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Abstract

We compare the diagnostic accuracy of three
diagnostic inference models: the simple
Bayes model, the multimembership Bayes
model, which is isomorphic to the parallel
combination function in the certainty-factor
model, and a model that incorporates the
noisy OR-gate interaction. The comparison
is done on 20 clinicopathological conference
(CPC) cases from the American Journal of
Medicine—challenging cases describing actu-
al patients often with multiple disorders. We
find that the distributions produced by the
noisy OR model agree most closely with the
gold-standard diagnoses, although substan-
tial differences exist between the distribu-
tions and the diagnoses. In addition, we find
that the multimembership Bayes model tend-
s to significantly overestimate the posterior
probabilities of diseases, whereas the simple
Bayes model tends to significantly underesti-
mate the posterior probabilities. Our result-
s suggest that additional work to refine the
noisy OR model for internal medicine will be
worthwhile.

1 INTRODUCTION

The development of practical models and inference al-
gorithms for diagnosing multiple faults using proba-
bilistic methods has been a long-standing challenge
to researchers (Shortliffe and Buchanan, 1975; Miller
et al., 1976; Reggia, 1983). An early model used
for probabilistic diagnosis was the simple Bayes mod-
el (Ledley and Lusted, 1959). The model facilitat-
ed tractable representation and inference, by making
strong assumptions about the domain. In particular,
the model consists of the assumptions that diseases are
mutually exclusive and exhaustive, and that findings
are conditionally independent, given the presence of
any disease.

In the early 1980s, Ben-Bassat developed a probabilis-

tic model, called the multimembership Bayes model
that relaxed the single-fault assumption (Ben-Bassat,
1980). The model includes the assumptions that dis-
eases are marginally independent, and that findings
are conditionally independent, given the presence or
the absence of any disease. The model is isomorphic
to the parallel combination function in MYCIN (Heck-
erman, 1985), an expert system for the diagnosis of
bacterial infection and meningitis (Shortliffe, 1974),
as well as the scoring scheme for Quick Medical Refer-
ence (QMR) (Heckerman and Miller, 1986), an expert
system for internal-medicine diagnosis (Miller et al.,
1986).

Several years ago, researchers developed an alternative
model of multiple-fault diagnosis, in which diseases are
marginally independent, findings are conditionally in-
dependent given that each disease is assigned the value
absent or present, and faults interact with a common
finding via a noisy OR-gate (Habbema and Hilden,
1981; Heckerman, 1989; Henrion, 1990). This mod-
el, which we will call the noisy OR model, offers an
improvement—at least in theory—over the multimem-
bership Bayes and simple Bayes models. Researcher-
s have successfully used the model to translate the
large QMR knowledge base (600 diseases, 4000 find-
ings, 40,000 disease–finding interactions) to a proba-
bilistic framework, creating a normative expert system
called QMR-DT (Shwe et al., 1991; Middleton et al.,
1991).

In this paper, we compare the diagnostic accuracy of
these three inference models in the domain of inter-
nal medicine. In particular, we evaluate the noisy OR
model for QMR-DT as well as the multimembership
Bayes and simple Bayes models, also derived from the
QMR-DT knowledge base. The comparison is inter-
esting for two reasons. First, it involves a extremely
large, real-world domain. Second, all three models in-
corporate the same probability assessments, but differ-
ent assumptions of conditional independence. Thus,
we can view this evaluation as a sensitivity analysis
for the domain of internal medicine that determines
the sensitivity of diagnostic accuracy to the model as-
sumptions.
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Figure 1: A belief-network encoding many of the as-
sumptions of the noisy OR model for multiple-fault
diagnosis. Diseases are marginally independent. Find-
ings are independent, given a disease instance.

2 THE MODELS

In each of the models we discuss, there are n diseases
that may be present or absent in a patient, and m
findings that may be observed to be present or absent,
or may not be observed at all. The problem of interest
is to compute the posterior probability of each disease
given a set of positive and negative findings.

2.1 NOISY OR MODEL

Several of the assumptions of the noisy OR model are
shown in belief network of Figure 1. The nodes in
the upper and lower layer of the network represent
the diseases and findings, respectively. As indicated
by the network, diseases are marginally independent,
and findings are conditionally independent, given any
instance of the set of diseases.1

Also, in this model, multiple diseases interact with a
common finding via a noisy OR gate. This interaction
is a special case of causal independence (Heckerman,
1993). Causal independence with respect to a set of
diseases d1, . . . , dn and a single finding f is represented
by the belief network in Figure 2. As in Figure 1, the
nodes in the upper layer of the network represent the
diseases. The nodes ft0 , . . . , ftn represent a temporal
sequence of the findings f . In particular, node ft0 rep-
resents the finding before the patient has contracted
any disease. The node ft1 represents the finding after
the patient has (possibly) contracted disease d1, but
no other disease. The node ft2 represents the finding
after the patient has (possibly) contracted diseases d1

and d2, but no other diseases, and so on. The node
ftn represents the finding after the patient has (pos-
sibly) contracted any disease; that is, ftn represents
the finding when it is observed. Absence of arcs in the
network encode causal independence: Given ftj−1 and
dj , finding ftj is independent of diseases d1, . . . , dj−1,
and findings ftk , k = 0, . . . , j−2. In addition to the as-
sumption of causal independence, the OR-gate model
includes the requirements that (1) the finding and the

1An instance of a set of diseases is an assignment of
present or absent to each disease in that set.
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Figure 2: The noisy OR interaction between a finding f
and its common causes d1, . . . , dn. Each variable in the
belief network is binary. The variable ftn corresponds
to the observable finding f .
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Figure 3: The multimembership Bayes model for
multiple-disease diagnosis. Each disease is updated
in isolation of all other diseases.

diseases are binary, and (2) once a finding is present,
it remains present regardless of other diseases that the
patient might contract (hence the name, noisy OR).

Let d+ and d− denote the presence and absence of
disease d, respectively. Similarly, let f+ and f− de-
note the presence and absence of finding f , respective-
ly. The independent probabilities in the model are the
prior probabilities of disease, p(d+), the causal proba-
bilities

p(fjti + |fjti−1−, di+) ≡ qij (1)
and the leak probabilities

p(fjt0+) ≡ q0j (2)
As we will see, the other models incorporate these
same probabilities. In Section 3, we describe a
tractable inference algorithm for this model.

2.2 MULTIMEMBERSHIP BAYES MODEL

In the multimembership Bayes model, we assume that
diseases are marginally independent, and that all find-
ings are independent, given that the disease is either
present or absent. Furthermore, as depicted in Fig-
ure 3, we maintain a separate model for each disease.
In so doing, we incorrectly ignore dependencies among
findings induced by the presence of other diseases.

The probabilities required by this model are the pri-
or probabilities of disease (the same as those in the
noisy OR model), and the probabilities p(f + |d+) and
p(f + |d−), for all findings f and diseases d. These
probabilities are computed from the noisy OR model.
In particular, we have

p(fj − |di+) =
p(fj−, di+)

p(di+)
(3)



and
p(fj−, di+) =

X

di+∈D

p(fj−,D) (4)

where D denotes an instance of the set of diseases in
the domain. Because diseases are marginally indepen-
dent in the noisy OR model, we obtain

p(fj−,D) = p(fj − |D) p(D) = p(fj − |D)
nY

k=1

p(d0k)

(5)
where d0k denotes the instance of dk in D. From the
noisy OR model, we know that for fj to be absent
given D, all the diseases present in D must have failed
to cause fj to be present. Thus, we have

p(fj − |D) = (1− q0j)
Y

dk+∈D

(1− qkj) (6)

From Equations 4 through 6, we obtain

p(fj−, di+) = (1− q0j) (1− qij) p(di+) · (7)
Y

k 6=i

[(1− qkj) p(dk+) + p(dk−)]

Combining Equations 3 and 7 , we get

p(fj − |di+) = (1− qij)α

where

α = (1− q0j)
Y

k 6=i

[(1− qkj) p(dk+) + p(dk−)]

Therefore,

p(fj + |di+) = 1− (1− qij)α

Using similar algebraic manipulations, we obtain

p(fj + |di−) = 1− α

The inference algorithm for the model is straightfor-
ward. To compute the posterior probability of a par-
ticular disease, we use the odds–likelihood formulation
of Bayes’ theorem:

O(dj + |f 01, . . . , f 0m) = O(dj+)
nY

i=1

λij

where O(dj+) is the prior odds of disease dj , O(dj +
|f 01, . . . , f 0m) is the posterior odds of disease dj given in-
stances f 01, . . . , f 0n, and λij = p(f 0j |di+)

p(f 0j |di−) is the likelihood
ratio for instance f 0j and disease di+.

2.3 SIMPLE BAYES MODEL

As mentioned, in the simple Bayes model, diseases are
mutually exclusive and exhaustive, and all findings are
conditionally independent given a disease. The mod-
el requires prior probabilities, which we compute by
renormalizing the prior probabilities in the noisy OR
model. That is,

psB(d+) =
pnO(d+)Pn

i=1 pnO(di+)

Table 1: Case information. |F +| and |F−| denote the
number of positive and negative findings, respective-
ly. |D| denotes the number of disorders in the gold-
standard diagnosis.

Case Source |F + | |F − | |D|
1 AJM:59, p241 51 8 4
2 AJM:60, p397 37 23 1
3 AJM:62, p616 27 13 2
4 AJM:62, p743 37 13 4
5 AJM:63, p273 41 18 3
6 AJM:63, p789 31 9 1
7 AJM:64, p651 23 10 2
8 AJM:65, p315 41 5 1
9 AJM:65, p63 32 16 4

10 AJM:66, p1015 35 8 4
11 AJM:67, p665 35 11 1
12 AJM:68, p141 26 1 4
13 AJM:69, p127 51 2 5
14 AJM:69, p309 34 17 1
15 AJM:69, p595 33 6 3
16 AJM:69, p775 47 8 2
17 AJM:68, p267 33 12 1
18 AJM:68, p595 19 14 1
19 AJM:68, p757 29 24 1
20 AJM:68, p932 18 14 1

where psB(d+) is the prior probability of disease d
in the simple Bayes model, and pnO(d+) is the prior
probability of disease d in the noisy OR model. Al-
so, the model requires the conditional probabilities
p(f + |only d present), which we compute from the
noisy OR model:

p(fj + |only di present) = 1− (1− qij)(1− q0j)

where qij and q0j are defined by Equations 1 and 2,
respectively.

3 EXPERIMENTAL DESIGN

In our evaluation, we used 20 diagnostic cases ab-
stracted from published clinicopathological conference
(CPC) cases from the American Journal of Medicine.
CPC cases are challenging cases describing actual
patients often with multiple disorders. In the 20
cases, the number of disorders in the gold-standard
diagnosis—established by pathological investigation at
autopsy—ranges from one to four. Each of these cases
was abstracted by the QMR group for testing of the
QMR system. We selected the first 20 cases from a
set of 48 cases that we received from the QMR group.
We have used these cases in previous evaluations of in-
ference algorithms. Additional information about the
test cases appears in Table 1.

We know of no tractable algorithm that can compute
the exact posterior probabilities of disease using the



noisy OR model for CPC cases.2 Consequently, we
used the sampling algorithm S to compute the poste-
rior distributions (Shwe and Cooper, 1991). The al-
gorithm uses likelihood weighting (Fung and Chang,
1989; Shachter and Peot, 1989) in combination with
importance sampling (Shachter and Peot, 1989) and
Markov-blanket scoring (Pearl, 1987). Each case con-
verged within 3 hours, running on a Macintosh Quadra
950.3 The number of samples for each case ranged
from 70,000 to 100,000. Inference using the multimem-
bership Bayes and simple Bayes models required less
than 1 second per case.

4 RESULTS AND DISCUSSION

The results for cases 1 through 7, 8 through 14, and 15
through 20 are shown in Figures 4, 5, and 6, respec-
tively. In each graph, the heights of the three bars
associated with value i on the x axis correspond to
p(di + |findings) for the three models, where di is the
ith most likely disease in the noisy OR model. The
posterior probabilities for the noisy OR, multimem-
bership Bayes, and simple Bayes models correspond
to the black, white, and dotted bars, respectively. The
asterisks in the figures indicate the gold-standard di-
agnoses. The gold-standard diagnoses for cases 2, 6,
and 18 were the 116th, 212th, and 74th most likely dis-
eases in the noisy OR model; thus, they do not appear
in the figures.

The results indicate that there are substantial differ-
ences among the gold-standard diagnoses and the pos-
terior probability distributions for the three models.
Overall, the distributions produced by the noisy OR
model are most in agreement with the gold-standard
diagnoses. In some single-fault cases, however, the dis-
tributions produced by the simple Bayes model agree
more closely with the gold-standard diagnoses (see cas-
es 8 and 17). This result is not surprising, because the
assumption that only one disease is present is built
into the simple Bayes model.

The substantial differences between the OR-model dis-
tributions and the gold-standard diagnoses may be
due, in part, to the fact that the gold-standard diag-
noses represent outcomes and not necessarily the best
posterior distributions given the evidence provided to
the inference models. Nonetheless, this study provides
good evidence that additional work to refine the noisy
OR model for internal medicine will be worthwhile.

Two additional patterns emerge from the results: the
multimembership Bayes model tends to overestimate
the probability of diseases, whereas the simple Bayes
model tends to underestimate the probability of dis-

2The Quickscore algorithm (Heckerman, 1989) is effi-
cient for cases that contain 15 or fewer findings observed
to be present, but the CPC cases contain many more such
findings.

3Cooper and Shwe (1991) developed criteria to test for
convergence. Each case in this study met those criteria.

eases. For example, in case 1, there are five diseases
that have posterior probabilities in the noisy OR model
greater than 0.5. In contrast, 43 of the top 50 diseases
have posterior probabilities in the multimembership
Bayes model greater than 0.5; there are no such dis-
eases in the simple Bayes model.

These patterns are not surprising. Because the poste-
rior probabilities of disease must sum to 1 in the simple
Bayes model, few diseases can have substantial prob-
abilities. Thus, for cases where multiple diseases are
present, the simple Bayes model will underestimate the
probabilities of those diseases. The multimembership
Bayes model provides no mechanism for diseases that
share common findings to compete for the explanation
of those findings. Consequently, the model tends to
overestimate the probabilities of disease. The noisy
OR model lies between the two approaches: diseases
can partially, but not completely, exclude one another.
Although these patterns can be predicted qualitative-
ly, the degree of the effect in this real-world example
is surprising to these authors.
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