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Abstract

Whereas acausal Bayesian networks rep-
resent probabilistic independence, causal
Bayesian networks represent causal relation-
ships. In this paper, we examine Bayesian
methods for learning both types of networks.
Bayesian methods for learning acausal net-
works are fairly well developed. These meth-
ods often employ assumptions to facilitate
the construction of priors, including the as-
sumptions of parameter independence, pa-
rameter modularity, and likelihood equiva-
lence. We show that although these assump-
tions also can be appropriate for learning
causal networks, we need additional assump-
tions in order to learn causal networks. We
introduce two sufficient assumptions, called
mechanism independence and component in-
dependence. We show that these new as-
sumptions, when combined with parame-
ter independence, parameter modularity, and
likelihood equivalence, allow us to apply
methods for learning acausal networks to
learn causal networks.

1 Introduction

There has been a great deal of recent interest in
Bayesian methods for learning Bayesian networks from
data (Spiegelhalter and Lauritzen 1990; Cooper and
Herskovits, 1991, 1992; Buntine, 1991, 1994; Spiegel-
halter et al. 1993; Madigan and Raftery, 1994, Heck-
erman et al. 1994, 1995). These methods take prior
knowledge of a domain and statistical data, and con-
struct one or more Bayesian-network models of the do-
main. Most of this work has concentrated on Bayesian
networks interpreted as a representation of probabilis-
tic conditional independence. Nonetheless, several re-
searchers have proposed a causal interpretation for
Bayesian networks (Pearl and Verma 1991; Spirtes et

al. 1993; Heckerman and Shachter 1994). These re-
searchers show that having a causal interpretation can
be important, because it allows us to predict the affects
of interventions in a domain—something that cannot
be done without a causal interpretation.

In this paper, we extend Bayesian methods for learn-
ing acausal Bayesian networks to causal Bayesian net-
works. We offer two contributions. One, we show that
acausal and causal Bayesian networks (or acausal and
causal networks, for short) are significantly different in
their semantics, and that it is inappropriate to blindly
apply methods for learning acausal networks to causal
networks. Two, despite these differences, we identify
circumstances in which methods for learning acausal
networks are applicable to learning causal networks.

In Section 2, we describe a causal interpretation
of Bayesian networks developed by Heckerman and
Shachter [1994, 1995] that is consistent with Pearl’s
causal-theory interpretation (e.g., Pearl and Verma
[1991] and Pearl [1995a]). We show that any causal
network can be represented as a special type of influ-
ence diagram. In Section 3, we review Bayesian meth-
ods for learning acausal networks, showing how var-
ious assumptions and properties—namely, parameter
independence, parameter modularity, and hypothesis
equivalence—facilitate the learning task. In Section 4,
we show how these methods for learning acausal net-
works can be adapted to learn ordinary influence di-
agrams. In Section 5, we identify problems with this
approach when learning influence diagrams that cor-
respond to causal networks. We identify two assump-
tions, called mechanism independence and component
independence that circumvent these problems. In Sec-
tion 6, we argue that the assumption of parameter
modularity is reasonable for learning causal networks,
and that the property of hypothesis equivalence should
be replaced with a weaker assumption called likelihood
equivalence. We show that, given the assumptions of
parameter independence, parameter modularity, likeli-
hood equivalence, mechanism independence, and com-
ponent independence, we can use methods for learning
acausal networks to learn causal networks.



We assume that the reader is familiar the concept of
random sample, the distinction between subjective and
objective probability (which we call probability and
physical probability, respectively), and the distinction
between chance and decision variables. (We sometimes
refer to a decision variable simply as a “decision.”) We
consider the problem of modeling relationships in a
domain consisting of chance variables U and decision
variables D. We use lower-case letters to represent sin-
gle variables and upper-case letters to represent sets of
variables. We write x = k to denote that variable x is
in state k. When we observe the state for every vari-
able in set X , we call this set of observations a state
of X , and write X = k. Sometimes, we leave the state
of a variable or a set of variables implicit. We use
p(X = j|Y = k, ξ) to denote the (subjective) proba-
bility that X = j given Y = k for a person whose state
of information is ξ; whereas, we use pp(X = j|Y = k)
to denote the physical probability of this conditional
event.

An influence diagram for the domain U ∪D is a model
for that domain having a structural component and
a probabilistic component. The structure of an influ-
ence diagram is a directed acyclic graph containing
(square) decision and (oval) chance nodes correspond-
ing to decision and chance variables, respectively, as
well as information and relevance arcs. Information
arcs, which point to decision nodes, represent what is
known at the time decisions are made. Relevance arcs,
which point to chance nodes, represent (by their ab-
sence) assertions of conditional independence. Associ-
ated with each chance node x in an influence diagram
are the probability distributions p(x|Pa(x), ξ), where
Pa(x) are the parents of x in the diagram. These dis-
tributions in combination with the assertions of condi-
tional independence determine the joint distributions
p(U |D, ξ). A special kind of chance node is the deter-
ministic node (depicted as a double oval). A node x
is a deterministic node if its corresponding variable is
a deterministic function of its parents. Also, an influ-
ence diagram may contain a single distinguished node,
called a utility node that encodes the decision maker’s
utility for each state of the node’s parents. A utility
node is a deterministic function of its predecessors and
can have no children. Finally, for an influence diagram
to be well formed, its decisions must be totally ordered
by the influence-diagram structure. (For more details,
see Howard [1981].)

An acausal Bayesian network is an influence diagram
that contains no decision nodes (and, therefore, no in-
formation arcs). That is, an acausal Bayesian network
represents only assertions of conditional independence.
(For more details, see Pearl [1988].)
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Figure 1: (a) A causal network. (b) A corresponding
influence diagram. Double ovals denote deterministic
nodes.

2 Causal Networks

In this section, we describe causal Bayesian networks
and how we can represent them as influence diagrams.
The influence-diagram representation that we describe
is identical to Pearl’s causal theory, with one exception
to be discussed. Rather than present the representa-
tion directly, we follow the approach of Heckerman and
Shachter (1994 and this proceedings) who define cause
and effect, and then develop from this definition the
influence-diagram representation of causal networks.

Roughly speaking, a causal network for a domain of
chance variables U is a directed acyclic graph where
nodes correspond to the chance variables in U and each
nonroot node is the direct causal effect of its parents
(Pearl and Verma, 1991). An example of a causal net-
work is shown in Figure 1a. The diagram indicates
that whether or not a car starts is caused by the con-
dition of its battery and fuel supply, that whether or
not a car moves is caused by whether or not it starts,
and that (in this model) the condition of the battery
and the fuel supply have no causes. In this example,
we assume that all variables are binary.

Before we develop the influence-diagram representa-
tion of a causal network, we need to introduce the con-
cepts of unresponsiveness, set decision, mapping vari-
able, cause, causal mechanism, and canonical form.
To understand the notion of unresponsiveness, con-
sider the simple decision d of whether or not to bet
heads or tails on the outcome of a coin flip c. Let the
variable w represent whether or not we win. Thus, w
is a deterministic function of d and c: we win if and
only if the outcome of the coin matches our bet. Let
us assume that the coin is fair (i.e., p(heads|ξ) = 1/2),
and that the person who flips the coin does not know
how we bet.

In this example, we are uncertain whether or not the
coin will come up heads, but we are certain that what-
ever the outcome, it will be the same even if we choose
to bet differently. We say that c is unresponsive to d.
We cannot make the same claim about the relationship



between d and w. Namely, we know that w depends
on d in the sense that if we bet differently then w will
be different. For example, we know that if we will win
by betting heads then we will loose by betting tails.
We say that w is responsive to d.

In general, to determine whether or not chance vari-
able x is unresponsive to decision d, we have to an-
swer the query “Will the outcome of x be the same no
matter how we choose d?” Queries of this form are a
simple type of counterfactual query, discussed in the
philosophical literature (e.g., Lewis [1979]). It is inter-
esting that, in many cases, it is easy to answer such
a query, even though we are uncertain about the out-
come of x. Note that when x is unresponsive to d, x
and d must be probabilistically independent; whereas,
the converse does not hold.

To understand the concept of a set decision, consider
the chance variable battery? in our automobile exam-
ple. Let us assume that it has only two states: “good”
and “bad.” Although battery? is a chance variable, we
can imagine taking an action that will force the vari-
able into one of its possible states. If this action has no
side effects on the other variables in the model other
than those required by the causal interactions in the
domain, we say that we are setting the variable. For
example, we can force the battery to fail by blowing
up the car. This action, however, will also force the
variable fuel? to become empty, and therefore does
not qualify as a setting of battery?. In contrast, if
we force the battery to fail by emptying the battery
fluid on the ground, the only side effects will be those
that follow from the causal interactions in the domain.
Consequently, this action qualifies as a setting of bat-

tery?. We can extend the idea of setting a variable to
a decision variable. Namely, we set a decision variable
simply by choosing one of its alternatives.

A set decision for chance variable x, denoted x̂, is a de-
cision variable whose alternatives are “set x to k” for
each state k of x and “do nothing.” In our example,
the set decision corresponding battery? has three al-
ternatives: “set the battery to be good,” “set the bat-
tery to be bad,” and “do nothing.” Pearl and Verma
(1991) introduce the concepts of setting a variable and
set decision as primitives. Heckerman and Shachter (in
this proceedings) formalize these concepts in terms of
unresponsiveness.

To understand the concept of a mapping variable, sup-
pose we have a collection of variables Y (which may in-
clude both chance and decision variables) and a chance
variable x. We can imagine setting Y to each of its
states and observing x—that is, observing how Y maps
to x. A mapping variable x(Y ) is a chance variable
whose states correspond to all the possible mappings
from Y to x. For example, consider the variables s
(start?) and m (move?) in our automobile example.
The states of the mapping variable m(s) are shown in

Table 1: The four states of the mapping variable m(s).

state 1 state 2 state 3 state 4
start no yes no yes no yes no yes
move no yes no no yes yes yes no

Table 1. The first state represents the normal situa-
tion. That is, if we make the car start (in the sense of
a set action), then it would move; and if we prevent
the car from starting, then it would not move. The
second state represents the situation where, regardless
of whether or not we make the car start, the car not
will move. This state would occur, for example, if a
parking attendant placed a restraint on one of the car’s
tires. Note that, by definition, x will always be a de-
terministic function of the mapping variable x(Y ) and
the variables Y . For example, if m(s) =“state 4” and
s =“yes,” then m =“no”.

We can observe the mapping variable m(s) directly.
Namely, we can see if the car moves before and after
we start the car. In general, however, mapping vari-
ables cannot be fully observed. For example, consider
the decision x of whether to continue or quit smok-
ing and the chance variable y representing whether or
not we get lung cancer before we reach sixty years of
age. In this case, we cannot fully observe the mapping
variable y(x), because we cannot observe whether or
not we get lung cancer given both possible choices.
In general, a mapping variable represents a counter-
factual set of possible outcomes, only one of which we
can actually observe. Rubin (1978) and Howard (1990)
define concepts similar to the mapping variable.

Given these concepts, Heckerman and Shachter (1994
and this proceedings) say that a set of variables C are

causes for x with respect to decisions D if (1) x 6∈ C
and (2) C is a minimal set of variables such that x(C)
is unresponsive to D. Roughly speaking, C is a cause
for x with respect to D if the way C affects x is not
affected by D. This explication of cause is unusual in
that it is conditioned on a set of decisions. Heckerman
and Shachter discuss the advantages of this approach.
When C are causes of x with respect to D, we call the
mapping variable x(C) a causal mechanism or simply
a mechanism.

Given chance variables U and decisions D, Heckerman
and Shachter show that we can construct an influence
diagram that represents causes for each caused variable
in U as follows. First, we add a node to the diagram
corresponding to each variable in U ∪D. Next, we or-
der the variables x1, . . . , xn in U so that the variables
unresponsive to D come first. Then, for each variable
xi in U in order, if xi is responsive to D we (1) add a
causal-mechanism node xi(Ci) to the diagram, where
Ci ⊆ D ∪ {x1, . . . , xi−1}, and (2) make xi a determin-
istic function of Ci ∪ xi(Ci). Finally, we assess depen-
dencies among the variables that are unresponsive D.



They show that the resulting influence diagram has the
following two properties: (1) all chance nodes that are
responsive to D are descendants of decision nodes and
(2) all nodes that are descendants of decision nodes
are deterministic nodes. Influence diagrams that sat-
isfy these conditions are said to be in canonical form.

We note that information arcs and a utility node may
be added to canonical form influence diagrams, but
these constructs are not needed for the representation
of cause and are not used in this discussion.

We can use an influence diagram in canonical form to
represent the causal relationships depicted in a causal
network. Suppose we have a set of chance variables
U , a corresponding collection of set decisions Û for U ,
and a causal network for U . Let Pa(x) be the parents
of x in the causal network. Then, we can interpret the
causal network to mean that, for all x, Pa(x) ∪ {x̂}

is a set of causes for x with respect Û . Now, if we
construct an influence diagram in canonical form as we
have described, using an ordering consistent with the
causal network, then we obtain an influence diagram
where each variable x is a deterministic function of
the set decision x̂, Pa(x), and the causal mechanism
x(Pa(x), x̂). By the definition of a set decision, we can
simplify the deterministic relationship by replacing the
causal mechanism x(Pa(x), x̂) with x(Pa(x)), which
denotes the mappings from Pa(x) to x when x̂ is set to
“do nothing.” For example, in our automobile domain,
if m(s) = state 4, ŝ =“do nothing,” and s = yes, then
m = no.

The transformation from causal network to canonical
form influence diagram for our automobile domain is
illustrated in Figure 1. We call the variables in the
original causal network domain variables. Each do-
main variable appears in the influence diagram, and is
a function of its set decision x̂, its parents in the causal
network Pa(x), and the mapping variable x(Pa(x)).
(Note that x(∅) = x when x̂ =“do nothing”.) The
mechanisms and set decisions are independent, be-
cause, as is required by canonical form, the mecha-
nisms are unresponsive to the set decisions. Although
not required by the canonical-form representation, the
mechanisms are mutually independent in this example.

In general, this influence-diagram representation of a
causal network is identical to Pearl’s causal theory,
with the exception that Pearl requires the mechanisms
(which he calls disturbances) to be independent. One
desirable consequence of this restriction is that the
variables in the causal network will exhibit the con-
ditional independencies that we would obtain by in-
terpreting the causal network as an acausal network
(Spirtes et al., 1993; Pearl, 1995a). For example, the
independence of causal mechanisms in our example
yield the following conditional independencies:

p(f |b, ξ) = p(f |ξ) p(m|b, f, s, ξ) = p(m|s, ξ)

We obtain these same independencies when we inter-
pret the causal network in Figure 1a as an acausal
network. Nonetheless, as we shall illustrate, depen-
dent mechanisms cannot be excluded in general.

3 Learning Acausal Networks

Given the correspondence in the previous section, we
see that learning causal networks is a special case
of learning influence diagrams in canonical form. In
this section, we review methods for learning acausal
Bayesian networks, such as those described by Spiegel-
halter and Lauritzen (1990), Cooper and Herskovits
(1991, 1992), Buntine (1991, 1994), Spiegelhalter et
al., (1993), Madigan and Raftery (1994), and Hecker-
man et al. (1994, 1995). In the following sections, we
show how these methods can be extended to learn ar-
bitrary influence diagrams and influence diagrams in
canonical form.

Suppose we have a domain consisting of chance vari-
ables U = {x1, . . . , xn}. Also, suppose we have a
database of cases C = {C1, . . . , Cm} where each case
Cl contains observations of one or more variables in
U . The basic assumption underlying the Bayesian ap-
proach is that the database C is a random sample from
U with joint physical probability distribution pp(U).
As is done traditionally, we can characterize this phys-
ical probability distribution by a finite set of parame-
ters ΘU . For example, if U contains only continuous
variables, pp(U) may be a multivariate-Gaussian dis-
tribution with parameters specifying the distribution’s
means and covariances. In this paper, we limit our dis-
cussion to domains containing only discrete variables.
Therefore, the parameters ΘU correspond exactly to
the physical probabilities in the distribution pp(U).
(We shall use the Θ and pp notation interchangeably.)

In the general Bayesian approach to learning about
these uncertain parameters, we assess prior distribu-
tions for them, and then compute their posterior distri-
butions given the database. In the paradigm of learn-
ing acausal Bayesian networks, we add one twist to this
general approach: we assume that the physical proba-
bility distribution pp(U) is constrained such that it can
be encoded in some acausal-network structure whose
identity is possibly uncertain.

To start with a special case, let us suppose that pp(U)
can be encoded in some known acausal-network struc-
ture Bs, and that we are uncertain only about the
values of the probabilities associated with this net-
work structure. We say that the database is a ran-

dom sample from Bs. Given this situation, it turns
out the database C can be separated into a set of ran-
dom samples, where these random samples are deter-
mined by the structure of Bs. For example, consider
the domain consisting of two variables x, where each
variables has possible states 0 and 1. Then, the asser-
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Figure 2: (a) Conditional independencies associated
with the assertion that the database is a random sam-
ple from the structure x→ y, where x and y are binary.
(b) The additional assumption of parameter indepen-
dence.

tion that the database is a random sample from the
structure x→ y is equivalent to the assertion that the
database can be separated into at most three random
samples: (1) the observations of x are a binomial sam-
ple with parameter θx=1, (2) the observations of y in
those cases (if any) where x = 0 are a binomial sample
with parameter θy=1|x=0, and (3) the observations of
y in those cases (if any) where x = 1 are a binomial
sample with parameter θy=1|x=1. Figure 2a contains
an acausal network that illustrates some of the condi-
tional independencies among the database cases and
network parameters for this assertion.

Given this decomposition into random samples, we can
update each parameter independently under two con-
ditions: (1) the parameters are independent, an as-
sumption we call parameter independence, and (2) the
database is complete (i.e., every variable is observed
in every case). The assumption of parameter indepen-
dence is illustrated in Figure 2b.

Let us examine this updating for an arbitrary acausal-
network structure Bs for domain U . We discuss the
situation where data may be missing later in this sec-
tion. Let ri be the number of states of variable xi;
and let qi =

∏

xl∈Pa(xi)
rl be the number of states of

Pa(xi). Let θijk denote the parameter corresponding
to the physical probability p(xi = k|Pa(xi) = j, ξ)
(θijk > 0;

∑ri

k=1 θijk = 1). In addition, we define

Θij ≡ ∪
ri

k=1{θijk} ΘBs ≡ ∪
n
i=1 ∪

qi

j=1 Θij

That is, the parameters ΘBs correspond to the physi-
cal probabilities of the acausal-network structure Bs.

To illustrate the updating approach, suppose that each
variable set Θij has a Dirichlet distribution:

p(Θij |B
h
s , ξ) = c ·

ri
∏

k=1

θ
N ′

ijk−1

ijk (1)

where Bh
s is the assertion (or “hypothesis”) that

the database is a random sample from the network

structure Bs, and c is some normalization constant.
Then, given parameter independence and a complete
database, if Nijk is the number of cases in database C
in which xi = k and Pa(xi) = j, we obtain

p(Θij |C, B
h
s , ξ) = c ·

∏

k

θ
N ′

ijk+Nijk−1

ijk (2)

where c is some other normalization constant. Fur-
thermore, taking the expectation of θijk with respect
to the distribution for Θij for every i and j, we obtain
the probability that each xi = k and Pa(xi) = j in
Cm+1 (the next case Cm+1 to be seen after seeing the
database):

p(Cm+1|C, B
h
s , ξ) =

n
∏

i=1

qi
∏

j=1

N ′
ijk + Nijk

N ′
ij + Nij

(3)

where N ′
ij =

∑ri

k=1 N ′
ijk and Nij =

∑ri

k=1 Nijk.

Now, suppose we are not only uncertain about the
probabilities, but also uncertain about the structure
that encodes them. We express this uncertainty by
assigning a prior probability p(Bh

s |ξ) to each possible
hypothesis Bh

s , and update these probabilities as we
see cases. In so doing, we learn about the structure of
the domain. From Bayes’ theorem, we have

p(Bh
s |C, ξ) = c p(Bh

s |ξ) p(C|Bh
s , ξ) (4)

where c is a normalization constant. Also, from the
product rule, we have

p(C|Bh
s , ξ) =

m
∏

l=1

p(Cl|C1, . . . , Cl−1, B
h
s , ξ) (5)

We can evaluate each term on the right-hand-side of
this equation using Equation 3, under the assumption
that the database C is complete. For the posterior
probability of Bh

s given C, we obtain

p(Bh
s |C, ξ) = c · p(Bh

s |ξ) (6)

·
n

∏

i=1

qi
∏

j=1

Γ(N ′
ij)

Γ(N ′
ij + Nij)

·
ri
∏

k=1

Γ(N ′
ijk + Nijk)

Γ(N ′
ijk)

Using these posterior probabilities and Equation 3, we
can compute the probability distribution for the next
case to be observed after we have seen a database.
From the expansion rule, we obtain

p(Cm+1|C, ξ) =
∑

Bh
s

p(Cm+1|C, B
h
s , ξ) p(Bh

s |C, ξ) (7)

When the database contains missing data, we can
compute p(Bh

s |C, ξ) exactly, by summing the result
of Equation 5 over all possible completions of the
database (see Section 7). Unfortunately, this approach



is intractable when many observations are missing.
Consequently, we often use approximate methods such
as filling in missing data based on the data that is
present (Titterington, 1976; Cowell et al., 1995), the
EM algorithm (Dempster et al., 1977), and Gibbs sam-
pling (York, 1992; Madigan and Raftery, 1994).

When we believe that only a few network structures
are possible, the approach we have discussed is es-
sentially all there is to learning network structure.
Namely, we directly assess the priors for the possible
network structures and their parameters, and subse-
quently use Equations 3 and 7 or their generalizations
for continuous variables and missing data. Nonethe-
less, the number of network structures for a domain
containing n variables is more than exponential in n.
Consequently, when we cannot exclude almost all of
these network structures, we need efficient methods
for assigning priors to structures and parameters (e.g.,
Buntine [1991], Spiegelhalter et al. [1993], and Heck-
erman et al. [1995]), as well as search methods for
identifying structures that contribute significantly to
the sum in Equation 3 (e.g., Cooper and Herskovits
[1992] and Heckerman et al. [1995]).

Here, we review an efficient method described by Heck-
erman et al. [1995] for assigning priors to the param-
eters of all possible network structures. In their ap-
proach, a user assesses a prior network: an acausal
Bayesian network for the first case to be seen in
database, under the assumption that there are no con-
straints on the parameters. More formally, this prior
network represents the joint probability distribution
p(C1|B

h
sc, ξ), where Bsc is any network structure con-

taining no missing arcs. Then, the user assesses an
equivalent sample size N ′ for this prior network. (N ′

is a measure of the user’s confidence in his assessment
of the prior network.) Then, for any given network
structure Bs, where xi has parents Pa(xi), we com-
pute the Dirichlet exponents in Equation 1 using the
relation

N ′
ijk = N ′ · p(xi = k, Pa(xi) = j|Bh

sc, ξ) (8)

where the probability is computed from the prior net-
work.

Heckerman et al. [1995] derive this approach from the
assumption of parameter independence, an additional
assumption called parameter modularity, and a prop-
erty called hypothesis equivalence. The property of
hypothesis equivalence stems from the fact that two
acausal-network structures can be equivalent—that is,
represent exactly the same sets of probability distribu-
tions (Verma and Pearl, 1990). For example, for the
three variable domain {x, y, z}, each of the network
structures x → y → z, x ← y → z, and x ← y ← z
represents the distributions where x and z are condi-
tionally independent of y, and are therefore equivalent.
Given the definition of the hypothesis Bh

s , it follows

that the hypotheses corresponding to two equivalent
structures must be the same, which is the property of
hypothesis equivalence.

The assumption of parameter modularity says that,
given two network structures Bs1 and Bs2, if xi has
the same parents in Bs1 and Bs2, then

p(Θij |B
h
s1, ξ) = p(Θij |B

h
s2, ξ)

for j = 1, . . . , qi. Heckerman et al. [1995] call this
property parameter modularity, because it says that
the distributions for parameters Θij depend only on
the structure of the network that is local to variable
xi—namely, Θij only depends on xi and its parents. In
Section 6, we examine the appropriateness of hypothe-
sis equivalence and parameter modularity for learning
causal networks.

4 Learning Influence Diagrams

Before we consider the problem of learning influence
diagrams that correspond to causal networks, let us
examine the task of learning arbitrary influence dia-
grams.

This task is straightforward once we make the follow-
ing observations. One, by the definitions of informa-
tion arc and utility node, information arcs and the
predecessors of a utility node are known with certainty
by the decision maker and, therefore, are not learned.1

Thus, we need only learn the relevance-arc structure
and the physical probabilities associated with chance
nodes. Two, by definition of a decision, the states
of all decision variables are known by the decision
maker in every case. Thus, assuming these decisions
are recorded, we have complete data for D in every
case of the database.

Given these observations, it follows that the problem
of learning influence diagrams for the domain U∪D re-
duces to the problem of learning acausal Bayesian net-
works for U ∪D, where we interpret the decision vari-
ables D as chance variables. The only caveat is that
the learned relevance-arc structures will be constrained
by the influence-diagram semantics. In particular, a
relevance-arc structure is eligible to be learned (i.e.,
has a corresponding hypothesis that can have a non-
zero prior) if and only if (1) every node in D is a
root node and (2) that structure when combined with
the information-arc structure declared by the decision
maker contains no directed cycles. (Note that both of
these constraints are satisfied by canonical-form rep-
resentations of causal networks.)

1For simplicity of presentation, we assume that
information-arc and utility-node structure is identical for
all cases in the database.
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Figure 3: (a) A decomposition of the mapping variable
y(x). (b) The assumption of component independence.

5 Learning Causal-Network
Parameters

In this section, we consider aspects of learning influ-
ence diagrams peculiar to influence diagrams in canon-
ical form. In this discussion, we assume that the struc-
ture of the influence diagram is known, and that we
need to learn only the parameters of the structure.

One difficulty associated with learning influence di-
agrams in canonical form occurs in domains where
we can set variables only once (or a small number of
times) so that the mechanisms are not fully observ-
able. For example, recall our decision to continue or
quit smoking where x denotes our decision and y de-
notes whether or not we get lung cancer before the age
of sixty. In this case, we cannot fully observe the map-
ping variable y(x), because we cannot observe whether
or not we get lung cancer for both possible choices.
Given any one choice for x and observation of y, we
exclude only two of the four states of y(x). Conse-
quently, it would seem that learning about y(x) would
be difficult if not impossible.

We can understand this difficulty in another way.
Given any mapping variable y(X) where X has q
states, we can decompose y(X) into a set of variables
y(X = k1), . . . , y(X = kq), where variable y(X = k)
represents the variable y when X is set to state k.
We call these variables mechanism components. For
example, Figure 3a illustrates the components of the
mechanism variable y(x), where x is a binary variable.
Note that, by the definition of a mechanism compo-
nent, we have

pp(y(X = k)) = pp(y|X = k) (9)

An analogous equation holds for (subjective) probabil-
ities.

Given this decomposition, the a setting of X and the
observation of y is equivalent to the observation of ex-
actly one of the components of y(X). Thus, if we can
set X only once, as in the smoking example, we can

not observe multiple mechanism components. Con-
sequently, we cannot learn about the physical proba-
bilities that characterize the dependencies among the
components. Holland (1986) calls this problem, albeit
in a different mathematical formalism, the “fundamen-
tal problem with causal inference.”

To circumvent this problem, we can assume that mech-
anism components are independent, an assumption we
call component independence.2 If this assumption is in-
correct, then we will not learn correct counterfactual
relationships. Regardless of the assumption’s correct-
ness, however, we can correctly quantify the affects of
a single setting action.

For example, in the smoking decision, the mechanism
components are clearly dependent: Knowing that we
quit and got lung cancer (y(x = 0) = 1) makes it
more likely that we would have gotten lung cancer
had we continued (y(x = 1) = 1). Nonetheless,
suppose we assume the components are independent
and learn the physical probabilities from a database
of cases. Then, although we learn incorrect coun-
terfactual relationships—namely, that y(x = 0) and
y(x = 1) are independent—we can still learn the cor-
rect marginal physical probabilities associated with
both mechanism components. Thus, by Equation 9,
we can learn the correct physical probability that that
we will get cancer if we continue to smoke as well as
the correct physical probability of cancer if we quit
smoking.

A second complication with learning influence dia-
grams in canonical form is the possible dependency
among different mechanisms. For example, suppose
we model the voltages in a logic circuit containing two
buffers in series as shown in Figure 4a. Here, x and
z represent the input and output voltages of the cir-
cuit, respectively, and y represents the voltage between
the two buffers. The causal network for this circuit is
x → y → z. The corresponding influence diagram
in canonical form is shown in Figure 4b. The causal
mechanism y(x) represents the possible mappings from
the input to the output of the first buffer. The possi-
ble states of y(x) are “output normal,” “output always
zero,” “output always one,” and “output inverted”.
That is, this causal mechanism is a representation of
the working status of the buffer. Similarly, the map-
ping variable z(y) represents the working status of the
second buffer. Thus, these mechanisms will be depen-
dent whenever buffer function is dependent—for ex-
ample, when it is possible for the circuit to overheat
and cause both buffers to fail.

2We note that, from Equation 9, under the assumption
of component independence, we can fill in the probability
tables associated with the canonical-form representation
of a causal network by copying the probabilities associated
with that causal network. Without this assumption, the
canonical-form representation requires additional probabil-
ity assessments.
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Figure 4: (a) A logic circuit containing two buffers in
series. (b) A causal network for the circuit, represented
as an influence diagram in canonical form.

Dependent mechanisms lead to practical problems.
Namely, given the large number of states typically as-
sociated with mapping variables, the assessment of pri-
ors is difficult, and we require vast amounts of data to
learn. Fortunately, we can often introduce additional
domain variables in order to render mechanisms in-
dependent. In our circuit example, if we add to our
domain the variable t representing the temperature of
the circuit, then the new mechanisms y(x, t) and z(y, t)
will be independent. This solution sometimes creates
a another problem with learning: we may not be able
to observe the variables we introduce. We address this
issue in Section 7.

Given mechanism independence and component inde-
pendence for all mechanisms, the only chance variables
that remain in a canonical form influence diagram are
mutually independent mechanism components. Con-
sequently, if we also assume parameter independence,
then the problem of learning a causal network essen-
tially reduces that of learning an acausal network.

To illustrate this equivalence, consider again our two
binary-variable domain, and assume that the database
is a random sample from an influence diagram corre-
sponding to the causal network x → y. Given the
assumptions of mechanism, component, and param-
eter independence, we have the influence diagram in
Figure 5a, where the deterministic functions for x and
y are given by

x =

{

x(∅) if x̂ = “do nothing′′

k if x̂ = “set x to k′′

y =

{

y(x = j) if ŷ = “do nothing′′ and x = j
k if ŷ = “set y to k′′

by the definitions of set decision and mechanism com-
ponent.

Now, suppose that all the set decisions are “do noth-
ing.” In this situation, if we integrate out the mech-
anism variables from the diagram (as discussed in

Shachter [1986]), then we obtain the influence diagram
shown in Figure 5b. This structure is equivalent to the
one shown in Figure 2b for learning the acausal net-
work x → y. Thus, we can update the parameters of
the causal network x→ y just as update those for the
corresponding acausal network.

This result generalizes to arbitrary causal networks.
In particular, if all set decisions in a particular case
Cl are “do nothing,” we say the that observations of
the domain variables in Cl are non-experimental data.
Otherwise, we say that the observations are experi-

mental data. Given a case of non-experimental data,
we update the parameters of a causal network just as
we would the parameters of the corresponding acausal
network (assuming mechanism, component, and pa-
rameter independence).

The updating procedure for experimental data is
slightly different from that for non-experimental data.
In our two-variable example, if we set y and observe x
(with x̂ set to “do nothing”), then we obatin the influ-
ence diagram shown in Figure 5c. Here, the arcs to y
are removed, because we have set the variable y. Con-
sequently, neither θy=1|x=0 nor θy=1|x=1 are updated
given this data. In general, to update the parameters
for a canonical form influence diagram given experi-
mental data where we have set xi, we break all arcs
to xi, and update the parameters as we would for an
acausal network.

6 Learning Causal-Network Structure

In Section 3, we saw that, given the assumptions of
parameter independence, parameter modularity, and
hypothesis equivalence, we can assess priors for the
parameters of all possible acausal-network structures
by constructing a single prior network for the first case
to be seen in the database and assessing an equivalent
sample size (confidence) for this prior network. Thus,
given the discussion in the previous section, it follows
that we can use this prior-network methodology to
establish priors for causal-network learning, provided
we assume mechanism independence, component inde-
pendence, parameter independence, parameter modu-
larity, and hypothesis equivalence. In this section, we
examine the assumptions of parameter modularity and
likelihood equivalence for learning causal networks.

The assumption of parameter modularity has a com-
pelling justification in the context of causal networks.
Namely, suppose a domain variable x has the same par-
ents Pa(x) in two possible causal-network structures.
Then, it is reasonable to believe that the causal mech-
anism x(Pa(x)) should be the same given either struc-
ture. It follows that its parameters Θx|Pa(x) for both
structures must have the same prior distributions—
that is, parameter modularity must hold.
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Figure 5: (a) Mechanism independence, component independence, and parameter independence associated with
the causal network x → y. (b,c) Corresponding diagrams when (b) x̂ and ŷ are “do nothing” and (c) x̂ =“do
nothing” and ŷ 6=“do nothing.”

In contrast, the property of hypothesis equivalence
cannot be applied to causal networks. For example,
in our two-variable domain, the causal network x→ y
represents the assertion that x causes y, whereas the
causal network y → x represents the assertion that
y causes x. Now, it is possible for both x to cause
y and vice versa when the two variables are some-
how deterministically related (e.g., consider the vari-
ables pressure and volume in a closed physical system).
Barring such deterministic relationships, however, the
hypotheses corresponding to these two network struc-
tures are mutually exclusive. Consequently, hypothe-
sis equivalence does not hold.

Nonetheless, when we know little about the structure
of a domain, we have often found it reasonable to as-
sume that data cannot help to distinguish between
equivalence network structures. To express this as-
sumption formally, let ΘU denote the parameters of
the joint space, and let Ch

s denote the hypothesis that
the database is a random sample from the influence di-
agram corresponding to the causal-network structure
Cs. Then, we have

p(ΘU |C
h
s1, ξ) = p(ΘU |C

h
s2, ξ)

whenever the causal-network structures Cs1 and Cs2

are equivalent (when interpreted as acausal networks).
We call this assumption likelihood equivalence. Hecker-
man et al. [1995] show that the prior-network method-
ology is still justified when we replace the assumption
of hypothesis equivalence with that of likelihood equiv-
alence.

Under the assumptions of mechanism, component, and
parameter independence, the assumption of likelihood
equivalence has an interesting characterization. Con-
sider again our two-variable domain. Suppose we
know nothing about the domain, having uninforma-
tive Dirichlet priors on the parameters of both net-
work structures (all Dirichlet exponents arbitrarily
close to −1). Further, suppose we adopt the as-
sumption of likelihood equivalence for the two net-
work structures x → y and y → x. Now, suppose
we obtain a single case of experimental data where

we set x = 1 and observe y = 1. According to
our updating procedure described in the previous sec-
tion, for the network structure x → y, we update
the parameter θy=1|x=1, but not the parameter θx=1.
In contrast, for the network structure y → x, we
update the parameter θy=1, but not the parameter
θx=1|y=1. As a result, our posterior distributions for
ΘU = {θx=0,y=0, θx=0,y=1, θx=1,y=0, θx=1,y=1} will no
longer satisfy likelihood equivalence. One can show
that, for any domain, if we have an uninformative
Dirichlet prior for that domain and we are given a
database containing experimental data, then the re-
sulting posterior distributions for ΘU will violate like-
lihood equivalence. Therefore, we can assess whether
or not likelihood equivalence holds by asking ourselves
whether or not our prior knowledge is equivalent to
having seen only non-experimental data.

We note that the assumption of likelihood equivalence
tends to be less reasonable for more familiar domains.
For example, a doctor may be uncertain as to whether
disease d1 causes disease d2 or vice versa, but he may
have well-defined hypotheses about why d1 causes dis-
ease d2 and vice versa. In this case, the assumption of
likelihood equivalence would likely be unreasonable.

We emphasize that experimental data can be crucial
for learning causal structure. In our two-variable do-
main, suppose we believe that either x causes y or y
causes x. Then, if we set x to different states and learn
that the probability of y depends on x, then we learn
that x causes y. To verify this relation, we can set y
to different states and check that the probability of x
remains the same. Conversely, if we set y to different
states and learn that the probability of x depends on
y, then we learn that y causes x.

Also, we may need experimental data to quantify the
effects of intervention—for example, to learn the phys-
ical probability distribution pp(y|x̂ = 1). Given a
causal structure, however, there are situations where
we can quantify the effects of intervention using ob-
servational data only (Pearl and Verma, 1991; Pearl,
1995a).



7 Learning Hidden Variables

In Section 5, we saw that we could often remove de-
pendencies between causal mechanisms by adding ad-
ditional domain variables. In many situations, how-
ever, we can never observe these variables. We say
that these variables are hidden.

As we have discussed, methods for learning acausal
networks with missing data are known (e.g., exact,
EM, Gibbs sampling). These methods can be applied
to databases containing hidden variables. Thus, un-
der the assumptions of mechanism independence, com-
ponent independence, parameter independence, pa-
rameter modularity, and likelihood equivalence, we
can learn causal networks with hidden variables using
these methods in conjunction with the prior-network
methodology.

To illustrate this approach, let us consider a simple
medical domain containing two observable variables h
and l representing the presence or absence of heart dis-
ease and lung disease, respectively, and a hidden vari-
able g representing the presence or absence of a gene
that predisposes one to both diseases. Two possible
causal-network structures for this domain are shown
in Figure 6. In the network structure labeled Cs1, h
causes l, and g is a hidden common cause of both dis-
eases. In Cs2, the disease variables are related only
through the hidden common cause. Suppose that only
these two network-structure hypotheses are possible
and that they are equally likely a priori. In addi-
tion, suppose our prior network for this domain is Cs2

with the probabilities shown in Figure 6, and N ′ (the
equivalent sample size for this network) is 24. Finally
suppose we have a database C containing two cases
where—in both cases—all set decisions are “do noth-
ing,” h = 1 (heart disease present), and l = 1 (lung
disease present).

Because there are only two cases, we can compute the
posterior probabilities of both network-structure hy-
potheses exactly, using Equation 7 (which applies to
complete databases), Equation 8, and the relation

p(C|Ch

s , ξ) =

p(g1 = 1, h1 = 1, l1 = 1, g2 = 1, h2 = 1, l2 = 1|Ch

s , ξ) +

p(g1 = 0, h1 = 1, l1 = 1, g2 = 1, h2 = 1, l2 = 1|Ch

s , ξ) +

p(g1 = 1, h1 = 1, l1 = 1, g2 = 0, h2 = 1, l2 = 1|Ch

s , ξ) +

p(g1 = 0, h1 = 1, l1 = 1, g2 = 0, h2 = 1, l2 = 1|Ch

s , ξ)

where the subscripts on the variables denote case num-
bers. For example, from Equations 7 and 8, the first
term in this sum for Cs1 is given by

Γ(24)

Γ(26)

Γ(14)

Γ(12)

Γ(12)

Γ(14)

Γ(8)

Γ(6)

Γ(6)

Γ(8)

Γ(5)

Γ(3)
= 1/50

Performing the sums and applying Bayes’ theorem, we
obtain p(Ch

s1|C, ξ) = 0.51 and p(Ch
s2|C, ξ) = 0.49.

g

h l

genotype?

lung
disease?

heart
disease?

Cs1

p(l=1 | g=0,ξ) = 1/3
p(l=1 | g=1,ξ) = 1/2

p(h=1 | g=0,ξ) = 1/4
p(h=1 | g=1,ξ) = 1/2

g

h l

p(g=1|ξ) = 1/2Cs2

Figure 6: Two possible causal networks that explain an
observed dependence between heart and lung disease.

For domains containing hidden variables, Pearl
(1995b) has suggested a generalization of the assump-
tion of likelihood equivalence, which says that if two
causal networks are equivalent with respect to the dis-
tributions they encode for the observed variables, then
the parameters for those observed variables should
have identical priors. We call this property strong

likelihood equivalence. This property does not hold
in our simple medical example. Namely, the two net-
work structures Cs1 and Cs2 are equivalent with re-
spect to the variables h and l (i.e., both structures can
represent any joint distribution over these variables).
Nonetheless, as we saw in the previous example, ob-
servations can help to discriminate the two network
structures. Thus, given the assumptions of mecha-
nism and component independence, strong likelihood
equivalence is not consistent with our prior-network
methodology. That is, strong likelihood equivalence is
not consistent with the assumptions of parameter in-
dependence and parameter modularity. Consequently,
strong likelihood equivalence may lead to a method for
assessing priors on parameters that is an alternative to
the prior-network approach.

8 Learning More General Causal
Models

Our presentation has concentrated on domains where
all variables (except root nodes) have causes. We em-
phasize that this restriction is unnecessary, given the
definition of cause given by Heckerman and Shachter
(1994 and this proceedings). In particular, as shown
by these researchers, the relationships in domains
where only some variables have causes can be encoded
in canonical form. Consequently, we can often apply
the learning methods we have described to these more
general domains.
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