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Physical Mapping of Chromosomes Using Unique Probes 

Farid Alizadeh* Richard M. Karp*t 

1 Introduction 

1.1 The Physical Mapping Problem 
In this paper we present several combinatorial algo- 

rithms for reconstructing a DNA strand given a collec- 
tion of overlapping fragments of the strand. A human 
chromosome, which is a DNA molecule of about lo* 
base pairs, is too long to be studied in its entirety and 
must be broken into fragments or clones. Depending on 
the cloning technology used, the sizes of the clones may 
be as small as 3,000 base pairs or as large as 2,000,OOO 
base pairs. Information is gathered from the individual 
clones, and then the DNA is reconstructed by mathe- 
matically determining the positions of the clones. 

The goal of physical mapping is to infer how the 
clones overlap to form the DNA molecule, given data 
about each clone. The present paper focuses on the Se- 
quence Tagged Site (STS) mapping strategy, which is 
widely used for physical mapping within the Human 
Genome Project and other related molecular biology 
projects [PSM+Sl], [MCG+93]. In particular the recent 
mapping of human chromosome 21 [CRG+92] and hu- 
man chromosome Y [VFH+92, FVHP92] use this strat- 
egy. In the STS approach relatively short substrings 
called probes are extracted from the DNA strand itself, 
often from the endpoints of clones. Each probe is suffi- 
ciently long that it is highly unlikely to occur a second 
time on the DNA strand; thus it identifies a unique site 
along the DNA strand. A probe is said to hybridize to a 
clone if it matches a substring in that clone. We present 
algorithms to determine probe ordering, given data for 
each clone indicating which probes hybridize to it. 

In the absence of errors, the correct orderings can 
be found very easily using the P&-tree data structure 
[BL76] to generate the set of all arrangements of probes 
consistent with the data. The data is never free from 
error however, and algorithms are differentiated by their 
performance in the presence of errors. 

The most common type of error is a false negative, 
where a probe which occurs in a clone fails to hybridize 
to it. False positives also occur. In addition, in some 
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cloning technologies the data is subject to error due 
to clone abnormalities, such as chimeric clones, which 
consist of two distinct segments of the DNA strand 
joined together. Deletions, insertions, and inversions 
of clone segments also occur. 

In this paper we present reconstruction algorithms 
which are both effective and robust in the presence of 
errors. Exploiting the fact that each probe occurs at 
a unique point, we take it as our fundamental problem 
to determine the left-to-right order of the probes along 
the DNA strand. Once this order is known the overlap 
structure of the clones can easily be inferred. 

All the central computational problems in this 
paper are NP-hard. For this reason we have evaluated 
the effectiveness of our algorithms empirically, using 
simulated data generated according to a probabilistic 
model, as well as real data from human chromosome 
21. 

1.2 A Mathematical Model of the Problem 
We model the physical mapping problem geometri- 

cally as follows. The DNA molecule being mapped is 
an interval I on the real line. There are m probes and 
n clones. Each probe is a point on this interval. The 
clones are of two types: normal and chimeric. A normal 
clone consists of a subinterval of I, and a chimeric clone 
consists of the union of two disjoint subintervals. A key 
observation is that the set of probes contained within a 
normal clone is consecutive in the left-to-right ordering 
of the probes, and the set of probes contained within 
a chimeric clone can be partitioned into two subsets, 
each of which is consecutive in the left-to-right order- 
ing of the probes. Moreover, if a probe was extracted 
from the end of a normal clone, then it must be either 
the first or the last probe in the ordering of the probes 
incident with that clone. 

The underlying data for the problem is a m x n 
matrix A = (aij) with a row for each probe and a 
column for each clone, where 

l aij = 2 if probe i is an end probe for clone j; i.e., 
it is known to have been extracted from one of the 
ends of clone j. 

l aij = 1 if probe i is contained in clone j but is not 
an end probe for clone j. 
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l aij = 0 otherwise. 
The matrix A has the following property: there is 

a permutation 7~ of the rows (corresponding to placing 
the probes in their left-to-right order), such that, in each 
column corresponding to a normal clone, the nonzeroes 
occur in a single block of consecutive rows, and, in each 
column corresponding to a chimeric clone, the nonzeroes 
occur in two blocks of consecutive rows. Moreover, in 
the case of a normal clone a two may occur only in the 
first or last row of the block. (see Figure 1.) 

The measured data D = (&j) differs from A because 
of the occurrence of false positives and false negatives. 
For fixed m and n we assume an error model defined 
by three parameters: p, the probability that a clone 
is chimeric, E, the false negative rate, defined as the 
probability that a 1 in A becomes a 0 in D, and 6, the 
false positive rate, defined as the probability that a 0 in 
A becomes a 1 in D. 

In the noiseless case, in which false negatives, false 
positives and chimeric clones do not occur, the problem 
is simply to find those permutations n such that, when x 
is applied to the rows of A, each column has consecutive 
ones, with twos in flanking positions, if present. Any 
such permutation is a plausible candidate for the correct 
left-to-right ordering of the probes. 

In the more realistic case where noisy data and 
chimeric clones are present, we take it as our task to 
recover the underlying data from the measured data. 

2 Algorithmic Approaches 

We present several approaches to the problem of recov- 
ering the underlying data A from the measured data 
D. 

2.1 A Maximum-Likelihood Method 
The goal of the maximum-likelihood method is to 

find a matrix A which maximizes p(AlD), the condi- 
tional probability of underlying data A given the mea- 
sured data D. In other words, the method tries to se- 
lect A so as to maximize the probability that the im- 
plied chimeric clones and experimental errors actually 
occurred. 

The choice of A involves specifying the following: 
l A linear ordering r of the rows; 

l A designation of each column as normal or 
chimeric; 

l In each normal column, a designation of one block 
of rows that are consecutive in n; 

l In each chimeric column, a designation of two 
blocks of rows, each of which is consecutive in 7~. 

The permutation r represents the left-to-right or- 
dering of the probes. The matrix A corresponding to 
these choices has, in each column, nonzeroes in the posi- 
tions within the selected block(s), and zeroes elsewhere. 
In a column corresponding to a normal clone, each two 
must be in either the first or last position in the block 
of nonzeroes. This matrix represents the choice of the 
underlying data. 

Let b(A) be the number of columns designated as 
chimeric, let c(A) be the number of cells containing a 0 
in D and a 1 in A, and let d(A) be the number of cells 
containing a 1 in D and a 0 in A. A brief calculation 
based on Bayes’ Theorem shows that the problem of 
maximizing p(AID) is equivalent to maximizing 

P (3 1-P 

E 
c-1 l-6 

Letting K = -In&, L= -In& and M = -In& 
we can reexpress the problem as follows: find A to 
minimize 

(2.1) Kb(A) + LC(A) + Md(A). 

Section 3.1 describes an effective algorithm for the 
approximate solution of this optimization problem. 

2.2 The Hamming Distance TSP 
We describe this approach in the case where end 

clone information is not available, so that the matrix A 
of underlying data contains only zeroes and ones. The 
approach can be extended to the case where end clone 
data is available. 

There exists a permutation 7r of the rows of A which 
produces a matrix A” in which each column correspond- 
ing to a normal clone contains one block of ones, and 
each column corresponding to a chimeric clone contains 
two blocks of ones. Define a gap as a block of zeroes in a 
column, flanked by a one immediately above and a one 
immediately below. Then the number of gaps in A” is 
equal to the number of chimeric clones. Now consider 
the effect of introducing random errors. A false negative 
will change a one to a zero, typically splitting a block 
into two parts, and thus creating a gap. A false posi- 
tive will change a zero to a one, typically splitting a gap 
into two gaps. Thus, when the permutation r is applied 
to the matrix D of measured data, the number of gaps 
in the resulting matrix DK tends to be approximately 
equal to the number of chimeric clones plus the num- 
ber of false positives and false negatives. This suggests 
the heuristic principle that a permutation of the rows 
which minimizes the number of gaps will correspond to 
a good probe ordering. Minimizing the number of gaps 
can be cast as a Traveling-Salesman Problem called the 
Hamming Distance TSP [AKNWSl], in which the cities 
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Figure 1: Example of Matrices A and D 
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are the rows of A together with an additional row of n 
zeroes, and the distance between two cities is the Ham- 
ming distance between the corresponding rows; i.e., the 
number of positions in which the two rows differ. 

The Hamming Distance TSP has the disadvantage 
that its objective function is insensitive to the false pos- 
itive rate, the false negative rate and the frequency of 
chimeric clones; thus it models the choice of an opti- 
mal probe ordering less faithfully than the maximum- 
likelihood approach. Its advantage is that the technol- 
ogy for solving large traveling-salesman problems is far 
advanced, so that near-optimal solutions are very eas- 
ily obtained. We use a local search method due to 
Zweig [Zwe92], based on an operation called Divide- 
and-Merge, which rapidly and dependably gives near- 
optimal solutions to instances of the Hamming Distance 
TSP with around one thousand cities. 

We have found that, when the number of ones per 
column of D is large, near-optimal solutions to the Ham- 
ming Distance TSP indeed correspond to near-optimal 
probe orderings. Moreover, the Hamming Distance TSP 
has proven to be a highly effective method for screening 
out false positives, as described in Section 4.1. 

2.3 Methods for Obtaining a Good Initial 
Probe Ordering 

The maximum-likelihood approach leads to a com- 
plex optimization problem which we attack by a local 
search method (cf. Section 3.1). The execution time of 
the local search can be reduced by providing the algo- 
rithm with a good initial solution. In addition to using 
the TSP solution, we have explored two other methods 
of obtaining such an initial solution: sorting and split- 
ting. 

2.3.1 Sorting 
A real symmetric matrix (mij) is called monotone 

if, whenever i < j < k, mij 2 mik. Let bij be the 
number of clones that are incident with probes i and 
j. If probe j lies between probes i and k in the correct 
probe ordering, then, in the absence of errors every clone 
that is incident with probes i and k is also incident with 
probe j. It follows that bij 1 bik. Equivalently, if 7r is 
the correct linear ordering of the probes and we define 
the matrix BK by B$ = b,(,),.,,(j) then, in error-free data 
B” is monotone. 

The sorting method seeks a permutation x such that 
the matrix B” is nearly monotone; this permutation 
is then used as an initial solution for the maximum- 
likelihood computation. The method computes a se- 
quence of permutations. It passes from one permuta- 
tion to the next by pivoting on some probe i. Given 
the current permutation u and the pivot element i, the 
pivoting operation reorders the probes by moving closer 
to i those probes for which bij, the number of clones 
incident with both i and j, is large. The method is pre- 
sented in Section 3.2. It has been found to give a good 
initial ordering, thereby reducing the time required for 
the maximum-likelihood computation. 

2.3.2 Splitting 
Let G be a bipartite graph with vertex set P U C, 

where P is the set of probes and C is the set of clones, 
and with an edge between probe P and clone C if and 
only if P is incident with C. We assume that G is 
connected, as otherwise the physical mapping problem 
decomposes into connected components whose order 
along the chromosome cannot possibly be ascertained 
from the data. 

Briefly, given a probe s, we remove all clones 
incident to it and all the clones entirely included in them 
along with those probes which are not on any clone. If G 
is left with exactly two components then p is a splitter. 
Probe s is called a splitter if, when P and all the vertices 
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within distance two of it in G are deleted, the resulting probe orderings for the several connected compo- 
subgraph has exactly two connected components. In nents of the screened data. 
this case we accept that the probes in one of these 
subgraphs lie to the left of P, and the probes in the other 

Our computational results are summarized in Sec- 
tion 6. 

lie to the right of P. When there are no false positives 
the ordering implied by all the splitters is good, and 3 Reconstruction Algorithms 
its use as an initial ordering speeds up the maximum- 
likelihood computation. 

3.1 Local Search 
Recall that the choice of A involves specifying a 

2.4 Screening and Unscreening 
We have found that false positives are particularly 

troublesome for our algorithms. Therefore, we have 
devised methods of identifying and eliminating them. 
These methods are not foolproof, and they sometimes 
create false negatives by changing a correct one to 
a zero; however, the overall effect of the screening 
methods is quite favorable. 

By changing correct ones to zeroes (i.e., by deleting 
edges of the connected bipartite graph G that represent 
true hybridizations) the screening process sometimes 
breaks G into several components. Without restoring 
these critical deletions it is not possible to determine the 
order in which these components occur along the DNA 
strand. Thus, we use a two stage approach. In the first 
stage we obtain a good ordering for the probes in each 
connected component. Then, by inspecting the deleted 
edges which connect components via probes near their 
ends, we restore the critical screened out edges that 
hook the components together. This process is called 
unscreening. 

Screening is described in Section 4.1 and unscreen- 
ing is described in Section 4.2. 

linear ordering x of the rows of D, designating each 
column as normal or chimeric, choosing a block of rows 
for each normal column, and choosing two blocks of 
rows in each chimeric column. We shall show that, 
given X, there is a simple procedure for making the 
remaining choices optimally. The resulting optimal 
choice of the underlying data given x will be denoted 
A(r). This yields the following optimization problem: 
Find r to minimize the objective function F(r), defined 
as Kb(A(r)) + Lc(A(r)) + Md(A(r)). 

To determine A(n) we make two simple calculations 
for each column, one based on the assumption that the 
column is normal, and the other, on the assumption that 
the column is chimeric. The contribution of a column 
to the final objective function value is then the smaller 
of the two associated terms. Let C be the number of 
non-zero entries in the column; in typical cases C is a 
small constant. If the column is normal, then we need 
to choose the first and last rows in its block. For an 
optimal choice, these rows must contain ones or twos 
in the given column. Thus, there are (z) choices for 
the block boundaries, and, using an appropriate data 
structure, the optimal choice can be determined in time 
O(C2) when no end probe information is available. If 

.  I  

2.5 Algorithmic Strategy 
the column is chimeric we must choose the boundaries 

We have experimented with a number of strategies 
of two blocks, and we may assume that the first and 

for finding a good probe ordering. A very fast method 
last row of each block contain ones or twos. Thus there 

which gives reasonably good solutions is simply to solve 
are (:) choices for the block boundaries, but we have 

the Hamming Distance TSP. The following strategy has 
devised an algorithm that finds an optimal choice in 
time O(C2), again when no end probe information is 

proved effective for obtaining better solutions, at the available 
cost of a modest increase in execution time. 

l Apply screening to eliminate most of the false 
When one end probe is known, finding the optimal 

positives. 
interpretation of a column is still quadratic (due to the 
possibility of chimeric fragments), but when both end 

l After screening the data may decompose into sev- 
eral connected components. For each connected 
component: 

1. Use the sorting heuristic to obtain a reason- 
ably good initial probe ordering. 

2. Starting with this initial ordering, obtain 
a near-optimal solution to the maximum- 
likelihood problem. 

probes are known, the process is linear. When retest- 
ing is performed so that false positive and false neg- 
ative penalties are different for different hybridization 
events, an added sweep through the column between its 
extremal non-zero entries is necessary (see Section 5). 

l Use an unscreening procedure to hook together the 

The following procedure describes the objective 
function calculation for a column in the case where no 
end probe information is available. It also determines 
block boundaries. The calculation performed when end- 
point information is available is similar, with the added 
constraint that clone fragments must begin and/or end 
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with known end probes. This constraint reduces the 
number of block boundaries to consider. 

Column Interpretation: 
First assume the clone is not chimeric. For every 

possible pair of end probes, calculate the implied cost 
and store the best cost so found. 

Now assume the clone is chimeric. For every 
possible starting probe of the first fragment, consider 
each choice of starting probe of the second fragment: 

l Find the best end probe for the first fragment: This 
is either its current best ending probe, or it is the 
probe immediately preceding the current starting 
probe of the second fragment. 

l Find the best end probe for the second fragment. 
When such an end probe is found, store it in an 
array indexed on the second fragment’s starting 
probe. If a stored value is available, use it; 
otherwise consider every possible probe between 
the second fragment’s starting probe and the end 
of the clone as an end probe. 

l If the cost with the current best end probes is 
less than the best cost so far found, note the end 
probes and the associated cost as the new best 
interpretation. 

We attack the problem of optimizing over permuta- 
tions by local search, using a move operation which is 
related to the 2-opt and OR-opt move operations used 
for the Traveling-Salesman Problem. Given the present 
permutation X, the move operation selects a “neighbor- 
ing permutation” as follows. Let D” be the matrix ob- 
tained by reordering the rows of D in accordance with 
the current permutation; i.e., Dfj = D,(i),ja Define a 
gap in column j as an interval [i:.k] in column j, such 
that rows i and k contain ones in column j, and the 
intervening rows contain zeroes. 

Operation Move: 
l Select a gap at random in the matrix D”. Let it 

be interval [i..k] in column j. The chosen move will 
make rows i and k adjacent. 

l Let u, the upper weight of the gap, be defined as 
the number of ones in column j at or above row 
i, and let e, the lower weight of the gap, be the 
number of ones in column j at or below row k. 
Randomly choose either to move row i or to move 
row k, where the probability of choosing i is & 
and the probability of choosing k is &; 

l If i has been chosen then either move row i down- 
ward past rows i+l, . . . , k- 1 or reverse the block of 

rowsi,i+l,..., k - 1, the two choices being equally 
likely; 

l If k has been chosen then either move row k upward 
past rows k-l,..., i + 1 or reverse the block of rows 
i+1,i+2,.*., k, the two choices being equally likely. 

We have observed that, in cases where the only 
errors are false negatives, the move operator appears 
to have the following property: if the move operator 
is applied repeatedly, then after a long enough period 
of time the successive permutations oscillate around a 
near-optimal permutation; i.e., there is a near-optimal 
permutation T such that, for each probe i, the long- 
run average position of probe i approaches r(i). In the 
case of noiseless data, random iteration of the move 
operation tends to converge to an ordering with the 
consecutive ones property. We have no theoretical 
explanation for these phenomena, (see Figure 10.) 

Since the above move is defined only in terms of 
gaps, and makes no reference to known end probes, it 
sometimes happens that its application fails to place 
twos in extremal positions. Therefore we occasionally 
apply another move, in which a non-extremal two is 
chosen at random, and the row in which it lies is 
swapped with another row chosen at random in which 
there is a one in the same column as the selected two. 
Typically this move is used ten percent of the time. 

We have found that simulated annealing, using the 
move operators defined above, is an effective method 
of obtaining near optimal solutions. We use a con- 
ventional cooling schedule and a conventional stopping 
rule [Laa88]. In its relation to simulated annealing, the 
neighborhood structure we use is significant for several 
reasons. First it is important to note that moves are 
not in general reversible; for example, when a gap is 
eliminated, there is no guarantee it can be recreated. 
This is important because the theoretical justifications 
of simulated annealing are predicated on a symmetrical 
transition matrix. The non-reversible moves that we 
use have the advantage, however, that in the absence 
of false positives and chimerics, convergence is much 
faster than it might otherwise be; excellent solutions 
are often found early on despite the fact that almost all 
the moves that are proposed are accepted. To take ad- 
vantage of this we terminate the search when the best 
solution found is not replaced within a certain number 
of moves. Computational experience with the simulated 
annealing algorithm is reported in Section 6. 

3.2 Sorting 
We have devised a simple heuristic procedure based 

on the concept of a monotone matrix for finding a 
good initial ordering of the probes in the presence of 
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false negatives; the procedure finds the correct order 
of probes in the noiseless case. We first study the 
procedure in the noiseless case, and then discuss its 
extension to the case where false negatives are present. 

We require some definitions. A square symmetric 
matrix B = (bij) is called monotone if, for all i and 
j with i 5 j, bij 5 bi,j+l. A O-l matrix A has the 
consecutive ones property for columns if there exists a 
permutation matrix Q such that, in each column of QA, 
the ones form a consecutive block. 

THEOREM 3.1. Let A be a O-l matrix which has 
the consecutive ones property for columns. Let Q be a 
permutation of the rows of A. Then the following are 
equivalent: 

1. In each column of QA, the ones form a consecutive 
block. 

2. QAATQT is monotone. 

Proof. Let D = QA such that in each column of D 
the ones appear in a consecutive block. If P = DDT 
is not monotone, then for some i < j < k, Pij > Pik. 
Thus row i of D has more ones in common with row k 
than with row j, and there must be at least one column 
with a one in rows i and k and zero in row j; but then 
ones in that column do not appear in a connective block, 
contrary to the assumption. 

Now let D be a O-l matrix such that DDT is 
monotone, and yet in some column, say c, not all ones 
appear in one block. We show that D does not have the 
consecutive ones property for columns. Let i < j < k, 
Di, = DkC = 1, and D+ = 0. Since row i has more ones 
in common with row j than with row k (or at least as 
many) there must be at least one column with ones in 
rows i and j and zero in row k. Similarly, there must be 
one column with ones in rows k and j and a zero in row 
i. Thus we have shown that D contains the following 
matrix, or a permutation of its columns, as a submatrix: 

1 0 1 
F := 

( 1 

0 1 1 
1 1 0 

But no matrix containing F as a submatrix can have 
the consecutive ones property, as required. 

The connection between monotone matrices and 
the consecutive ones property suggests a procedure 
for finding the correct ordering of the rows: find a 
permutation matrix Q such that QAATQT is monotone 
and sort the probes according to Q; i.e., if Qij = 1 
then probe j occurs in the ith position of the ordering. 
The following discussion is based on the assumption 
that no clone is included in another, i.e. the clones 
induce a proper interleaving. Note that the noninclusion 
assumption implies that both D and DT have the 

consecutive ones property :for columns. In fact one can 
show a stronger result: for each row i let xi and yi 
respectively be the first and the last columns with a 
one in row i. Similarly, for each column j let uj and lj 
be respectively the first and the last rows with a one in 
column j. Then it is possible to order both rows and 
columns such that for a pair of columns i and k, if i < k 
then ui 5 Uj and li 5 lk, and similarly for a pair of rows 
s and t, if s < t then x, 5 xt and ys 5 yt. Let us call 
such an order of rows and columns the canonical order. 

Let Pi be the set of clones incident to probe pi. 
Observe that in the canonical ordering xi - yi + 1 is 
the number of clones n Pi, and, for j > i, IPi II Pjl = 
zj - yi + 1. For a positive integer k the k-neighborhood 
&(P) of probe p is the set of all probes pi such that 
JPn PiJ = k. 

LEMMA 3.1. For each probe p and positive integer 
k, &(P) may be decomposed into (possibly empty) 
chains Pi, c ... C Pi, and Pj, C .** C Pj. such 
that, in every correct ordering, the two chains occur on 
opposite sides of p, and, in each chain, the elements 
occur consecutively in order of increasing cardinality, 
with the minimal element closest to p. 

Proof. Let Pi and Pj, i < j, be the sets of clones 
incident on probes pi and pj, respectively. Furthermore, 
assume that both Pi and Pj are in f&(P) and neither 
is a subset of the other. Then we must have, xi < zj 
and yi < yj. NOW if both Pi and Pj occur to the left of 
P, we must have 

X-yi+l=IPnPil=IPnPjI=X-yj+l 

which implies yi = yj. Similarly, if they both occur to 
the right of P we will have xi = zj, and in both cases 
we have a contradiction. SO pi and pj are in opposite 
sides of P. 

It is easy to see that if two probes Pi and Pj are both 
ononesideofagivenprobePand IPnPil > IPnPjl 
then Pi must be closer to P than Pj. Based on the 
preceding discussion we can now propose the following 
algorithm: 
ALGORITHM Sortmatrix 
Input: A O-l matrix D 
Output: A permutation r where Plr = DnDT is monotone 
Method: 

Set P = DDT. 
for i=l,...,n do 

7~ tSORTLEFT(i, 7’“) 
n tSORTRIGHT(i, P”) 
If i < n and END(i,P) then 

r tREVERSE(i, 7’“) 
r tSORTRIGHT(i, P”) 

end if 
end for 

The key operations in Sortmatrix are the 
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SORTLEFT(i, P) and the SORTRIGHT(i,P) func- 
tions. Briefly, SORTLEFT sorts the entries of row i 
of Pn in nondecreasing order up to the diagonal ele- 
ment. Similarly SORTRIGHT(i, P”) sorts the entries 
of row i in nonincreasing order from diagonal element 
to the end. In case of ties the following rule is applied: 
If PG = P2 and Pj C Fk then Pj succeeds Fk when 
applying SORTLEFT (i.e. k, j < i) and Pj precedes 
Fk when applying SORTRIGHT (k, j > i). Other- 
wise sorting should be stable, and the relative order of 
Pj and Fk should not change. We refer to operations 
SORTLEFT and SORTRIGHT together as pivoting on 
probe Pi. The function END(i,P) returns true if the 
current pivot Pi has empty intersection with all probes 
ahead of it (i.e. Pik = 0 for all k > i), and false oth- 
erwise. Finally, REVERSE(i, P”) reverses the order in 
(Pi,. *. 7Pj). 

It can be shown that in each iteration, Sortmatrix 
maintains the following invariant: If (pi, pi+1 , . . . , pj) is 
the current sequence of pivoted probes, then they must 
occur (up to reversal) consecutively in the final correct 
ordering. In particular, the current probe about to be 
pivoted on will not disturb the order in (pi, pi+i, . . . , pj) 
sequence up to reversal. Therefore, 

THEOREM 3.2. Let D be the O-l incidence matrix 
of clones and probes from a proper interleaving of clones 
and without errors. Let x be the permutation found by 
Sortmatrix. Then PT = D,DT is monotone. 

Although the validity of Algorithm Sortmatrix is 
established only in the case of proper interleavings and 
noiseless data, we have used it successfully as a heuristic 
for obtaining a good probe ordering in the presence of 
low error rates and occasional clone inclusion. We have 
also observed in our computational experiments that 
Sortmatrix benefits greatly by screening false positives 
and chimeric clones. 

3.3 Splitting 
Splitting is a method for finding an approximate 

probe ordering. It works well in the presence of false 
negatives, but becomes ineffective when a large num- 
ber of false positives or chimeric clones are present. 
Consider the bipartite graph G as described in Sec- 
tion 2.3.2. We assume that this graph is connected, as 
otherwise the mapping problem decomposes into discon- 
nected components whose order along the chromosome 
cannot possibly be ascertained from the data. 

We say a set of clones C covers a clone C if all of 
the probes incident on C are also incident on some clone 
in C. Let SPAN(s) be the set of clones incident on s. 
Probe s is called a splitter if, when all the clones in 
SPAN(s) and all of the clones covered by SPAN(s) 
are deleted from G along with all probes left without 

any incident clones, then the resulting graph is left 
with exactly two connected components which contain 
clones. Let the vertex sets of these two components 
be denoted A and B, and let the vertices in neither 
component be denoted M. 

Then, in the noiseless case M separates A from B; 
i.e., one of the two possible left-to-right orientations of 
the DNA strand has the property that every probe or 
clone in A is strictly to the left of every probe or clone 
in M, and every probe or clone in B is strictly to the 
right of every probe or clone in M. 

In the case where false negatives occur but false 
positives and chimeric clones do not, the partitions as- 
sociated with splitters still provide valuable information 
about the ordering of the probes. Assume that there is 
a fixed false negative rate e and that the bipartite graph 
G of incidences between probes and clones is connected. 
Let s be a probe which is a splitter with respect to the 
noiseless data and is not involved in any false negatives. 
Then s is also a splitter with respect to the noisy data. 
This implies that splitters will be abundant. 

Moreover, the following claim establishes that the 
connected components A and B associated with a split- 
ter s provide accurate information about the ordering 
of the probes. Let the length of every clone be bounded 
above by a constant L. Let q, r and s be probes such 
that q and r are on the same side of s, with r closer to 
s, and s is a splitter. Let A and B be the two compo- 
nents associated with s. Then, since ideally A contains 
the probes on one side of SPAN(s) and B contains 
the probes on the other side, we would expect q and r 
to lie together either in A or in B. It can be shown 
that, conditioning upon the event that s is a splitter, 
the probability that this fails to happen tends to zero 
exponentially as a function of the distance from r to s. 

The above observations suggest that the following 
algorithm should give a good probe ordering in the 
absence of false positives and chimeric clones. 

1. Determine which probes are splitters and, for each 
splitter, determine the components A and B; 

‘2. Identify two sets of probes which frequently occur 
in opposite components. Label one set “left” and 
the other “right”. 

3. Associate with each probe q a left tally a(q) giving 
the number of times it occurs in a component 
that has more in common with “left” than “right”. 
Generate a right tally p(q) analogously. 

4. Sort the probes in decreasing order of (a(q) -p(q), 
breaking ties in increasing order of a(q). 
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This procedure gives a good initial ordering, even 
when there are moderate number of false negatives. 

4 Screening and Unscreening 

4.1 Screening out False Positives 
As mentioned earlier, false positives are particularly 

troublesome for our algorithms; The speed of Local 
Search degrades when a large number of false positives 
are present, and the splitting and sorting algorithms 
perform satisfactorily in the absence of false positives, 
but less well when false positives are present. We 
present two methods that have proved effective for 
screening out false positives. 
The Hamming Distance TSP 

Besides producing near-optimal probe orderings, 
the Hamming Distance TSP has proved to be an ef- 
fective method for screening out false positives. The 
screening is accomplished by solving the Hamming Dis- 
tance TSP, applying the resulting permutation to the 
rows, and then eliminating every isolated one occurring 
in a column containing a block of at least two ones. On 
artificially generated data this method typically elimi- 
nates about 90 percent of the false positives. However, 
a false negative is created whenever the method incor- 
rectly identifies a true one as a false positive and changes 
it to zero. Typically one false negative is created for ev- 
ery three to ten false positives that are eliminated. More 
detailed computational results are given in Section 6. 
Neighborhood Screening 

Recall the bipartite graph G described 2.3.2. Define 
the d-neighborhood of a vertex as the set of all vertices 
within distance d of that vertex. Neighborhood screen- 
ing proceeds by repeatedly focusing on a neighborhood 
of some clone, identifying the likely false positives in 
that subproblem, and deleting them. The algorithm is 
as follows: 
For c= 1,2,...,n do 

Select clone c; 

Construct a submatrix D’ whose rows and columns, 
respectively, correspond to the probes and clones in 
the 3-neighborhood of c; 

Using simulated annealing, obtain a near-optimal 
solution A’ to the problem of finding the most likely 
matrix of underlying data, given the measured data 
D’; 

Designate as a false positive each cell in any column 
where D’ contains a 1 and A’ contains a 0. 

For each designated false positive, set the corre- 
sponding cell of D to zero. 
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This screening method is compared with the Ham- 
ming Distance TSP in Sect,ion 6. 

4.2 Unscreening 
A side effect of screening false positives is the intro- 

duction of some false negatives. When the coverage is 
low, this can result in disconnecting an originally con- 
nected component into several components. We have 
developed an algorithm which identifies connected com- 
ponents created by the screening process and reorders 
them according to the unscreened data (see Figure 2.) 

The unscreening algorithm first finds connected 
components in the screened data which has been previ- 
ously ordered. Since the data has already been ordered 
we assume that two nearby rows that do not overlap are 
in separate components. An ordering of the connected 
components is found which maximizes the intersection 
between the end probes of adjacent components. 

5 Retesting 

We have developed a highly effective approach to recov- 
ering the noiseless data through an interactive process 
in which an algorithm is used to detect anomalies in the 
data, and these anomalies are then rechecked through 
further hybridization experiments. At a general step, 
for each probe i and clone j, some number tij 2 1 of 
independent tests will have been conducted, each pur- 
porting to measure whether probe i occurs on clone j; 
let yij denote the number of such tests with a posi- 
tive outcome, and let nij denote the number of such 
tests with a negative outcome. The problem of finding 
a maximum likelihood matrix A of noiseless data, given 
the matrices (yij) and (nij) can be cast as a general- 
ization of the minimization problem 2.1 in which b(A) 
denotes the number of columns designated as chimeric, 
c(A) denotes the sum of the nij over all those cells in 
which A contains a 1, and d(A) denotes the sum of the 
(yij) over all those cells in which A contains a zero. 
Near-optimal solutions to this problem can be found by 
local search. Once a solution A = (aij) has been found, 
we identify certain questionable cells whose data needs 
to be confirmed or disconfirmed by further tests. The 
following is the simplest of several strategies we have 
tried. Call cell ij probably positive if the conditional 
probability of obtaining the data for that cell, given 
that aij = 1, is greater than the conditional probability 
of obtaining the data for that cell, given that aij = 0; 
i.e., if .+(l - ~)Yij > (1 - 6)nij6Yij. Otherwise, the 
cell is probably negative. Then cell ij is questionable if 
aij = 1 but cell ij is probably negative, or if aij = 0 
but cell ij is probably positive. The identification of the 
underlying data proceeds by repetition of the following 
algorithm: 
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CLONES 

B 0 010 1 1 
E 0 0 0 0 0 

CLONES 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

1 0 0 0 0 0 0 
0 0 0 

L1 
1 1 1 
1 1 1 

Screened data Unscreened data 
in correct order in correct order 

Figure 2: Disjoint connected components created by screening and reconnected by unscreening 

l For the given data (yij) and (nij), use local search 
to find a matrix A that (nearly) maximizes p(AJD). 

l Identify and retest the questionable cells. 

The iteration continues until no questionable cells 
remain. The analysis presented so far does not in- 
corporate all the information provided by local search. 
the zero-one value that local search produces for a bit 
should be weighted along with the hybridization results 
for that bit in the probability calculations. While a 
precise weighting of these two types of evidence is dif- 
ficult to determine from theoretical considerations, we 
have found a simple procedure that much improves the 
retesting results. If retesting confirms an error predic- 
tion, we reset the corresponding gij and nij entries to 
zero-one values; i.e. all previous hybridization evidence 
is discarded. This modification has proved useful in 
eliminating false positives when the false positive rate 
is much lower than the false negative rate. Without 
it, many retests are potentially necessary to accumulate 
enough evidence to deem a bit probably negative. 

Using simulated data, only a few iterations are 
typically required to identify the correct permutation 
of the probes, and the number of repeated tests is 
comparable to the number of errors present in the data. 
Computational results on simulated data are found in 
Section 6. 

6 Computational Results 

In this section we present some computational results 
for the various algorithms. We have worked both with 
simulated data and data from human chromosome 21 
generated by Cohen’s group at CEPH [CRG+92]. 

For the simulated data unit length clones were 

generated1 with their midpoints uniformly and indepen- 
dently distributed over an interval of length N. Next 
probes were chosen from the ends of clones. The probe 
rate p, which is the expected number of probes to be 
taken from a clone, varied between between 0 and 2. 
For p 5 1, each clone was chosen with probability p to 
contribute a single probe. For p > 1, each clone con- 
tributed at least one probe, and with probability p - 1 
contributed two probes. False negatives and false posi- 
tives were introduced with rates E and 6 as described in 
Section 1. 

The ratio of the number of clones to the length of 
the chromosome is called the coverage. As expected 
the performance of our algorithms improved as coverage 
increased. 

In all our simulations the correct probe ordering is 
[l, 2, * * * , m], and in the following figures the computed 
permutations are plotted against this identity permu- 
tation. In the plots for the chromosome 21 data, the 
results of our algorithms are plotted against the order 
published in [CRG+92]. The quality of an ordering can 
thus be judged by how close it is to the identity permu- 
tation or its reverse. Plots with long line segments of 
f45 degrees are more desirable than those with short 
scattered segments. 

Figure 3 presents the results of neighborhood and 
Hamming distance TSP screening algorithms on simu- 
lated data. 

Figure 4 presents the number of retests required 
to obtain internally consistent data using the method 
described in Section 5. 

In each of Figures 5, 6, and 7 we show three sets 

‘Our algorithms (except for the sorting algorithm) work even 
when the clones have different sizes and in particular some may 
be completely covered by other clones. We will report on our 
experiments with variable length clones in the final version of the 
paper. 
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false positives screened 
false positive rate Neighborhood Hamming Distance TSP 

0.1% 97% 97% 
0.5% 96% 91% 
1.0% 97% 91% 

False negative rate lixed at 10% 
200 clones, coverage 5 and probe rate 1.0. 

Figure 3: Screening by Neighborhood and Hamming Distance TSP averaged over ten problem instances. 

false positive rate ratio of retests to original errors ratio of retests to correctly identified errors 
0.1% 0.971 1.18 
0.5% 1.04 1.16 
1.0% 1.03 1.10 

200 clones, coverage 5 and probe rate 1.0. False negative rate fixed at 10% 

Figure 4: Retesting Table 

of plots. First we show the ordering generated by the 
TSP heuristic. Next we show the ordering generated 
by the sequence of TSP screening, sorting, local search, 
and unscreening. Finally we show the results of TSP 
screening followed by splitting, local search, and post 
screening. 

Figures 7 and 9 demonstrate the performance of the 
sequence of TSP, sorting, local search, and unscreening 
for varying false positive rates and varying probe rates. 

Figure 10 shows the output of the random search 
(described at the end of Section 3.1) on data from 
chromosome 21. The plot shows the average position 
of each probe over the moves 35,000 to 40,000. 
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tsp tsp/sort/local/post tsp/split/local/post 

Figure 5: Results of chromosome 21 data. 

tsp tsp/split/local/post tsp/sort/local/post 

1 50 100 150 1 50 100 150 1 50 100 150 

Figure 6: Results on data with coverage 10, probe rate 0.5 false positive rate 0.01 and false negative rate of 0.1. 

tsp tsp/split/local/post tsp/sort/local/post 

:‘+J i;m 3gy 

1 50 100 150 1 50 100 150 1 50 100 150 

Figure 7: Results on data with coverage 5, probe rate 1.0, false positive rate 0.001 and false negative rate of 0.1. 
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fpr=O.OOl fpr=0.005 fpr=O.Ol 

1 50 100150200 1 50 100 150 200 1 50 100150200 

Figure 8: Results of varying false positive rate using tsp/sort/search/post on data with coverage 5, probe rate 
1.0 and false negative rate 0.1. 

pr = 0.5 pr = 0.75 pr = 1.0 

1 50 100 1 50 100 150 1 50 100150200 

Figure 9: Results of varying probe rate using tsp/sort/search/post on data with coverage 5, false positive rate 
0.005 and false negative rate 0.1. 
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1 50 100 150 

Figure 10: Result of random moves on chromosome 21 data. 


