 76.5%

MMSEN N/A 66.4% 75.5% 72.3%

SDCN N/A 67.2% 76.4% 75.5%

Table 4-2: Performance of the MMSEN and SDCN algorithms when
compared with the baseline.

necessary. Use of the remaining components yields no further improvement in word
accuracy.
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Figure 4-6: Word accuracy of the SDCN algorithm as a function of the
number of correction vectors used when trained on the CLSTK and
tested on the CRPZM. None means that no correction is applied
(baseline), w[0] means  that only c[0] was compensated, w[1] that both
c[0] and c[1] were compensated, etc.
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4.4. Summary

In this chapter we have addressed the problem of joint compensation for noise and
spectral tilt. The two algorithms presented, MMSEN and SDCN, successfully achieve the
compensations in the frequency domain and the cepstral domain respectively. Both
algorithms exhibit a higher accuracy than the algorithms that perform independent
compensation for noise and spectral tilt described in Chapter 3.

There are some similarities between the two algorithms. They both make use of
several transformation curves, one for each dimension in the space.  The dependency on
the MMSEN algorithm is on the channel SNR while for the SDCN algorithm it is on the

25frame SNR . Typically, approaches that work in the frequency domain have a larger
dimension (N = 32 in our case) than the ones that operate in the cepstral domain (N = 12
in our case).

The curves for the MMSEN algorithm could be viewed as transformation curves as
in Figure 4-2, or alternatively as an additive correction on the input value. Given the
cepstral structure, SDCN can be viewed as strictly an additive correction (w[i] does not
depend on c[i] but on the frame SNR).

Finally, both SDCN and MMSEN seem to perform equally well, but SDCN requires
only 2 corrections whereas MMSEN needs 32.

Even though the performance of the SDCN algorithm is quite acceptable, it requires
a stereo database of our standard environment and the new environment to train the
correction vectors. Since in a real situation such a database may not be available, the
SDCN algorithm is not environment-independent.

We have also found that the above techniques produce many output frames that do
not constitute legitimate speech vectors, especially at low SNR, because they do not take
into account correlations across frequency bands or cepstral components. In the next
chapter we discuss algorithms that explicitly consider the spectral profile of the
compensated speech and that do not need a stereo database.

25The instantaneous channel SNR is defined as the difference between the log-energy of the signal and
the log-energy of the noise for a frequency band at a reference time. The frame SNR is defined as the
difference between the c[0] of the input frame and the c[0] of the noise at a reference time.
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CDCN Algorithm5
Although the SDCN technique performs acceptably, it has the disadvantage that

new microphones must be "calibrated" by collecting long-term statistics from a new
stereo database. Since this stereo database will not be available in general, SDCN cannot
adapt to a new environment. A new algorithm, Codeword-Dependent Cepstral
Normalization (CDCN), was proposed to circumvent these problems, and will be the
topic of this chapter.

In CDCN, the noise and channel equalization vectors are estimated so as to best
match the acoustic space of the input speech frames with the acoustic space obtained by
transforming a universal space with the environmental parameters, as depicted in Figure
5-1. This universal acoustic space is defined as the distribution of speech frames under a
normalized clean environment, and is represented by a codebook of cepstrum vectors.  A
maximum likelihood criterion is used to estimate the environmental parameters that
transform the standard acoustical ambiance into the acoustic space of the current
environment.

*
*

*
*

*

* **
*

* * ***
*

**
** *

q

n

Utterance Universal
Codebook

Figure 5-1: CDCN estimates the noise n and channel equalization q that
best transform the universal codebook into the ensemble of input  frames
of the current utterance.
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Although the MMSEN and the SDCN algorithms were able to jointly normalize for
noise and spectral tilt, the corrections are the same for all speech vectors. The MMSEN
algorithm assumed that different frequency bands were uncorrelated, and that sometimes
produced restored vectors that were not legitimate speech vectors, especially at low SNR.
Likewise, the SDCN algorithm assumes that different cepstral components are
uncorrelated, and it produced restored cepstral vectors that were not legitimate speech
cepstrum vectors, again especially at low SNR.

This use of a priori information for the speech vector was simultaneously proposed
by Erell and Weintraub [18] and Acero and Stern [1]. Erell and Weintraub modeled the
vector in the spectral domain as a mixture of Gaussians while Acero and Stern used a
mixture of Gaussians in the cepstral domain. These models remove the assumption of
independence across frequency bands (like the MMSEN) or across cepstrum coefficients
(like the SDCN).

These two approaches are similar, one working in the spectral domain and the other
in the cepstral domain. Both of them clustered the acoustic space so that every cluster
was transformed differently. In both cases an MMSE criterion was used for the restored
vector that was essentially a weighted sum of the vectors transformed by all the different
cluster transformations.  One major difference is that in Erell’s work only the noise
suppression was performed with the above criterion while the spectral equalization was
done separately, while in the CDCN algorithm both are done jointly. The other difference
is that in Erell’s work the estimation of the environment and especially the channel
equalization, is done by taking long-term averages, so it is not able to adapt to a new
environment as the CDCN algorithm does.  However, there is no fundamental reason
why processing in the frequency domain could not perform joint compensation and adapt
to new environments.

First we define the framework we will be using and an outline of the CDCN
26algorithm with its two steps: MMSE estimator for the cepstrum and ML estimation of

the environmental parameters. Then we present a summary of the algorithm and evaluate
the CDCN algorithm.

26ML, Maximum Likelihood of the desired estimate, is a procedure used in estimation theory that is
based on the maximization of the probability density function with respect to a parameter.
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5.1. Introduction to the CDCN Algorithm

In this section we present the framework of the CDCN algorithm as well as the
approximations that will be used. We start with a general MAP approach and then justify
the decoupling of the estimation of the environmental parameters from the string
decoding process. We also discuss the effect of using discrete HMMs as SPHINX does,
rather than semi-continuous HMMs, especially at low SNRs.

The objective of the speech recognition system is to find the most likely string S and
environmental parameters n and q, from an ensemble of N cepstrum vectors
Z = z ,...,z . We will assume that during the observation period, both n and q are0 N−1

constant, which is to say that the noise is stationary in that segment of time and that the
filter is not varying either, so that S, n and q are chosen to maximize

p(S, Z |n,q) p(n, q)
p(S ,n,q |Z) = (5.1)

p(Z)

which is equivalent to maximizing

p(S, Z |n,q) (5.2)

if no a priori knowledge of n and q is available.  By assuming independence across
frames p(S, Z |n,q) can be expressed as

N−1

p(S, Z |n,q) = p(S |n,q) p(Z |S,n,q) = p(S) p(z |S,n,q) (5.3)∏ i
i=0

since p(S |n,q) is not a function of n and q.

One of the reasons the spectral subtraction schemes did not perform well is that
some of the processed frames were not legitimate speech vectors, especially at low SNR.
This occurred because no use was made of a priori information about the speech. A
widely used assumption for the pdf of the cepstrum x is a mixture of K Gaussian densities
with means c[k], covariance matrices Σ , and weights P[k]:k

K−1 K−1

p (x) = P[k] p (x |k) = P[k] N (c[k], Σ ) (5.4)∑ ∑ x k
k=0 k=0

Under these model assumptions p(z |S,n,q) is given byi

K−1

p(z |S,n,q) = p(z ,x ,k |S,n,q) dx∑i i i i∫
k=0

K−1

= p(z |x ,k, S,n,q) p(x ,k |S,n,q) dx∑ i i i i∫
k=0
K−1

= p(z |x ,k, n,q) p(x |k)P [k |S] dx (5.5)∑ i i i i i∫
k=0

since p(z |x ,k, S,n,q) is not a function of the string S and p(x |k, S,n,q) does not dependi i i

on n and q either.
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For a vector x coming from mixture k given n and q, we can obtain y as defined byi i

Equation (4.8). In Appendix D we model z as a Gaussian random vector N (y ,Γ), due toi z ii
a finite data sample in our spectral estimation.  In Appendix E.2 we show that the integral
in (5.5) can be approximated by

p(z |x ,k, n,q) p(x |k)dx = N (q + r[k] + c[k], Γ + Σ ) (5.6)i i i i z k∫ i

by assuming that the correction vector r[k] is constant.  So Equation (5.3) can be
expressed as

N−1 K−1

p(S, Z |n,q) = p(S) N (q + r[k] + c[k], Γ + Σ ) P [k |S] (5.7)∏ ∑ z k iik=0i=0

So the problem of the recognition of a sequence of corrupted vectors can be solved by
integrating the acoustic model p (z ) = N (q + r[k] + c[k], Γ + Σ ), the HMM modelz i z ki i
P [k |S], and the grammar information P(S) in a semi-continuous HMM framework.i

5.1.1. Using Only Acoustic Information

Finding the ML estimates of n and q in Equation (5.7) requires a complicated search
involving the HMM models and the grammar, that is, a joint optimization of the string S
and n and q. We aim to solve the maximization without resorting to the HMM models,
just considering the acoustic information. Although this will not be as optimal, we opted
for this solution for expediency. We define

P [k] = E {p(S) P [k | S]} (5.8)i S i

as the average mixture probabilities. In the absence of other information, these average
probabilities will be the same for all i.

Unfortunately, finding the ML estimate of n in Equation (5.7) seems difficult since
n is only implicitly present in the correction vectors r. To make the presence of n explicit
we will consider two different phones when taking the expectation in Equation (5.8): the
noise model ν and the speech model ξ (any other phone). With this assumption

p(z |n,q) = E [p(S, z |n,q)] = p(ν) p(z |n,q,ν) + p(ξ) p(z |n,q,ξ)i S i i i

K−1

= p(ν) p (0 | ν) N (n + s[0],Γ) + p(ξ) p (k |ξ) N (q + r[k] + c[k],Γ + Σ ) (5.9)∑i z i z ki ik=1

where we have assumed that the HMM model for the noise is so sharp that contains only
one mixture. For that case we have used the alternate expression in terms of n and s. If
the noise is stationary within an utterance, one mixture is sufficient to represent it, so that
this is totally general. We have also set Σ to 0 by assuming that the variability observed0

in the noise samples comes from the spectral estimation process exclusively.



76

5.1.2. Using Discrete Models

However, since SPHINX uses discrete HMM models, replacing the summation in
(5.7) by only one term will lead to errors, especially at low SNRs. For high SNR the
correction vectors are approximately zero and the mixtures N (q + r[k] + c[k],Γ + Σ ) arez ki
well separated, so that substituting the sum with the maximum is a good approximation.
Unfortunately, when the SNR is low, the correction vectors are significant and many
codewords in the original space are transformed into essentially the same codeword, so
that by picking the maximum we are actually underestimating the sum.

To solve this problem we opted to choose the MMSE estimate, so that a vector x isi

obtained for every z as that which minimizes the squared error. Our experimentsi

confirmed that doing this is considerably better than picking the maximum in (5.7).

5.2. MMSE Estimator of the Cepstral Vector

∧
In this Section, we will derive an MMSE estimator for the restored cepstral vector x

by using the mixture model. In this case we will assume that the environmental
parameters n and q are known.

In Appendix E.1 it is shown that the probability density function p (x| z, n,q) has the
form:

K−1

P[k] p ( z |x,n,q,k) p ( x |k)∑
k=0p (x| z, n,q) = (5.10)

K−1

P[k] p ( z |x,n,q,k) p ( x |k) dx∑ ∫
k=0

This a posteriori probability gives us all the information needed for a classification
problem. A MAP estimator would imply in this case maximizing a sum of Gaussians.
We will devote ourselves to obtaining an MMSE estimate for x. From (5.10) it is easy to
obtain the MMSE estimate as:

K−1

P[k] x p ( z |x,n,q,k) p ( x |k) dx∑ ∫∧ k=0x = E [x |z, n,q] = (5.11)MMSE K−1

P[k] p ( z |x,n,q,k) p ( x |k) dx∑ ∫
k=0

thwhere p (x |k) is the pdf of the k mixture and p (z |x,k, n,q) is the pdf of the spectral
estimator p (z |y), both of which are assumed to be Gaussian random vectors.

Under the assumption that p ( z |x,n,q,k) and p ( x |k) are Gaussian densities, the
product of the two can be expressed as follows (See Appendix E.2):
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−1 −1−1p ( z |x,n,q,k) p ( x |k) = N (b(x, k), (Γ + Σ ) ) N (q + r(x) + c[k], Γ + Σ ) (5.12)x z kk

where the vector b(x, k) is given by
−1 −1b(x, k) = Σ (Σ + Γ) (z − q− r(x)) + Γ (Σ + Γ) c[k] (5.13)k k k

and the quantity d(x, k) is defined as
−1Td(x, k) = (z − q− r(x) −c[k]) (Γ + Σ ) (z − q− r(x) −c[k]) (5.14)k

Unfortunately, it is not possible to obtain a closed-form expression for the integrals
in (5.11) even with (5.12) because r depends on x as given by (4.10), and some
approximations have to be made. We will assume that the correction vector r is constant
for all vectors in a mixture. The finer the partition of the space is, the better the
approximation. For the mixture k, the correction vector is assumed to be

r[k] = r (c[k]) (5.15)

where the mean of the mixture is taken to compute the correction vector from (4.10).
Equations (5.13) and (5.14) are transformed according to (5.15):

−1 −1b[k] = Σ (Σ + Γ) (z − q− r[k]) + Γ (Σ + Γ) c[k] (5.16)k k k

−1Td[k] = (z − q− r[k] −c[k]) (Γ + Σ ) (z − q− r[k] −c[k]) (5.17)k

With these approximations, the estimate in (5.11) has the form
K−1∧x = f[k] b[k] (5.18)∑MMSE
k=1

where

P[k]
exp( − d[k] / 2)

1/2| Γ + Σ |kf[k] = (5.19)
K−1 P[l]

exp( − d[l] / 2)∑ 1/2| Γ + Σ |l=0 l

where f[k] has the interpretation of the a posteriori probability of mixture k given the
acoustic information z for the environmental parameters n and q, and b[k] is the
conditional mean for mixture component k.

Alternatively, (5.18) can be expressed as
∧x = z − w (5.20)MMSE

where the correction vector w is given by
K−1 −1 −1w = f[k] [Σ (Σ + Γ) (q + r[k]) + Γ (Σ + Γ) (z − c[k])] (5.21)∑ k k k
k=0

so that Equation (5.20) resembles the SDCN algorithm. In this case, however, the
correction w is a weighted sum of codeword-dependent corrections.
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5.3. ML Estimation of Noise and Spectral Tilt

In this section we develop the ML estimates for the noise n and equalization
function q from an ensemble of N cepstrum vectors Z = z ,...,z . This maximization is0 N−1

done using only the acoustic information for simplicity in the computations. Since no
closed-form solution is available, we will present an iterative algorithm.

If no a priori information is given about the noise and equalization vectors n and q,
the optimum estimation method is maximum likelihood. The parameters n and q are
chosen to maximize

p ( Z |n,q) (5.22)

By assuming that different frames are independent from each other, we can use the
expression

N−1

ln p (Z |n,q) = ln p (z |n,q) (5.23)∑ i
i=0

whose maximization leads to

N−1 ∇ p (z |n,q)n i∇ ln p (Z |n,q) = = 0 (5.24)∑n p (z |n,q)i=0 i

where a similar expression can be derived for the gradient of q, where p (z |n,q) can bei

expressed according to Equation (5.9) as follows:

P [0] 1 −1ip ( z |n,q) = α exp( − (z − n− s[0]) Γ (z − n− s[0]))i i i1/2 2| Γ |
K−1 P [k] 1 −1i+ α exp( − (z − q− r[k] − c[k]) C (z − q− r[k] − c[k])) (5.25)∑ i k i1/2 2|C |k=1 k

where α is a constant factor.  The first term is expressed as a function of the noise n
explicitly to reflect the fact that the noise codeword (k =0) is largely insensitive to q, and
depends mostly on n. Similarly, the other codewords are largely insensitive to n and
depend mostly on q.

Since (5.24) and (5.25) lead to a highly nonlinear equation, we use a variant of the
EM algorithm described in Appendix F. Instead of maximizing the likelihood directly

N−1

L(n,q) = ln f (z ; n,q) (5.26)∑ z i
i=0

we can maximize a function U instead
N−1

U(n,q,n′,q′) = E{ ln f (x ,z ; n,q) | z ; n′,q′} (5.27)∑ xz i i i
i=0

that is the expected value of the logarithm of the joint density of the observed data Z, the
unobserved data X and the correction vectors {r(x )} given an estimate of thei

environmental parameters n’ and q’. With these definitions, the function U in Equation
(5.27) has the form (See Appendix G):
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K−1

P [k] p(z |x ,r′(x ), k |n′,q′)p(x |k) ln p(z ,x ,r′(x ), k |n,q) dx∑ i i i i i i i i∫N−1
k=0U = (5.28)∑ K−1

i=0 P [k] p(z |x ,r′(x ), k |n′,q′)p(x |k) dx∑ i i i i i i∫
k=0

that is given as a function of the old parameter vectors n′ and q′. The maximization of
∧ ∧

(5.28) gives us new estimates for n and q that can be taken as initial values for the next
iteration. The new estimates have the form (See Appendix G)

N−1

f [0] z∑ i i
∧ i=0n = (5.29)

N−1

f [0]∑ i
i=0

N−1 K−1

f [k] [z − c[k] − r′[k]]∑ ∑ i i
∧ i=0 k=1q = (5.30)

N−1 K−1

f [k]∑ ∑ i
i=0 k=1

It is important to note that in this case, due to the quadratic form of U with both n
and q, there is just one maximum in the function.  That is, the local and global maxima in
this case are the same, under the assumptions of the model. In practice, different starting
points always converged to the same point for some cases analyzed in detail. This
concludes the derivation of the CDCN algorithm. In the following section we will
summarize the results.
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5.4. Summary of the CDCN Algorithm

We present here a summary of the CDCN algorithm with its two steps:  estimation
of the environmental parameters n and q, and estimation of the compensated speech
given n and q.

ENVIRONMENT ADAPTATION achieved by ML estimation of the environmental
parameters n and q is done as follows:

∧ ∧(0) (0)1. Assume initial values of n and q for j = 1.
∧ ∧ (j−1)2. Estimate the correction vectors r[k] for k =0,1, . . . , K−1; given n ,

∧ (j−1)q , and x= c[k] according to (4.10):
∧ ∧(j−1) ∧(j−1)(j) DFT [n − q − c[k]]r [k] = IDFT {ln (1 + e )} (5.31)

and the a posteriori probabilities for the mixtures f [k] asi

P [k]i exp( − d [k] / 2)i1/2|C |k k =0,1, . . . , K−1f [k] = (5.32)i {K−1 i =0,1, . . . , N−1P [l]i exp( − d [l] / 2)∑ i1/2|C |l=0 l

where the distances d [k] are given byi

T −1d [k] = e [k] C e [k] (5.33)i ii k

and the error vectors are
∧ ∧(j−1) (j)e [k] = z − q − r [k] − c[k]) (5.34)i i

∧ ∧(j) (j)3. Maximize the log-likelihood (5.23). The new estimates for n and q are
N−1

f [0] z∑ i i
∧ i=0(j)n = (5.35)

N−1

f [0]∑ i
i=0

N−1 K−1 ∧jf [k] [z − c[k] − r [k]]∑ ∑ i i
∧ i=0 k=1(j)q = (5.36)

N−1 K−1

f [k]∑ ∑ i
i=0 k=1

∧ ∧
4. Stop if convergence has been reached obtaining n and q; otherwise go to

Step 2.
MMSE ESTIMATION of x Once the ML estimation of n and q has converged, for everyi

frame in the utterance, the clean speech vectors are estimated as:
K−1∧ ∧ ∧x = z − q − f [k] r[k] i =0,1, . . . , N−1; (5.37)∑i i i
k=1
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Let’s attempt to find an interpretation for Equations (5.35), (5.36) and (5.37).
Equation (5.35) basically estimates the noise vector n by a weighted sum of all the
vectors {z } with the weights representing the a posteriori probability of each vectori

being noise.  Equation (5.36) estimates q as a weighted sum of the deviations between the
∧

vector z and the corresponding "corrected" codeword c[k] + r[k]. The weights f [k]i i

represent again the a posteriori probability for the mixture k at frame i, or how close the
input vector i is to mixture k in a probabilistic sense given the acoustics. Finally equation
(5.37) includes a correction that is a sum of all the correction vectors weighted by the
appropriate a posteriori probabilities.

5.5. Implementation Details

In implementing the CDCN algorithm in SPHINX there are a number of parameters
that were chosen.  For simplicity, all the covariance matrices C are assumed to be equalk

2to σ I, so that we can continue to use the Euclidean distance. Although this is not a valid
2assumption, it was adopted for expediency. We also assumed that Γ equals γ I, which is

actually not the case when frequency warping is performed. The codebook elements
{c[k]} are estimated with a standard Lloyd algorithm in which the CDCN algorithm was
embedded. The initial estimate for the noise is the average of frames whose power is
below a threshold (the same computation used in the algorithms of Chapter 3). The
equalization vector is initialized to zero, although if some a priori information is
available it could be used as an initial estimate.

In this implementation the codebook contained 128 vectors, and the value for γ was
set empirically to 0.3. The value of σ was obtained in the iteration that reestimated the
codebook vectors; the final value for 128 vectors was 0.54.

Furthermore, all P [k] are considered identical, except for P [0] which isi i

representative of the rate of noise frames in the database. Therefore, P [0] was set to 0.25,i

while P [k] = (1 − P [0]) / (K − 1) according to Equations (5.8) and (5.9).i i

5.6. Evaluation Results

Table 5-1 describes the recognition accuracy of the original SPHINX system with no
preprocessing, and with the SDCN and CDCN algorithms.  Use of the CDCN algorithm
brings the performance obtained when training on the CLSTK and testing on the CRPZM
to the level observed when the system is trained and tested on the CRPZM.  Moreover,
use of CDCN improves performance obtained when training and testing on the CRPZM
to a level greater than the baseline performance.

To compare the CDCN algorithm with the previous algorithms we include the 3D



82

TRAIN CLSTK CLSTK CRPZM CRPZM
TEST CLSTK CRPZM CLSTK CRPZM

BASE 85.3% 18.6% 36.9% 76.5%

SDCN N/A 67.2% 76.4% 75.5%

CDCN 85.3% 74.9% 73.7% 77.9%

Table 5-1: Comparison of recognition accuracy of SPHINX with no
processing, SDCN and CDCN algorithms. The system was trained and
tested using all combinations of the CLSTK and CRPZM microphones.

spectrograms of the same utterance in Figures 5-2 and 5-3 for the CLSTK and CRPZM
respectively. We note that in this case the algorithm is applied to both recordings.
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Figure 5-2: 3D Spectrogram of the utterance yes recorded with the
CLSTK microphone processed with the CDCN algorithm.

We can see that the noise level has been reduced greatly not just for the CRPZM but
for the CLSTK as well. The tilt in the spectrum has been almost completely eliminated as
can be observed by looking at the frame at time 400 ms (the segment with highest SNR in
the utterance).

To confirm the ability of the CDCN algorithm to adapt to new environmental
conditions, a series of tests was performed with the 5 new stereo speech databases
described in Chapter 2.  The test data were all collected after development of the CDCN
algorithm was completed. In all cases the system was trained using the Sennheiser
HMD224. The "second" microphones (with which the system was not trained) were:
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Figure 5-3: 3D Spectrogram of the utterance yes recorded with the
CRPZM microphone with CDCN algorithm. Spectra at times  190 ms
(silence region), 400 ms (vowel) and 650 ms (fricative) are plotted for
both the CLSTK and the CRPZM.
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• The Crown PCC160 desk-top phase-coherent cardioid microphone
(CRPCC160). (This is the new DARPA "standard" desk-top microphone.)

• An independent test set using the Crown PZM6fs.

• The Sennheiser 518 dynamic cardioid, hand-held microphone (SENN518).

• The Sennheiser ME80 electret supercardioid stand-mounted microphone
(SENNME80).

• An HME lavalier microphone that also used an FM receiver (HME).

TEST CLSTK CRPCC160

BASE 82.4% 70.2%

CDCN 81.0% 78.5%

TEST CLSTK CRPZM6FS

BASE 84.8% 41.8%

CDCN 83.3% 73.9%

TEST CLSTK SENN518

BASE 87.2% 84.5%

CDCN 82.2% 83.3%

TEST CLSTK SENNME80

BASE 83.7% 71.4%

CDCN 81.5% 80.7%

TEST HME CRPCC160

BASE 55.9% 56.3%

CDCN 81.7% 72.2%

Table 5-2: Analysis of performance of SPHINX for the baseline and the
CDCN algorithm. Two microphones were recorded in stereo in each case.
The microphones compared are the Sennheiser HMD224, 518, ME80, the
Crown PZM6FS and PCC160, and the HME microphone. Training was
done with the Sennheiser  HMD224 in all cases.

In Table 5-2 we compare results using the CDCN algorithm to baseline
performance. With this algorithm great robustness is obtained across microphones.
However, there is a slight drop in performance when training and testing on the
Sennheiser HMD224. We believe that one cause for this is that estimates of q and n are
not very good for short utterances.
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5.7. Summary

Although the SDCN algorithm performed acceptably, it had the drawback that a
stereo database was required to train its correction vectors and hence it was not
microphone-independent. The CDCN algorithm fits into an environment-independent
framework because it estimates the parameters of the current environment via maximum
likelihood. This capability of adaptation to the environment makes the CDCN algorithm
very attractive.  The algorithm has been tested with a number of different microphones
and in all cases showed great robustness.

The key information that allowed us to estimate the parameters of the environment,
noise and spectral equalization, is the use of the a priori information about the speech
cepstra contained in a codebook. By observing how that codebook is transformed under
some noise n and equalization q, we were able to see the distribution of vectors under the
current environment differed from the transformed distribution.

Another flaw of the SDCN algorithm was that the same correction was applied for
all frames with the same SNR while it is clear that different frames would require
different corrections. The CDCN algorithm uses corrections that are
codeword-dependent.

The speech frames processed by the CDCN algorithm exhibit a much lower noise
level, and the tilt in the spectrum is insignificant after the transformation. This shows that
the model of the environment is quite accurate and that the CDCN algorithm is the first
of the algorithms described in this thesis that can be considered to be environment
independent, because the accuracy of the system when trained on speech recorded with a
close-talking microphone and tested with speech recorded with a desk-top microphone is
essentially equivalent to our benchmark (the accuracy of the system when trained and
tested on speech recorded with the desk-top microphone).
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Improving the Efficiency6
In this chapter we present two additional algorithms, the Interpolated SDCN and a

fixed CDCN, that are substantially more efficient than the CDCN.  The ISDCN
algorithm, based on the asymptotic properties of the correction vectors, combines the
simplicity of the SDCN algorithm while adding environment normalization capabilities.
The fixed CDCN algorithm uses a correction that is codeword-dependent but like the
SDCN algorithm, it has to be recalibrated for every new environment with a stereo
database.

6.1. Interpolated SDCN

One of the deficiencies of the SDCN algorithm is the inability to adapt to new
environments since the correction vectors are derived from a stereo database of our
"standard" Sennheiser HMD224 and the new microphone. On the other hand, the
algorithm is extremely simple and performs remarkably well. In this section we present
the ISDCN algorithm, Interpolated SNR-Dependent Cepstral Normalization, as an
extension of the SDCN algorithm to environment independence.

The correction vectors of ISDCN will be a function of the instantaneous SNR like
the SDCN, and the environmental parameters n and q. Therefore, the compensated

∧
vector x has the formi

∧x = z − w (n, q,SNR ) (6.1)i i i

This explicit dependence of w on n and q will allow us to estimate these parameters from
the speech data by using the same criterion used in CDCN: minimization of the
difference between the acoustic space of the current utterance and a universal acoustic
space characterized by a codebook of cepstral vectors.

Although CDCN accomplishes this by maximum likelihood, we opted to use the
minimization of the accumulated VQ distortion for ISDCN. Since SPHINX is already
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performing Vector Quantization, ISDCN can be implemented with very little
computational overhead.

Given an ensemble of N frames, the accumulated VQ distortion has the form
N−1

2
D(n,q,k ) = || z − w (n, q,SNR ) − c[k ] || (6.2)∑i i i i

i=0

where k is the label at frame i that minimizes the distortioni

2|| z − w (n, q,SNR ) − c[k ]|| (6.3)i i i

In ISDCN the correction vector is expressed as

w (n, q,SNR) = n + (q − n) f (SNR ) (6.4)i i

where the function f interpolates between the noise n at low SNR and the equalization
vector q at high SNR, so that the correction vector has the asymptotic characteristics
noted in Chapter 4.  We selected f to be the sigmoid function

f (x)=1 / [1+ exp(−α x + β )] α > 0 (6.5)i i i

because it satisfies the asymptotic behavior of being f ≈ 0 at low SNR and f ≈ 1 at high
SNR. It is also monotonic and very smooth.

The noise vector n can be reliably estimated by averaging a number of noise frames.
We basically used the same procedure that we used in the spectral subtraction algorithms
in Chapter 3:  average all frames whose c[0] is below a threshold.

Estimation of the equalization vector required the criterion used in Equation (6.2):
∧ (0)1. Start with an initial estimate for q and j = 1

(j)2. Label all frames, i.e. find the value of k that minimizes the distortioni

∧ 2(j)(j−1)||z − w (n, q ,SNR ) − c[k ]|| i ≤ 0 ≤ N− 1 (6.6)i i i

(j)3. Estimate q from all the frames in the utterance:
N−1

(j)(z − n − c[k ]) f (SNR )∑ i ii
∧ i=0(j)q = n + (6.7)

N−1
2

f (SNR )∑ i
i=0

4. If convergence has been reached stop, else go to step 2.
It can be shown that the labels chosen in Step 2 that minimize Equation (6.6), will also
minimize the overall distortion

∧ ∧(j) (j−1)(j−1) (j−1)D(n,q ,k ) ≤ D(n,q ,k ) (6.8)i i

∧ (j−1)for a fixed n and q . Likewise, it can be shown that the new equalization vector
selected by Equation (6.7) in Step 3 will reduce the distortion

∧ ∧(j) (j)(j) (j−1)D(n,q ,k ) ≤ D(n,q ,k ) (6.9)i i
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Therefore, this procedure is guaranteed to converge to a minimum of the accumulated
distortion D, as every iteration will decrease the overall VQ distortion.

Ay this point we note that since we are using the codebook of cepstral vectors
without the power term (i.e. without c[0]), the value of q[0] cannot be computed by
Equations (6.6) and (6.7).  The constraint we used to estimate q[0], the gain control, was
that the dynamic range of the utterance (c [0] − c ) had to be constant.max min

For the evaluation α and β were set empirically to 3.0 for i > 0 and 6.0 for i =0, byi i
∧

inspection of the curves in Figure 4-4.  The equalization estimate q given by Equation
(6.7) exhibited a large variance for short utterances which introduced noise into the
system. To ameliorate this problem, we only reestimate the first 4 cepstral coefficients of
q, setting to 0 the high order ones. This reflects the fact that the equalization vector must
be a smooth function.  In Table 6-1 we show the performance of the census database with
the ISDCN algorithm.

TRAIN CLSTK CLSTK
TEST CLSTK CRPZM

BASE 85.3% 18.6%

CDCN 85.3% 74.9%

ISDCN 84.8% 62.1%

Table 6-1: Performance of the ISDCN algorithm as compared with the
baseline and the CDCN. The algorithm was applied to both CLSTK and
CRPZM and training was done with the processed CLSTK.

Since ISDCN will estimate the environmental parameters n and q for every
utterance, it does not have to be recalibrated for every new environment. An evaluation
with the microphone recordings used in Chapter 5 is presented in Tables 6-2 and 6-3. We
see that the algorithm improves over the baseline in the cross conditions, although not as
much as the CDCN for recordings with low SNR. For the case of CLSTK testing, the
ISDCN algorithm does on the average about the same as the baseline, and slightly better
than the CDCN algorithm.

6.2. Fixed CDCN

In this section we describe the Fixed CDCN algorithm that combines some of the
attractive features from both the SDCN and CDCN algorithms. The motivation for this
algorithm is to obtain an algorithm that as accurate as CDCN and as computationally
efficient as SDCN.
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TEST CLSTK CRPZM6FS

BASE 84.8% 41.8%

CDCN 83.3% 73.9%

ISDCN 86.1% 73.7%

FCDCN N/A 79.3%

TEST CLSTK CRPCC160

BASE 82.4% 70.2%

CDCN 81.0% 78.5%

ISDCN 82.3% 75.4%

FCDCN N/A 77.1%

TEST CLSTK SENN518

BASE 87.2% 84.5%

CDCN 82.2% 83.3%

ISDCN 87.2% 83.5%

FCDCN N/A 83.4%

TEST CLSTK SENNME80

BASE 83.7% 71.4%

CDCN 81.5% 80.7%

ISDCN 83.2% 78.5%

FCDCN N/A 81.1%

Table 6-2: Analysis of performance of SPHINX for the baseline and the
CDCN, ISDCN and FCDCN algorithms. Two microphones were recorded
in stereo in each case. The microphones compared are the Sennheiser
HMD224 (CLSTK), Crown PZM6FS, Crown PCC160, Sennheiser 518
and SennheiserME80.  Training was done with the Sennheiser HMD224
(CLSTK) from the census  database in all cases. The correction vectors for
the FCDCN were estimated from each stereo database and are different
for every experiment.

The Fixed CDCN applies a correction that depends on the instantaneous SNR of the
input, like SDCN, and this correction is different for every codeword, like the CDCN:

∧x = z + r[k, SNR] (6.10)
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TEST HME CRPCC160

BASE 55.9% 56.3%

CDCN 81.7% 72.2%

ISDCN 76.6% 69.7%

Table 6-3: Analysis of performance of SPHINX for the baseline and the
CDCN and ISDCN algorithms. The Crown PCC160 and the HME FM
microphone were  recorded in stereo using training with the Sennheiser
HMD224 (CLSTK) from the census database.

The selection of the appropriate codeword is done at the VQ stage, so that label k is
chosen to minimize

2||z + r[k, SNR] − c[k]|| (6.11)

This technique will be applied only to the CRPZM speech so as to make it as close as
possible to the CLSTK speech.  We will describe a method for training these correction
vectors using the EM algorithm. The incomplete data consist of the noisy speech, and the
complete data include the clean speech, as it is known in the stereo database.

6.2.1. Estimating the Correction Vectors

In this subsection we develop the estimation formulae for the correction vectors
2r[k, SNR] and the variances σ [SNR] via the EM algorithm. Briefly, the algorithm labels

the CRPZM speech without any knowledge of the CLSTK speech according to Equations
(6.10) and (6.11). After this labeling is completed the correction vectors are reestimated
as the ones that minimize the differences between the CLSTK and the CRPZM cepstra on
a frame by frame basis.

The densities to be used in the EM algorithm are defined here. The pdf of the
CLSTK speech given mixture k is

C 1 2
p (x |k) = exp(− || x − c[k] || ) (6.12)

2σ 2σ
The CRPZM speech is modeled as a Gaussian random vector

C′ 1 2
p (z |x,k, r′,SNR= l) = exp(− || z + r′[k, l ] − x || ) (6.13)

2σ[l ] 2σ [l ]

if the value of x is known, and as

C′ 1 2
p (z |k, r′,SNR= l) = exp(− || z + r′[k, l ] − c[k] || ) (6.14)

2σ[l ] 2σ [l ]

if no knowledge is available on x. In (6.13) and (6.14), r′[k, l ] is the correction vector
when the true mixture is k and the input SNR of z is l∆ . The variance σ[l ] is a functionSNR
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of the instantaneous SNR too.  With these assumptions, the a posteriori probability
p (k |z ,r′), that we will denote by f [k] can be expressed asi i

1 2
exp(− || z + r′[k, l ] − c[k] || )i k22σ [l ]kf [k] = (6.15)i K−1 1 2

exp(− || z + r′[ p, l ] − c[p] || )∑ i p22σ [l ]p=0 p

where we have assumed that the a priori probabilities for the mixtures are identical. We
can also obtain the logarithm of the complete data as

1 2
ln p (z ,x ,k |r) = C′′ − ln σ[l ] − ||z + r[k, l ] − x ||i i k i k i22σ [l ]k

1 2− ln σ − || x − c[k] || (6.16)i22σ
Instead of maximizing the likelihood p (z ,x , |r) directly, we will use the EM algorithmi i

described in Appendix F and maximize the function U instead. In this case the function U
has the form

N−1 K−1

U (r, r′) = ln p (z ,x ,k |r) p (k |z ,r′) (6.17)∑ ∑ i i i
i=0 k=0

The correction vectors r[k, l ] that maximize Equation (6.17) can be obtained by usingk

Equations (6.15) and (6.16):
N−1

(x − z ) f [k] δ[SNR − l∆ ]∑ i i i i SNR
i=0r[k, l ] = (6.18)

N−1

f [k] δ[SNR − l∆ ]∑ i i SNR
i=0

and the corresponding σ[l ] given by
N−1 K−1

2|| x − z − r[k, l ] || f [k] δ[ SNR − l∆ ]∑ ∑ i i i i SNR
i=0 k=02σ [l ] = (6.19)

N−1 K−1

f [k] δ[ SNR − l∆ ]∑ ∑ i i SNR
i=0 k=0

The new estimates r[k, l ] and σ[l ] obtained by Equations (6.18) and (6.19) are guaranteed
to increase the likelihood p (Z, X |r). In practice, the algorithm reaches convergence after

22 or 3 iterations. Figure 6-1 shows the resulting variances σ [l ] obtained after the process
for ∆ = 1 dB. The large variance exhibited at low SNR reflects the higher uncertaintySNR

in the value of the CLSTK speech given the CRPZM speech that occurs at low SNRs.

We have shown in Chapter 5 that what determines the values of the correction
vectors is not just q but q − n, the difference between the equalization and noise vectors.
Therefore in this implementation the first step is to remove the noise vector from all the
input frames and then apply the correction vectors. In training the correction vectors are
obtained the same way, subtracting the noise vector first. The noise vector is estimated
via an EM procedure as described by Van Compernolle [10], in which two Gaussian
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densities are fitted to the data, one for the noise event and another one for the speech
event. In Figure 6-2 we show the sample utterance for the CRPZM when processed by
this algorithm. Table 6-4 shows the results of this algorithm.
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Figure 6-1: Variance of the difference vector between the CLSTK and
the restored CRPZM speech for different input SNR of the CRPZM.

Another possibility for estimating a similar set of correction vectors was suggested
by Gish et al. [28]. He used a procedure similar to Equation (6.18) for estimating the
corrections but they derived the labels from the CLSTK speech instead of the CRPZM
speech. We tried this procedure and obtained a restored speech that exhibited a large
amount of musical noise as was observed using the PSUB algorithm (See Chapter 3).
Many frames in the clean acoustic space are mapped into essentially the same frame in
the noisy space because they are masked by the noise, so inverting the process makes
many frames that are similar in the noisy acoustic space to become wildly different in the
transformed space if this approach is taken. In our criterion the distortion measure is
taken in the noisy space, so that small differences in the noisy speech gets translated into
small differences in the restored speech.

Another variant that we tried for estimating the correction vectors is using the
assumption that x has the distribution

p (x) = max P[k] N (c[k], Σ ) (6.20)x k

where we have substituted the sum with the maximum operator. The a posteriori
probability p (k |z ,r′) will be a delta function δ[k] where k is the codeword that minimizesi

2||z − c[k] − r[k, l]|| (6.21)i

Using the complete probability of Equation (6.16), our EM algorithm yields the same
reestimation formula for r[k, l] given in Equation (6.18), with f [k] being 1 if k is the labeli

for frame i and 0 otherwise. The recognition rate for the CRPZM training on the CLSTK
is 72.6%, slightly lower than with the previous training algorithm.
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Figure 6-2: 3D Spectrogram of the utterance yes recorded with the
CRPZM microphone with FCDCN algorithm. Spectra at times  190 ms
(silence region), 400 ms (vowel) and 650 ms (fricative) are plotted for
both the CLSTK and the CRPZM.
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TRAIN CLSTK CLSTK
TEST CLSTK CRPZM

BASE 85.3% 18.6%

CDCN 85.3% 74.9%

FCDCN N/A 73.1%

Table 6-4: Performance of the Fixed CDCN algorithm as compared
with the baseline and the CDCN. This algorithm is only applied to  the
CRPZM using the training models for the baseline case.

The computational complexity of this fixed CDCN is very low, because the
correction vectors are precomputed. However, it does not have the adaptation capabilities
of the ISDCN or CDCN. It would be desirable to obtain an algorithm that is
computationally efficient and adapts to the environment like the ISDCN but is more
immune to noise. Having different sets of correction vectors for different environments
(i.e. quantizing the environments) would be a possibility, but it would require a large
number of different microphone recordings and will be explored in future work.

6.3. Estimating the Environmental Parameters from Previous
Utterances

In this section we analyze some issues related to real-time implementation.  Up to
this point, the estimates of the noise n and equalization vector q for one given utterance
were estimated from that same utterance. In a real application this will not be practical.
Assuming that these parameters do not change very rapidly with time (quasi-stationarity),
one should be able to use the estimates from the previous utterance for the next utterance.

Another test set was collected in stereo with the Sennheiser HMD224 and the
CRPZM 6fs. In Table 6-5 we show the baseline performance for this set as well as the
FCDCN and ISDCN algorithms. We see that this test set is probably the hardest we have
encountered since the performance for the case of training and testing on the CRPZM is
only 66.6%. The accuracy of the FCDCN algorithm with the correction vectors computed
from the census database exceeds that value.

Inspection of Table 6-5 tells us that using the estimates of the environment
computed from the previous utterance (ISDCNprev) yields essentially the same
recognition accuracy than if the environmental parameters were estimated from the
current utterance (ISDCN) as we have done until now. This fact can be used in
implementing a real-time system where the estimates of n and q are continuously
updated. More research is needed on the time constant or number of speech frames used
in the estimation of the environmental parameters.
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TRAIN CLSTK CLSTK CRPZM CRPZM
TEST CLSTK CRPZM CLSTK CRPZM

BASE 82.4% 21.3% 36.6% 66.6%

FCDCN 82.4% 67.2% - -

ISDCN 80.8% 57.1% - -

ISDCNprev 80.7% 55.8% - -

Table 6-5: Performance of the ISDCN algorithm when the environmental
parameters are computed from the same utterance (ISDCN) or the
previous utterance (ISDCNprev). The performance is compared to the
baseline (BASE) and the FCDCN algorithm.

6.4. Summary

In this chapter we have described two algorithms that are very efficient
computationally, the ISDCN and the FCDCN algorithm. In both cases they can be
implemented with the addition of some book-keeping information at the VQ stage.

The Interpolated SNR-Dependent Cepstral Normalization (ISDCN) algorithm uses
correction vectors that interpolate between the noise vector at low SNR to the
equalization vector at high SNR. The equalization vector is estimated as the one that
minimizes the accumulated VQ distortion. This is possible by the use of an interpolating
function that in this case was a sigmoid function.

The Fixed Codeword-Dependent Cepstral Normalization (FCDCN) algorithm uses
correction vectors that depend on the instantaneous SNR of the input and are different for
every codeword. This algorithm provides a higher accuracy than the CDCN because it is
free from some of the assumptions of the CDCN algorithm.

Although more research is needed to investigate how much time is needed for a
reliable estimation of the environmental parameters, we have shown that adapting on the
previous utterance is feasible for a real-time implementation.



96

Frequency Normalization7
In this chapter we will discuss the mel-scale cepstral parameters used in SPHINX and

some optimizations that we performed on them. Also, an algorithm for frequency
normalization based on variable warping of the frequency axis is presented within the
framework of minimal VQ distortion. These techniques together decrease the error rate
by 15 to 20%.

7.1. The Use of Mel-scale Parameters

In this section we introduce the concept of mel-scale cepstral coefficients as the
DFT of the logarithm of the power spectral density function over a warped frequency
scale. A rationale for its use is presented and the particular implementation of these
coefficients in the SPHINX system as a matrix multiplication on LPC cepstrum coefficient
is described.

The use of a warped frequency scale as opposed to a linear one has proven
advantageous in speech recognition systems. Most researchers agree that frequencies
above 4 kHz contribute much less to speech intelligibility and recognition accuracy than
frequencies below 4 kHz. Since for systems like SPHINX the sampling rate is 16 kHz,
using a linear scale would give the same weight to low and high frequencies, which is
undesirable.

Further evidence for the use of a non-linear frequency axis can be extracted from the
27behavior of the human auditory system.  Zwicker [84] introduced the Bark scale as an

approximation to the discrimination power of different frequencies in the human auditory
system.

27The Bark scale is approximately linear for frequencies below 1000 Hz and logarithmic above that
level.
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Davis and Mermelstein [13] found that mel-scale coefficients resulted in improved
accuracy. They used a filterbank in which the spacing among the filters and their
bandwidths approximated the Bark scale.  Researchers at BBN (Chow et al. [8]), SRI
(Murveit and Weintraub [55]), MIT Lincoln Labs (Paul [65]) and some other laboratories
have successfully used cepstral coefficients derived from a mel-scale filterbank approach
as the front-end for their speech recognizers.

The SPHINX system also uses mel-scale cepstral coefficients as the parameter set,
but they are based on an LPC analysis as opposed to filterbank. Shikano [71] applied the
technique of bilinear transformation introduced by Oppenheim and Johnson [61] to warp
the frequency axis. More details on the bilinear transform can be found in Appendix C.

Briefly, the bilinear transform is a mapping in the complex plane that maps the unit
circle onto itself. It is defined as

−1z − α−1z = −1 < α < 1 (7.1)new −11 − αz
jωThe frequency transformation is obtained by making the substitution z = e and

jωz = e new in (7.1):new

αsin (ω)ω = ω + 2arctg [ ] (7.2)new 1 − αcos (ω)

Equation (7.2) is plotted in Figure 7-1 for different values of the warping parameter α.

For values of α between 0.4 and 0.8, the warping transformation is similar to the
Bark scale. In the SPHINX system the parameter α was set to 0.6. Although SPHINX was
not very sensitive to the particular value, 0.6 turned out to be optimum in our evaluations.

As can be seen in Appendix C, the relationship between the cepstral coefficients
before warping c and after the bilinear transform c can be expressed as a matrixw

multiplication operation

c = L(α) c (7.3)w

where the warping matrix L is a function of α. In the original signal processing in
SPHINX both c and c had 12 coefficients.w

7.2. Improving the Frequency Resolution

In this section we analyze the the frequency warping used in the standard SPHINX

system and its effect on frequency resolution. Increasing the number of cepstral
coefficients before the bilinear transform yielded a moderate decrease in error rate.

The truncation used in the cepstrum vector has to be done so that important
information is not lost. It is shown in Appendix B that the LPC-cepstrum is an infinite
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Figure 7-1: Frequency mapping of the Bilinear Transform for different
values of α. Note that α=0 is equivalent to no warping while α=0.8 is a
very severe warping of the frequency axis.

sequence. In Appendix C we show that the number of coefficients after the bilinear
transform will be infinite. This is to say that both c and c in Equation (7.3) will be ofw

infinite dimension.  However, since the higher order cepstrum coefficients tend to zero
rapidly, the dimension of vector c can be truncated with negligible error.  In SPHINX thew

dimension of c was set to 12 (plus the zeroth order term).w

We found that the dimension of c had to be larger than 12 in order not to lose
frequency resolution. In Figure 7-2 we show the spectral representation of the vowel /ih/
in the word "six". We observe that the use of 12 coefficients for c results in a loss of
resolution, that is maintained if 32 coefficients are used.  With 12 cepstral coefficients,
resonances whose bandwidths are smaller that 8000 / 12 = 666 Hz will not be
represented accurately because of the low-pass liftering. We observed that the use of 32
coefficients provided a higher low-pass quefrency that allowed resonances with
bandwidths larger than 8000 / 32 = 250 Hz to be retained.  A dimension of 12 for c wasw

considered sufficient because of stretching of the low frequencies, where the important
resonances occur.

We trained and tested SPHINX on the census database using both 12 and 32
coefficients for c. The results in Table 7-1 show a 7% decrease in error rate by using 32
coefficients for c. This reduction in error rate is consistent with what was observed in the
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Figure 7-2: Spectral analysis of the vowel /ih/. The first graph shows the
FFT spectrum and the LPC spectrum of order 14. The second graph shows
the LPC spectrum and its cepstral approximation with 32 and 12
coefficients. The third graph shows the warped spectrum plotted from 12
cepstral coefficients after the bilinear transform with α = 0.6 when both
32 and 12 coefficients are used before the transform. The use of 12
coefficients before the warping removes the formant structure.

resource management task. We considered the version with 32 coefficients as the
baseline condition for all the experiments in this thesis.
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12 coeff 32 coeff

Recognition accuracy 84.2 % 85.3 %

Table 7-1: Effect of the use of 12 and 32 cepstral coefficients before  the
bilinear transform in SPHINX. The number of coefficients after frequency
warping was 12 in both cases.

At first, we were somewhat disappointed that there was only a reduction of 7% after
having observed the phenomenon in Figure 7-2.  The explanation that we have is that
although we are not retaining additional formant information by using 32 coefficients for
c, this information is not so critical anyway if the system is speaker independent. The
effect of a crisper frequency structure obtained by the use of 32 coefficients for c is
diminished by the fact that different speakers have different formants, which would make
the HMM distributions broader.

7.3. Variable Frequency Warping

In this section we present a novel technique for frequency normalization based on
the use of the bilinear transform with a variable warping parameter.  This technique is
aimed at closing the gap in performance that exists between speaker-dependent and
speaker-independent systems by normalizing the long-term frequency characteristics of
different speakers.

Speaker-independent systems perform with an error rate that is about 3 or 4 times
greater than similarly trained speaker-dependent systems (Pallett et al. [63]). Part of the
problem can be found in that speaker-independent systems like SPHINX have to cope with
the burden of different formant frequencies of different speakers, that broaden the HMM
distributions. It would be desirable to be able to normalize the formant frequencies of
different speakers.

It is well known that female speech exhibits higher formant frequencies and pitch
than male speech. Furthermore, a source-production model (Rabiner and Schafer [68])
suggests that the nominal resonance frequencies are essentially proportional to the length
of the vocal tract.  A possible mechanism for normalization would be to warp frequencies
more severely for males than for females, so that after this speaker-dependent frequency
warping, the resonance frequencies coincide.

We propose to achieve the variable frequency warping by using a different α
parameter in the bilinear transform for every speaker.  The value of α is selected as the
one that minimizes the overall VQ distortion, the same criterion used in the last chapter.
This algorithm works in an unsupervised mode, since it does not require sex information
or any other characterization of the speaker’s formant frequencies.
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For practical considerations we chose to implement the bilinear transform in two
stages: the first stage being fixed and the second being variable.  This is made possible
due to the fact that a cascade of two bilinear transform stages of parameters α and α is1 2

equivalent to another bilinear transform with parameter (α + α )/(1 + α α ) as shown in1 2 1 2

appendix C.  The advantage in doing this is that we use the 32 coefficients necessary for
the increased frequency resolution only in the first warping stage, while we use only 12
coefficients for the second stage without any loss in accuracy.

Although we could develop a framework for maximization over continuous values
of α, we choose to work with a discrete grid of values of α with α = α + i∆α for0

simplicity, with i = −N, . . . , 0, . . . ,N.

The new codebook is generated by the Lloyd algorithm used for finding the VQ
codebook, with the difference that the α parameter for every speaker is different. This
optimum α is the one that minimizes the VQ distortion for all the utterances uttered by a
given speaker. Therefore only the labeling is different from the standard Lloyd algorithm.

By doing this we observed that the algorithm always found the highest value for
alpha. In the degenerate case of α = 1, every input frame is transformed into a constant
(the DC value) by the bilinear transform, therefore yielding zero VQ distortion. However
this trivial transformation would destroy all the information in the signal. This is the first
time that we encounter that minimum distortion is not highly correlated with maximum
likelihood and minimum probability of error, but quite the opposite.  It was observed
empirically that higher values of α yielded lower distortion, although lower recognition0

rate.

Since we wanted to keep α = 0.6 as our center value, we had to force that constraint0

directly. We used 20 female speakers and 20 male speakers in training, with each speaker
having his or her own α and we imposed that the sum of all displacements had to be zeroi

Σ α = 0 when labeling the training data.i

This variable warping technique was evaluated with an optimum α per speaker. The
center value α was set to 0.6, with N = 5 and ∆ = 0.02. The results of the evaluation on0

the census database are shown in Table 7-2. As we can see, there is a 12% decrease in
error rate. Use of a denser grid did not provide any additional benefit. The value of α0

was not very critical, although 0.6 provided the maximum gain.

BASELINE FREQNORM

Recognition accuracy 85.3 % 87.1 %

Table 7-2: Comparison of the performance of the variable frequency
warping with the baseline.
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In Figure 7-3 we show the distribution of values of α for male and femaleopt

speakers. As we had anticipated there is a clear separation between them, which confirms
the assumptions of the model.
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Figure 7-3: Histogram of values of α for male and female speakers.

To cross-validate the results in Table 7-2, we used the CLSTK speech from the
multi-microphone database. The results of the evaluation are shown in Table 7-3. As can
be observed, the algorithm never does worse than the baseline, and on the average there
is a 10% decrease in error rate. There is especially a large gain in Set 1 for which the
baseline performance was lower than the rest.

BASELINE FREQNORM

Set 1 82.4 % 85.4 %

Set 2 84.8 % 85.4 %

Set 3 87.2 % 87.8 %

Table 7-3: Comparison of the performance of the variable frequency
warping with the baseline.
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7.4. Summary

Mel-scale cepstrum coefficients are advantageous for speech recognition especially
if a bandwidth larger than 4 kHz is used. SPHINX uses the bilinear transform as a mean of
obtaining frequency-warped LPC-cepstrum.

Truncation of the cepstral coefficients is acceptable as long as they retain the
frequency structure. After the bilinear transform only 12 coefficients are needed but
before the transform 12 is not sufficient. We showed that the use of 32 coefficients before
the bilinear transform results in no apparent loss in the accuracy of the spectral
representation, and a 7% decrease in error rate.

We proposed the use of the bilinear transform with variable parameter as a means of
frequency normalization. Histograms of the optimum α show that male and female
speech are well separated, with female speech requiring a smaller α (less warping) than
male speech. The use of frequency normalization provides an additional decrease in error
rate of approximately 10%.
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Summary of Results8
In this chapter we summarize the results of this dissertation. Table 8-1 shows the

performance of all the algorithms described in this thesis for the census database.

TRAIN CLSTK CLSTK CRPZM CRPZM stereo Comp.
TEST CLSTK CRPZM CLSTK CRPZM data Complex.

BASE 85.3% 18.6% 36.9% 76.5% no low

EQUAL N/A 38.3% 50.9% 76.5% no low

PSUB N/A 38.6% 70.6% 70.1% no low

MSUB N/A 63.6% 71.7% 71.3% no low

MMSE1 N/A 48.7% 68.7% 71.4% yes low

EQ+MMSE1 N/A 61.4% 75.8% 74.3% yes low

EQ+MSUB N/A 62.1% 73.7% 71.4% yes low

MMSEN N/A 66.4% 75.5% 72.3% yes low

SDCN N/A 67.2% 76.4% 75.5% yes low

FCDCN N/A 73.1% 79.3% 75.8% yes low

ISDCN 84.8% 62.1% 71.4% 72.4% no low

CDCN 85.3% 74.9% 73.7% 77.9% no medium

Table 8-1: Performance of different normalization algorithms.

The algorithms are the following:

• BASE: Baseline case, no processing (See Chapter 2).

• EQUAL: The CRPZM speech is equalized by adding a fixed cepstral vector
that is the difference between the average speech for both CLSTK and
CRPZM (See Chapter 3).

• PSUB: The power spectral subtraction rule is applied to the CRPZM speech
(See Chapter 3).
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• MMSE1: The frequency bands in the CRPZM speech are transformed
according to a curve that minimizes the squared error between CLSTK and
CRPZM (See Chapter 3).

• MSUB: Magnitude spectral subtraction with under and over-subtraction.  is
applied to the CRPZM speech (See Chapter 3).

• EQ+MMSE1: Cascade of EQUAL and MMSE1 for the CRPZM speech (See
Chapter 3).

• EQ+MSUB: Cascade of EQUAL and MSUB for the CRPZM speech (See
Chapter 3).

• MMSEN: Each frequency band in the CRPZM speech is transformed with a
different curve so that the squared error between the CLSTK and CRPZM is
minimized (See Chapter 4).

• SDCN: The SDCN algorithm is applied to the CRPZM speech by
transforming every cepstral component differently depending on the
instantaneous SNR. The goal is to minimize the squared error between
CLSTK and CRPZM (See Chapter 4).

• FCDCN: The FCDCN algorithm is applied to the CRPZM speech with a
different correction vector for every instantaneous SNR and codeword.
Again the goal is to minimize the squared error between CLSTK and
CRPZM speech (See Chapter 6).

• ISDCN: The ISDCN algorithm is applied to both CLSTK and CRPZM by
estimating directly the noise and equalization vector (See Chapter 6).

• CDCN: The CDCN algorithm is applied to both CLSTK and CRPZM by
estimating directly the noise and equalization vector (See Chapter 5).

Since we are mostly concerned with the performance when the system is trained
with the CLSTK speech, we show in Figures 8-1, 8-2 and 8-3 the word accuracy of the
system trained on the CLSTK and tested on the CRPZM speech for the case of
algorithms that attempt independent compensation for noise and spectral tilt, algorithms
that do independent versus joint compensation and algorithms that operate in the spectral
versus the cepstral domain.

Figure 8-1 shows different compensation schemes in the frequency domain that
combat the linear filtering (EQUAL) or additive noise (PSUB, MMSE1, MSUB). MSUB
is the one with highest accuracy of all of them.  However, it is still far from the accuracy
obtained when the system is trained and tested on the CRPZM microphone.

Figure 8-2 shows a comparison of the performance of algorithms that attempt an
independent compensation (cascade of equalization EQUAL and noise suppression
MMSE1 and MSUB) and a joint compensation for noise and filtering (MMSEN) in the
frequency domain. We note that the MMSEN algorithm, by using a different
transformation curve per frequency, deals better with the colored noise present in the
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Figure 8-1: Independent compensation for noise and filtering in the
spectral domain. Comparison of the baseline performance (BASE),
cepstral equalization (EQUAL),  Power Spectral Subtraction (PSUB),
Minimum Mean Squared Error with one curve for all frequencies
(MMSE1) and Magnitude Spectral Subtraction (MSUB) when trained on
the CLSTK microphone and tested on the CRPZM. The broken line
represents the word accuracy of the system trained and tested on the
CRPZM.
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Figure 8-2: Comparison of algorithms that perform independent
compensation for both noise and filtering (EQ+MMSE1, EQ+MSUB)
versus an algorithm that  performs joint compensation for noise and
filtering (MMSEN) in the spectral  domain. The Figure shows the word
accuracy of SPHINX when trained on the CLSTK microphone and tested
on the CRPZM. The broken line represents the word accuracy of the
system trained and tested on the CRPZM.

CRPZM recordings. Also, the performance of the MMSEN algorithm is higher than that
of the cascade of equalization EQUAL and noise suppression MMSE1, with this
difference being statistically significant.
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Figure 8-3: Comparison of the performance of algorithms in the spectral
domain (MMSEN) and the cepstral domain (SDCN,FCDCN). All these
algorithms perform joint compensation for noise and filtering but they
also require stereo data. MMSEN uses a minimum mean squared error
criterion with one transformation curve per frequency component, and it
is described in Chapter 4. SDCN, SNR-Dependent Cepstral
Normalization , and the FCDCN, Fixed Codeword-Dependent Cepstral
Normalization are described in Chapters  4 and 6 respectively. SPHINX
was trained on the CLSTK microphone and tested on the CRPZM. The
broken line represents the word accuracy of the system trained and tested
on the CRPZM.
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Figure 8-4: Comparison of algorithms that adapt to new acoustical
environments (ISDCN and CDCN) algorithms when trained on the
CLSTK microphone and tested on the CRPZM. BASE represents no
processing, ISDCN is the Interpolated SNR-Dependent Cepstral
Normalization described  in Chapter 6 and CDCN is the Codeword-
Dependent Cepstral Normalization described in Chapter 5. ISDCN and
CDCN perform also joint  compensation for noise and filtering. The
broken line represents  the word accuracy of the system trained and tested
on the CRPZM.
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Figure 8-3 shows a comparison of our best algorithm operating in the frequency
domain (MMSEN) and the algorithms derived in the cepstral domain (SDCN, FCDCN).
All three algorithms perform joint compensation for noise and filtering. The SDCN
algorithm performs at the same level than the MMSEN algorithm but it is simpler
computationally, as it only requires to compensate the first two cepstral components. The
FCDCN on the other hand performs substantially better than both the MMSEN and the
SDCN algorithms as the compensation vector is codeword-dependent.

Figure 8-4 shows the performance of ISDCN and CDCN as algorithms that adapt to
new acoustical environments. Both of them operate in the cepstral domain and perform
joint compensation for noise and filtering.  As can be seen, use of the CDCN algorithm
brings the accuracy of the system when trained on the CLSTK and tested on the CRPZM
to the level obtained when the system is trained and tested on the CRPZM.
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Conclusions9
In this dissertation we have addressed the problem of building speech recognition

systems that are robust to changes in the acoustical environment.  With the development
of large-vocabulary continuous-speech speaker-independent recognition systems like
SPHINX, three of the major problems in speech recognition have been solved. However,
for unconstrained speech recognition we need to build systems that will work for
ungrammatical spontaneous speech, speakers with different dialects, and in real
acoustical environments.

Not only have we learned many lessons through the course of this dissertation about
the problems in environment independence, but we have also provided some solutions
that can be used in practice.

9.1. Contributions

The major contribution of this work is to show that an increased robustness to
changes in the environment can be achieved. Use of our algorithms on a system trained
on clean speech brings the performance when testing on a given environment to at least
the level obtained when the system was trained and tested on that particular environment,
and this can be accomplished without the need for retraining on data from the new
environment. When a signal is corrupted by noise some information is inevitably lost.
While we have not overcome the degradation present in noisy speech in our work, we
believe that the algorithms described provide a step in the right direction.

We have proposed specific algorithms that adapt to new acoustical environments
without the need for retraining. The CDCN, Codeword-Dependent Cepstral
Normalization estimates the noise and equalization cepstral vectors that maximizes the
probability of an ensemble of input cepstral frames. The ISDCN, Interpolated SNR-
Dependent Cepstral Normalization estimates the environmental parameters by
minimizing the accumulated distortion in the vector quantizer. The recognition accuracy
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when testing on speech recorded with a desk-mounted microphone on a system trained on
speech recorded with a headset-mounted microphone is essentially the same obtained
when the system is trained and tested with the recordings from the desk-mounted
microphone.

We have shown that joint compensation for noise and spectral equalization is more
effective than a combination of independent compensators. The correction vectors are an
interpolating function between the equalization vector at high SNR and the noise vector
at low SNR. Conditioning on the instantaneous SNR can provide processing benefits
while retaining simplicity. We have identified instantaneous SNR as the primary variable
in the normalization procedure.

The use of a universal codebook is the main tool that allows us to track deviations
from a standard acoustical ambience by finding the parameters of the transformation that
best "matches" different acoustic spaces.  Therefore, a universal codebook that is trained
once and for all can be used instead of training different codebooks for different
applications. Vocabulary-independent models (Hon and Lee [35]) will benefit from this
approach, as those models need to be environment-independent as well.

We have shown that the cepstral domain is a viable parameter domain for noise
suppression. The advantage of performing normalization in the cepstral domain is that we
can integrate it better with the rest of a system like SPHINX that uses cepstral parameters
as feature vectors.

The use of the EM algorithm as a tool for obtaining maximum likelihood estimates
has been essential to the robust estimation of parameters used in this dissertation.

We have shown that ISDCN and FCDCN can be implemented by modifying the VQ
stage, resulting in an algorithm that is very efficient computationally.

We have introduced the use of stereo databases for evaluation purposes.  While it is
difficult to compare the performance of algorithms when there is not a standard database
that all researchers use, some criteria can be established that will help to make
comparisons. We proposed the use of two reference figures: the error rate when the
system is trained and tested on clean speech and the error rate when the system is trained
and tested on the noisy speech. These references will serve as indicators of the
performance of our algorithms when the system is trained on clean speech and tested on
noisy speech.

We have also introduced the use of speech and noise spectral averages as a more
informative feature than just SNR as a characterization of an environment. When speech
can be passed through a linear filter and the noise is not white, SNR measurements can
provide a misleading indication of how a speech recognizer will perform if no
normalization is accomplished.
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We have proposed a method for frequency normalization via variable warping of the
frequency axis. Although this is something that many researchers have attempted, it is not
an easy task because the frequency alignment is very unconstrained. The use of the
bilinear transform with only one free parameter has proven to be effective in normalizing
the the nominal resonance frequencies of different speakers.

9.2. Suggestions for Future Work

Even though we have taken a big step forward in being able to transfer speech
recognition systems from the laboratory to the real world, the field of environment-
independent recognition is still in its infancy. In this section we describe some future
research that appears to be worthwhile.

One of the problems with the ISDCN and CDCN algorithms is that obtaining
estimates of the equalization vector via maximum likelihood does not use any a priori
information that may be available about the environment.  Although the estimates are
unbiased, they may exhibit a large variance if not enough samples are used. We have
observed that in some cases, these estimates may not represent legitimate equalization
vectors. A topic to investigate in future research is the use of a priori information on the
distribution of the equalization vector. One possibility would be to include a small
codebook of different environments. The highly accurate FCDCN algorithm could be
used with different sets of correction vectors depending on which environment is
selected. As always, the criterion could still be minimization of the VQ distortion.

The use of a different criterion for the parameter selection should also be considered
in future research. In this dissertation we have used the minimization of the VQ distortion
as the criterion to estimate all the vectors. It may well be the case, however, that a
criterion such as maximization of the probability of the utterance or minimization of the
probability of error could lead to better performance. Although minimization of the
probability of error would be the goal of any speech recognition system, it would be
extremely difficult to use as the basis for a distortion metric.  Maximization of the
probability of the utterance, however, is a plausible alternative and it is the one used by
HMMs. In other words, we could leave the decision of environmental parameters to the
HMM search, so that we are not penalized by early decisions. Although there could be a
small improvement in performance if this is done at the VQ stage by using tied mixtures
or semi-continuous HMM models (Huang et al. [36]), we believe that most of the benefit
would come from a more accurate estimation of the environmental parameters.

We have found that all algorithms described in this dissertation can potentially
perform rather well for high SNRs, and that the problems arise when frames with low
SNR are processed. For those frames, the algorithms select just one "cleaned" vector
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whereas there will be several possible that have been masked by the noise. Selecting one
of them and not including the other alternatives is a serious flaw of the present
approaches, as it would be better to let the HMM search makes its decision with all
information available. One way of doing this would be rather than using discrete models
to use semi-continuous ones in which the relative probabilities of different codewords are
passed to the HMM search. Another possible alternative would be to use some sort
phone-dependent rather than codeword-dependent correction vectors. Specifically, we
propose the use of different sets of correction vectors per phone (using perhaps about 40
phones). Many different correction vectors and VQ labels would be obtained for every
frame of speech depending on what phone was hypothesized. The HMM search would
select the most likely phone string.

A longer time frame can help in the compensation process. In this dissertation,
compensation was based only on knowledge of the current frame, while it is clear that
using information on the adjacent frames will benefit the accuracy of the estimate. A
possible extension of the techniques developed here would be to incorporate the same
processing to differential parameters.

The algorithms described in this dissertation could also be used for speech
enhancement. The CDCN algorithm could be used to obtain a better spectral estimate of
the clean speech than that of conventional noise suppression algorithms. Wiener filtering
could then be used to enhance the signal.

More work remains to be done on the problem of real-time implementation.  The
algorithms described in this dissertation aim to normalize long-term characteristics of the
speech signal in addition to the short-term ones used by most systems. Allowing for a
slowly changing environment requires more research on the rate of change and the
mechanisms for updating. In this work we have shown that using the previous utterance
as a unit is a reasonable choice, but that the use of longer estimation times will yield
more accurate estimates.

This dissertation has not explicitly addressed the problem of interference by additive
non-stationary noise.  We are optimistic that the technique of noise-word modeling
described by (Ward [81]) will provide some additional improvement for speech collected
in the presence of non-stationary interference sources such as slamming doors, ringing
telephones, etc.  This use of noise-word models is a complementary technique to the
algorithms described in this dissertation.

It is necessary to investigate the behavior of many different microphones and
environments so that more general conclusions can be drawn. It would also be desirable
to test these algorithms with telephone speech.
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The absence of a standard database for evaluation of algorithms is definitely not
benefiting the field of environment-independent recognition.  The continuous speech
recognition community has benefited from the existence of common tasks and databases
so that direct comparison between algorithms is more straightforward. Our hope is that in
the near future similar efforts can be directed toward the development of standard
databases for environment-independent recognition.
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Appendix A
Glossary

A.1. Time Domain

x[m] The clean signal
y[m] The noisy signal
h[m] The filter’s impulse response
n[m] The noise process

A.2. Frequency Domain

X (ω) Power Spectral Density of clean signal at frame ii
Y (ω) Power Spectral Density of noisy signal at frame ii
N(ω) Power Spectral Density of the noise

2Q(ω) = |H(ω) | Magnitude squared of the filter’s frequency response
X (ω) = ln X (ω) Log-spectrum of the clean signal at frame ii i
Y (ω) = ln Y (ω) Log-spectrum of the noisy at frame ii i
N(ω) = ln N(ω) Log-spectrum of the noise
Q(ω) = ln Q(ω) Equalization transfer function

X (ω) = X (ω) − N (ω) Normalized log-spectrum of the clean signal at frame ii i i

Y (ω) = Y (ω) − N (ω) Normalized log-spectrum of the noisy signal at frame ii i i

A.3. Cepstral Domain

x Cepstral vector of the clean signal at frame ii
y Cepstral vector of the noisy signal at frame ii
z Observed cepstral vector at frame ii
Z Collection of cepstral vectors for an utterance
n Cepstral vector of the noise
q Cepstral equalization vector

thr[k] Correction vector r for the k codeword
ths[k] Correction vector s for the k codeword

w(SNR) Correction vector w as a function of SNR
thc[k] Vector of the k codeword
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A.4. Indices

The following indices refer to

i Frames in an utterance
k Codewords in codebook
j Iteration number in iterative algorithms

A.5. Probabilistic Models

S The word string
ν The noise model
ξ The speech model

thP[k] A priori probability for k mixture component
thΣ Covariance matrix of k mixture componentk
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Appendix B
Signal Processing in SPHINX

The speech signal x[m] is digitized at a sampling rate of 16 kHz and multiplied by a
Hamming window h[m] of N = 320 samples (20 ms) every M = 160 samples (10 ms).

2πm
h[m] = 0.54 − 0.46cos ( ) 0 ≤ m≤ N− 1 (B.1)

N− 1
x [m] = x[iM + m]h[m] 0 ≤ m ≤ N− 1 (B.2)i

where x [m] represents frame i. After this, a high-pass preemphasis filter is appliedi

y [m] = x [m] − 0.97x [m− 1] (B.3)i i i

The preemphasized windowed signal y [m] is used to compute p = 14 autocorrelationi

coefficients
N−1−k

R[k] = y [m] y [m + k] 0 ≤ k ≤ p (B.4)∑ i i
m=0

that are multiplied by a pascal lag window with τ = 1500

τ− k +1( )k
v[k] = (B.5)

τ + k − 1( )k

that has the form in Figure B-1.

k (samples)
-80 -60 -40 -20 0 20 40 60 80

ν[
k]

0.2
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0.6

0.8

1.0

0.0

Figure B-1: Pascal window for τ = 1500

The lag window will suppress the harmonics that will appear at multiples of the
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pitch period, which can be as low as 32 samples at 16 kHz for a high pitched female
voice with a fundamental frequency of 500 Hz.  The Levinson-Durbin recursion (Rabiner
and Schafer [68]) is used to obtain the LPC parameters from the windowed
autocorrelation coefficients

(0)E = R[0] (B.6)

i−1
(i−1)R[i] − a R[i−j]∑ j

j=1k = 1≤ i ≤ p (B.7)i (i−1)E

(i)a = k (B.8)ii

(i) (i−1) (i−1)a = a − k a 1≤ j ≤ i−1 (B.9)ij j i−j

2(i) (i−1)E = (1 − k ) E (B.10)i

Equations (B.7) - (B.10) are solved recursively for i = 1,2, . . . , p with the final solution
being given by

(p)a = a 1 ≤ j ≤ p (B.11)j j

The LPC parameters define an all-pole system

G
H(z) = (B.12)

p
−k1 − a z∑ k

k=1

whose logarithm can be expressed as a Fourier series with the complex cepstrum. Since it
is obtained from an LPC analysis, this is called the LPC-cepstrum.

∞
−nln H(z) = c[n]z (B.13)∑

n=0

Atal [2] showed that taking the logarithm of (B.12), equating it to (B.13) and taking
−1derivatives with respect to z leads to the following recursion for c[n]

c[0] = ln (G)

n−1 k
c[n] = a + ( ) c[k] a 1 ≤ n (B.14)∑n n−knk=1

Even though there is an infinite number of cepstrum coefficients, we truncated the
sequence to 32. Finally a bilinear transform with warping parameter α = 0.6 is applied as
described in Appendix C, obtaining 12 frequency-warped LPC-cepstral coefficients.
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Appendix C
The Bilinear Transform

The transformation defined by
−1z − α−1z = (C.1)new −11 − αz

for 0< α<1 belongs to the class of so-called bilinear transforms. It is a mapping in the
complex plane that maps the unit circle onto itself. The frequency transformation is

jω jωobtained by making the substitution z = e and z = e new:new

αsin (ω)ω = ω + 2arctg [ ] (C.2)new 1 − αcos (ω)

An algorithm to perform this frequency warping transformation on a time signal is
described by Oppenheim and Johnson [61]. If we assume a causal finite time sequence
c[n], with c[n]=0 for n<0and n> p, the warped sequence c [n] will contain an infinitew

number of coefficients that can be obtained by passing the reversed input sequence
through a cascade of filters and sampling their outputs at time n=0 as shown in Figure
C-1.

1-az
-1

 1
_____

 1-az
 -1

______
(1-a )z

2  -1

w
0

w
1

1-az
-1

_____
 z  - a
  -1

w
2

w
3

  n=0   n=0

1-az
-1

_____
 z - a

-1

  n=0  n=0

   c[-n]

Figure C-1: Bilinear transform algorithm as a linear filtering operation.
By having as the input to this stage of filters a time-reversed cepstrum
sequence, we can obtain the corresponding warped coefficients as the
outputs of these filters at time n = 0.

This algorithm is used by SPHINX to do the warping transformation on the cepstral
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28coefficients. We have to use the complex cepstrum rather than the real cepstrum
because the sequence c[n] has to be causal to use Oppenheim’s algorithm.

We have noticed that if only p coefficients are retained for c [n], we can relate thew

input/output relationship by a linear transformation of the form

c = L(α) c (C.3)w

where c and c are the input and output vectors of length p and L is the warping matrix.w

Nocerino et al. [59] also pointed out that a general warping transformation is equivalent
to a matrix multiplication.  We see that every coefficient in the warped sequence c [n] isw

a linear combination of the coefficients of the original sequence c[n]. If the warping
parameter α is small, it can be shown that neglecting all powers of α greater than 1, the
finite length sequence {c[n], n=0,1, . . . , p} is transformed as

c [n] = − (n − 1) αc[n − 1] + c[n] + (n + 1) αc[n +1] (C.4)w

C.1. Cascade of Warping Stages

We now show that the application of two stages of the bilinear transform with
warping parameters α and α is equivalent to applying one stage of the bilinear1 2

transform with α = (α + α / (1 + α α ).1 2 1 2

Let z be the complex variable in the original and s and u the complex variable after
one and two bilinear transforms.  The relationship between them is

−1z − α1−1s = (C.5)
−11 − α z1

−1s − α2−1u = (C.6)
−11 − α s2

Combining (C.5) and (C.6) we obtain
−1z − α1 − α2−1 −1 −11 − α z z (1 + α α ) − (α + α ) z − α1 1 2 1 2−1u = = = (C.7)

−1 −1 −1z − α (1 + α α ) − (α + α )z 1 − αz1 1 2 1 21 − α2 −11 − α z1

where the new α can be expressed as

α + α1 2α = (C.8)
1 + α α1 2

28The real cepstrum is the even part of the complex cepstrum. The interested reader is referred to
Rabiner and Schafer [68] for details.
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Appendix D
Spectral Estimation Issues

In this appendix we discuss the characterization of the LPC-cepstrum spectral
estimator as a zero-mean gaussian random vector. The use of a finite data sample and
possible inadequacies of the model will not make possible to obtain the exact PSD
(Power Spectral Density) of the speech signal.

The PSD of a random process cannot be inferred from a sample function of the
process. We know that if the random process is ergodic, an infinite sample function has
all the information required to obtain the PSD of that process. Since speech is a non-
stationary random process, the spectral estimation techniques used are based on quasi-
stationarity or short-term analysis. The data window used in SPHINX is 320 points, which
is short enough as to assume stationarity and long enough as to yield reasonable
estimates.

The statistics of the LPC parameters and the AR Power Spectral Density Estimator
are not available even for an analysis of order 1. Kay [43] showed that the spectrum of
the LPC estimator is asymptotically gaussian (when both the number of points and the
analysis order tend to infinity). Furthermore, the log-spectral estimate has a variance
independent of the mean value.

By using an LPC analysis, we have made the assumption that the speech signal can
be characterized as an AR process. Since for instance, nasals present zeroes as well as
poles, there will be some inadequacies by using the LPC-cepstrum.

We assume that the frequency-warped LPC-cepstrum z computed by the SPHINX

front-end is a noisy estimate of the true Power Cepstral Density y. In the absence of
exact statistics we modeled the pdf p ( z / y) as a gaussian random vector N ( y,Γ ). Wez

have confirmed the validity of the gaussian assumption empirically for the frequency-
warped LPC-cepstrum in SPHINX.
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Appendix E
MMSE Estimation in the CDCN Algorithm

In this section we derive the expressions for the conditional MMSE estimate
E[x |z, n,q], as well as a gaussian decomposition for the densities involved.

E.1. The Conditional Probability in the CDCN Algorithm

Let’s express the conditional probability of the clean vector x given the observation
z and the environmental parameters n and q as a function of the mixture k:

K−1

p (x |z, n,q) = p (x, k |z, n,q) (E.1)∑
k=0

where each term in the sum is according to Bayes Rule

p (z, x,k |n,q)
p (x, k |z, n,q) = (E.2)

p (z |n,q)

whose numerator can be expressed as

p (z, x,k |n,q) = p (z |x,k, n,q) p ( x,k |n,q) (E.3)

Since the distribution of x does not depend on the noise nor the filter

p ( x,k |n,q) = p ( x,k) = P[k] p( x |k) (E.4)

where p(x |k) is the mixture k and P[k] is the a priori probability for mixture k.
Combining (E.3) and (E.4), the numerator in (E.2) can be expressed as

p (z, x,k |n,q) = P[k] p (z |x,k, n,q) p( x |k) (E.5)

with the denominator in (E.2) having the form
K−1

p (z |n,q) = p (z, x,k |n,q) dx (E.6)∑ ∫
k=0

Combining Equations (E.1), (E.2), (E.5) and (E.6) we obtain the following expression for
the a posteriori probability:

K−1

P[k] p ( z |x,n,q,k) p ( x |k) dx∑
k=0p (x| z, n,q) = (E.7)

K−1

P[k] p ( z |x,n,q,k) p ( x |k) dx∑ ∫
k=0
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With the a posteriori probability (E.7) we can derive the MMSE estimate for x as:
K−1

P[k] x p ( z |x,n,q,k) p ( x |k) dx∑ ∫∧ k=0x = E [x |z, n,q] = (E.8)MMSE K−1

P[k] p ( z |x,n,q,k) p ( x |k) dx∑ ∫
k=0

thwhere p (x |k) is the k mixture component and p (z |x,k, n,q) is the the pdf of the spectral
estimator p (z |y), both assumed to be gaussian random vectors.

E.2. Gaussian Decomposition

In this section we derive a decomposition for the product of gaussians

1 1 −1Tp ( z |x,n,q,k) p ( x |k) = exp[− (x − c[k]) Σ (x − c[k])]k1/2 2α|Σ |k
1 1 −1T+ exp[− (z − x− q− r(x)) Γ (z − x− q− r(x))] (E.9)

1/2 2α|Γ |
that is more convenient for integration of (E.8). By grouping the terms that depend on x
in the exponent of (E.9) we obtain an alternate expression in terms of vector b(x, k) and
the scalar d(x, k)

−1 −1T T(z − x− q− r(x)) Γ (z − x− q− r(x)) + (x − c[k]) Σ (x − c[k])k
−1 −1T= (x −b(x, k)) (Γ + Σ ) (x −b(x, k)) + d(x, k) (E.10)k

By equating the terms in x in (E.10) we obtain
−1 −1−1 −1Γ (z − q− r(x)) + Σ c[k] = (Γ + Σ ) b(x, k) (E.11)k k

Also equating the zero order terms in (E.10), we get an expression for d(x, k) of the form
−1Td(x, k) = (z − q− r(x)) Γ (z − q− r(x))

−1−1 −1T+ c[k] Σ c[k] − b(x, k) (Γ + Σ ) b(x, k) (E.12)k k

We will now try to obtain closed-form expressions for b(x, k) and d(x, k) by using the
following matrix identities:

−1 −1 −1 −1 −1−1 −1(Γ + Σ ) Γ = (Γ (Γ + Σ ))k k
−1 −1 −1−1 −1= (I + ΓΣ ) = ((Σ + Γ) Σ ) = Σ (Σ + Γ) (E.13)k k kk k

and similarly
−1 −1 −1−1 −1(Γ + Σ ) Σ = Γ (Σ + Γ) (E.14)kk k

We get an expression for b(x, k) by combining (E.11), (E.13) and (E.14):
−1 −1b(x, k) = Σ (Σ + Γ) (z − q− r(x)) + Γ (Σ + Γ) c[k] (E.15)k k k

Combining (E.11) and (E.15), we obtain
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−1 −1 −1−1T Tb(x, k) (Γ + Σ ) b(x, k) = (z − q− r(x)) Γ Σ (Γ + Σ ) (z − q− r(x))k kk

−1 −1−1T T+ c [k] Σ Γ (Σ + Γ) c[k] + 2 c [k] (Σ + Γ) (z − q− r(x)) (E.16)k kk

By using the following matrix identities we obtain:
−1 −1 −1 −1 −1Γ − Γ Σ (Γ + Σ ) = Γ (I − Σ (Σ + Γ) )k k k k

−1 −1 −1
= Γ ((Σ + Γ) − Σ ) (Σ + Γ) = (Σ + Γ) (E.17)k k k k

and similarly
−1 −1−1 −1Σ − Σ Γ (Γ + Σ ) = (Σ + Γ) (E.18)k kk k

The solution for d(x, k) using (E.12), (E.16), (E.17) and (E.18) is:
−1Td(x, k) = (z − q − r(x) − c[k]) (Γ + Σ ) (z − q − r(x) − c[k]) (E.19)k

The relationship between the determinants of the covariance matrices is:
−1 −1 −1 −1 −1−1| Γ + Σ | = | Γ (Γ + Σ ) Σ | = | Γ | |Γ + Σ | |Σ | (E.20)k k k kk

or alternatively
1/2 1/2 −1 −1 1/2 1/2−1| Γ | |Σ | = | (Γ + Σ ) | | Γ + Σ | (E.21)k kk

so, by using (E.10), (E.15), (E.19) and (E.21), the product of gaussians in (E.8) has the
form:

−1 −1−1p ( z |x,n,q,k) p ( x |k) = N (b(x, k), (Γ + Σ ) ) N (q + r(x) + c[k], Γ + Σ ) (E.22)x z kk

and this concludes our decomposition. Integrating (E.22) with respect to x is not possible
since b(x, k) is a function of x through r(x). If we make the approximation that
r(x) = r(c ) = r[k] is constant for every mixture we can obtain easilyk

p ( z |x,n,q,k) p ( x |k) dx = N (q + r[k] + c[k], Γ + Σ ) (E.23)z k∫
xp ( z |x,n,q,k) p ( x |k) dx = b[k] N (q + r[k] + c[k], Γ + Σ ) (E.24)z k∫

with b[k] being given by
−1 −1b[k] = Σ (Σ + Γ) (z − q− r[k]) + Γ (Σ + Γ) c[k] (E.25)k k k

Equations (E.23), (E.24) and (E.25) will be used in the derivation of the CDCN
algorithm.
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Appendix F
Maximum Likelihood via the EM Algorithm

The EM (Estimate-Maximize) algorithm is a general method to solve maximum
likelihood problems with incomplete data. It was developed by Laird et al. [44]. First we
present the Jensen’s inequality that is used in deriving the EM algorithm.

F.1. Jensen’s Inequality

Jensen’s inequality deals with expectations of convex functions. In this subsection
we will derive it for the specific case of the logarithm which is of interest for the EM
algorithm.

f(y) = ln (y)

f(y) = y - 1

y
0.5 1.0 1.5 2.0 2.5

f(
y)

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

0.0

Figure F-1: Functions f (y)= y − 1 and f (y)= ln (y).

It is clear from inspection of Figure F-1 that

y − 1 ≥ ln y, ∀y (F.1)

Let f (x) and g (x) be two legitimate pdfs so thatX X
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f (x) dx = g (x) dx = 1 (F.2)X X∫ ∫

or after some manipulation

g (x)X0 = [ f (x) − g (x)] dx = f (x) [ − 1] dx (F.3)X X X∫ ∫ f (x)X

for all vectors x whose f (x) ≠ 0. For those vectors we have thatX

g (x)Xy = ≥ 0 (F.4)
f (x)X

since both g (x) ≥ 0 and f (x) ≥ 0 for two legitimate pdfs. Substituting (F.4) in (F.1) weX X

obtain

g (x) g (x)X X− 1 ≥ ln (F.5)
f (x) f (x)X X

Since f (x) ≥ 0, multiplying both sides of (F.5) by f (x) maintains the inequality sign,X X

yielding:

g (x) g (x)X Xf (x) [ − 1] ≥ f (x) ln (F.6)X Xf (x) f (x)X X

that after integration with respect to x combined with (F.3) gives:

g (x)X0 ≥ f (x) ln dx (F.7)X∫ f (x)X

or finally:

f (x) ln f (x) dx ≥ f (x) ln g (x) dx (F.8)X X X X∫ ∫
which is the version of the Jensen’s inequality that we will use here.

F.2. The EM Algorithm

The derivation of the EM algorithm presented here is a modification of the one used
by Feder and Weinstein [20]. Considerably more detail and proofs are in the paper by
Laird et al. [44].

Let’s define Z as the observed data, X as the unobserved data and θ a parameter
vector. We can express the densities as

f (x, z; θ) = f (x; θ) f (z; θ) (F.9)XZ X/Z=z Z

where f (x, z; θ) is the joint pdf of the complete data, f (x; θ) is the conditional pdf ofXZ X/Z=z

the unobserved data X given the observed data z and f (z; θ) is the pdf of the observedZ

data z.
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Now taking logarithms of (F.9) we can obtain:

ln f (z; θ) = ln f (x, z; θ) − ln f (x; θ) (F.10)Z XZ X/Z=z

Let’s take conditional expectations given Z= z and the parameter θ′ on (F.10):

ln f (z; θ) = E{ ln f (x, z; θ) | Z= z; θ′} − E{ ln f (x; θ) | Z= z; θ′} (F.11)Z XZ X/Z=z

and define for convenience the following quantities:

L(θ) = ln f (z; θ) (F.12)Z

U(θ,θ′) = E{ ln f (x, z; θ) | Z= z; θ′} (F.13)XZ

V(θ,θ′) = E{ ln f (x; θ) | Z= z; θ′} (F.14)X/Z=z

so that (F.11) can be written in a compact form as:

L(θ) = U(θ,θ′) − V(θ,θ′) (F.15)

Applying the Jensen’s inequality of (F.8) to (F.14) it is clear that

V(θ,θ′) ≤ V(θ′,θ′) (F.16)

Hence if we find another value of the parameter vector θ that makes

U(θ,θ′) > U(θ′,θ′) (F.17)

then a combination of (F.15), (F.16) and (F.17) lead to

L(θ) > L(θ′) (F.18)

With these relationships we have converted the problem of maximizing the log-
likelihood L(θ) to the one of maximizing the function U(θ,θ′) defined by (F.13). The EM

∧ ∧
(0) (n)algorithm starts with an initial estimate for θ , and denote θ the current estimate of θ

after n iterations. The iteration can be described in two steps:
∧

(n)1. Estimate U(θ, θ )
∧ ∧

(n) (n+1)2. Maximize U(θ, θ ) to obtain θ

It is proved in (Laird et al. [44] that if U(θ,θ′) is continuous in both θ and θ′, the
algorithm converges to stationary point of the log-likelihood function where the
maximization ensures that each iteration increases the likelihood. As in any "hill-
climbing" method, the algorithm may converge to a local maximum rather than to the
global maximum.
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Appendix G
ML Estimation of Noise and Spectral Tilt

In this appendix we apply the EM algorithm described in Appendix F to the problem
of maximum likelihood estimation of the noise n and spectral equalization q given the set
of observations {z ; i =0,1, . . . , N−1}. The unobserved data will be the mixture k andi

the correction vectors {r(x )}. With these definitions, the function U(n,q,n′,q′) definedi

in (F.13) has the form:
N−1 K−1

U = p(x ,r(x ), k |z ,n′,q′) ln p(x ,r(x ), k, z |n,q) dx dr(x ) (G.1)∑ ∑ i i i i i i i i∫
i=0 k=0

where the first term in the integral has the form

p(z ,x ,r(x ), k |n′,q′)i i ip(x ,r(x ), k |z ,n′,q′) = (G.2)i i i p(z |n′,q′)i

whose numerator can be expressed as

p(z ,x ,r(x ), k |n′,q′) = p(z |x ,r(x ), k, n′,q′)p(r(x ) | x ,k, n′,q′)p(x ,k |n′,q′)i i i i i i i i i

= p(z |x ,r(x ), k, n′,q′)δ(r(x ) − r′(x )) p(x |k) P [k] (G.3)i i i i i i i

by using the facts that the correction vector given n′, q′, x and mixture k is r′(x ).i i

Integration on x and r(x ), and summation on k in Equation (G.3) yields the denominatori i

in (G.2):
K−1

p(z |n′,q′) = P [k] p(z |x ,r′(x ), k, n′,q′)p(x |k) dx (G.4)∑i i i i i i i∫
k=0

So that (G.1) takes on the new form
K−1

P [k] p(z |x ,r′(x ), k |n′,q′)p(x |k) ln p(z ,x ,r′(x ), k |n,q) dx∑ i i i i i i i i∫N−1
k=0U = (G.5)∑ K−1

i=0 P [k] p(z |x ,r′(x ), k |n′,q′)p(x |k) dx∑ i i i i i i∫
k=0

Also, the term with the logarithm in (G.5) can be expressed as

p(z ,x ,r′(x ), k |n,q) = p(z |x ,r′(x ), k, n,q) p(x |k) P [k] (G.6)i i i i i i i i

where

1 −1Tln p(z |x ,r′(x ), k, n,q) = α′ − (z − q − x − r′(x )) C (z − q − x − r′(x )) (G.7)i i i i i i i i ik2

or alternatively
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1 −1Tln p(z |x ,r′(x ), k, n,q) = α′ − (z − n − s′(x )) C (z − n − s′(x )) (G.8)i i i i i i ik2

where we have used the s corrections instead of the r as they are uniquely related to each
other. Taking logarithms, partial derivatives with respect to q in (G.6) and using (G.7)
and (G.8) it can be obtained:

δ −1ln p(z ,x ,r′(x ), k |n,q) = − C (z − q − x − r′(x )) (G.9)i i i i i ikδq

δ −1ln p(z ,x ,r′(x ), k |n,q) = − C (z − n − s′(x )) (G.10)i i i i ikδn

Now assuming that the component due to the mixture 0 does not depend on q, which is
reasonable if mixture 0 corresponds to the noise event:

δ ln p(z ,x ,r′(x ), 0 | n,q) = 0 (G.11)i i iδq

and combining (G.5) and (G.9) we obtain
K−1

−1P [k] p(z |x ,r′(x ), k |n′,q′)p(x |k) C (z − q − x − r′(x )) dx∑ i i i i i i i i ik∫N−1δU k=1= (G.12)∑ K−1δq i=0 P [k] p(z |x ,r′(x ), k |n′,q′)p(x |k) dx∑ i i i i i i∫
k=1

Making the derivative in (G.12) equal to zero and using again the approximation that the
correction vectors are constant within a cluster:

r′(x ) = r′[k] ∀i (G.13)i

the integrals can be approximated as done in Appendix E:
N−1 K−1

0 = f [k] (q + c[k] + r′[k] − z ) (G.14)∑ ∑ i i
i=0 k=1

where f [k] is given by:i

P [k]i exp( − d [k] / 2)i1/2|C |k k =0,1, . . . , K−1f [k] = (G.15)i {K−1 i =0,1, . . . , N−1P [l]i exp( − d [l] / 2)∑ i1/2|C |l=0 l

Similarly, assuming that only the component due to the mixture 0 depends on n:

δ ln p(z ,x ,r′(x ), k |n,q) = 0 ∀ k > 0 (G.16)i i iδn

an analogous expression can be derived for n:
N−1

0 = f [0] (n + s′[0] − z ) (G.17)∑ i i
i=0

Finally by setting s′[0] to 0 according to (4.11) for the mixture 0 representing the noise
event and solving (G.14) and (G.17), the ML estimates of n and q can be obtained as
follows:
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N−1

f [0] z∑ i i
∧ i=0n = (G.18)

N−1

f [0]∑ i
i=0

N−1 K−1

f [k] [z − c[k] − r′[k]]∑ ∑ i i
∧ i=0 k=1q = (G.19)

N−1 K−1

f [k]∑ ∑ i
i=0 k=1

Equations (G.18) and (G.19) give improved estimates of n and q, in the sense of a higher
likelihood.
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Appendix H
The Vocabulary and the Pronunciation Dictionary

A EY
AND EH N DD
APOSTROPHE AX P AA S T R OW F IY
APRIL EY P R L
AREA EH R IY AX
AUGUST AO G AX S TD
B B IY
C S IY
CODE K OW DD
D D IY
DECEMBER D IX S EH M B ER
E IY
EIGHT EY TD
EIGHTEEN EY T IY N
EIGHTEENTH EY T IY N TH
EIGHTH EY TH
EIGHTY EY DX IY
ELEVEN AX L EH V IH N
ELEVENTH AX L EH V IH N TH
ENTER EH N T ER
ERASE IX R EY S
F EH F
FEBRUARY F EH B Y UW EH R IY
FIFTEEN F IH F T IY N
FIFTEENTH F IH F T IY N TH
FIFTH F IH F TH
FIFTY F IH F T IY
FIRST F ER S TD
FIVE F AY V
FORTY F AO R DX IY
FOUR F AO R
FOURTEEN F AO R T IY N
FOURTH F AO R TH
G JH IY
GO G OW
H EY CH
HALF HH AE F
HALL HH AA L
HELP HH EH L PD
HUNDRED HH AH N D R AX DD
I AY
J JH EY
JANUARY JH AE N Y UW EH R IY
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JULY JH AX L AY
JUNE JH UW N
K K EY
L EH L
LANE L EY N
M EH M
MARCH M AA R CH
MAY M EY
MEMORY M EH M R IY
N EH N
NINE N AY N
NINETEEN N AY N T IY N
NINETY N AY N DX IY
NINTH N AY N TH
NO N OW
O OW
OCTOBER AA KD T OW B ER
OF AX V
OH OW
ONE W AH N
P P IY
Q K Y UW
R AA R
REPEAT R IX P IY TD
RUBOUT R AH B AW TD
S EH S
SECOND S EH K AX N DD
SEPTEMBER S EH PD T EH M B ER
SEVEN S EH V AX N
SEVENTEEN S EH V AX N T IY N
SEVENTH S EH V AX N TH
SEVENTY S EH V AX N DX IY
SIL SIL
SIX S IH K S
SIXTEEN S IH K S T IY N
SIXTEENTH S IH K S T IY N TH
SIXTH S IH K S TH
SIXTY S IH K S T IY
START S T AA R TD
STOP S T AA PD
T T IY
TEN T EH N
THIRD TH ER DD
THIRTIETH TH ER DX IY IX TH
THIRTY TH ER DX IY
THOUSAND TH AW Z AX N DD
THREE TH R IY
TWELFTH T W EH L F TH
TWELVE T W EH L V
TWENTIETH T W EH N IY IX TH
TWENTY T W EH N IY
TWO T UW
U Y UW
V V IY
W D AH B AH L Y UW
WEAN W IY N
X EH K S
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Y W AY
YES Y EH S
Z Z IY
ZERO Z IY R OW
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