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Abstract

We extend the Bayesian Information Crite-
rion (BIC), an asymptotic approximation for
the marginal likelihood, to Bayesian networks
with hidden variables. This approximation
can be used to select models given large sam-
ples of data. The standard BIC as well as our
extension punishes the complexity of a model
according to the dimension of its parameters.
We argue that the dimension of a Bayesian
network with hidden variables is the rank of
the Jacobian matrix of the transformation
between the parameters of the network and
the parameters of the observable variables.
We compute the dimensions of several net-
works including the naive Bayes model with
a hidden root node.

1 Introduction

Learning Bayesian networks from data extends their
applicability to situations where data is easily obtained
and expert knowledge is expensive. Consequently, it
has been the subject of much research in recent years
(see e.g., Heckerman [1995] and Buntine [1996]). Re-
searchers have pursued two types of approaches for
learning Bayesian networks: one that uses indepen-
dence tests to direct a search among valid models
and another that uses a score to search for the best
scored network—a procedure known as model selec-

tion. Scores based on exact Bayesian computations
have been developed by (e.g.) Cooper and Herskovits
(1992), Spiegelhalter et al. (1993), Buntine (1994),
and Heckerman et al. (1995), and scores based on min-
imum description length (MDL) have been developed
in Lam and Bacchus (1993) and Suzuki (1993).

We consider a Bayesian approach to model selection.

∗This work was done at Microsoft Research.

Suppose we have a set {X1, . . . , Xn} = X of discrete
variables, and a set {x1, . . . ,xN} = D of cases, where
each case is an instance of some or of all the vari-
ables in X. Let (S, θs) be a Bayesian network, where
S is the network structure of the Bayesian network,
a directed acyclic graph such that each node Xi of S
is associated with a random variable Xi, and θs is a
set of parameters associated with the network struc-
ture. Let Sh stand for the hypothesis that the true
or objective joint distribution of X can be encoded in
the network structure S. Then, a Bayesian measure
of the goodness-of-fit of network structure S to D is
p(Sh|D) ∝ p(Sh)p(D|Sh), where p(D|Sh) is known as
the marginal likelihood of D given Sh.

The problem of model selection among Bayesian net-
works with hidden variables, that is, networks with
variables whose values are not observed is more dif-
ficult than model selection among networks without
hidden variables. First, the space of possible net-
works becomes infinite, and second, scoring each net-
work is computationally harder because one must ac-
count for all possible values of the missing variables
(Cooper and Herskovits, 1992). Our goal is to de-
velop a Bayesian scoring approach for networks that
include hidden variables. Obtaining such a score that
is computationally effective and conceptually simple
will allow us to select a model from among a set of
competing models.

Our approach is to use an asymptotic approximation
of the marginal likelihood. This asymptotic approx-
imation is known as the Bayesian Information Crite-
ria (BIC) (Schwarz, 1978), and is equivalent to Rissa-
nen’s (1987) minimum description length (MDL). Such
an asymptotic approximation has been carried out for
Bayesian networks by Herskovits (1991) and Bouckaert
(1995) when no hidden variables are present. Bouck-
aert (1995) shows that the marginal likelihood of data
D given a network structure S is given by

p(D|Sh) = H(S, D)N−1/2 dim(S) log(N)+O(1) (1)



where N is the sample size of the data, H(S, D) is
the entropy of the probability distribution obtained
by projecting the frequencies of observed cases into
the conditional probability tables of the Bayesian net-
work S, and dim(S) is the number of parameters in
S. Eq. 1 reveals the qualitative preferences made by
the Bayesian approach. First, with sufficient data, a
network structure that is an I-map of the true distribu-
tion is more likely than a network structure that is not
an I-map of the true distribution. Second, among all
network structures that are I-maps of the true distribu-
tion, the one with the minimum number of parameters
is more likely.

Eq. 1 was derived from an explicit formula for the
probability of a network given data by letting the sam-
ple size N run to infinity and using a Dirichlet prior
for its parameters. Nonetheless, Eq. 1 does not depend
on the selected prior. In Section 3, we use Laplace’s
method to rederive Eq. 1 without assuming a Dirich-
let prior. Our derivation is a standard application of
asymptotic Bayesian analysis. This derivation is useful
for gaining intuition for the hidden-variable case.

In section 4, we provide an approximation to the
marginal likelihood for Bayesian networks with hid-
den variables, and give a heuristic argument for this
approximation using Laplace’s method. We obtain the
following equation:

log p(S|D) ≈
log p(S|D, θ̂s)− 1/2 dim(S, θ̂s) log(N) (2)

where θ̂s is the maximum likelihood (ML) value for

the parameters of the network and dim(S, θ̂s) is the
dimension of S at the ML value for θs. The dimen-
sion of a model can be interpreted in two equivalent
ways. First, it is the number of free parameters needed
to represent the parameter space near the maximum
likelihood value. Second, it is the rank of the Jacobian
matrix of the transformation between the parameters
of the network and the parameters of the observable
(non-hidden) variables. In any case, the dimension de-

pends on the value of θ̂s, in contrast to Eq. 1, where
the dimension is fixed throughout the parameter space.

In Section 5, we compute the dimensions of several
network structures, including the naive Bayes model
with a hidden class node. In Section 6, we demonstrate
that the scoring function used in AutoClass sometimes
diverges from p(S|D) asymptotically. In Sections 7
and 8, we describe how our approach can be extended
to Gaussian and sigmoid networks.

2 Background

We introduce the following notation for a Bayesian
network. Let ri be the number of states of variable Xi,
Pai be the set of variables corresponding to the parents
of node Xi, and qi =

∏

Xl∈Pai
rl be the number of

states of Pai. We use the integer j to index the states
of Pai. That is, we write Pai = pa

j
i to denote that the

parents of Xi are assigned its jth state. We use θijk

to denote the true probability or parameter that Xi =
xk

i given that Pai = pa
j
i . Note that

∑ri

k=1
θijk = 1.

Also, we assume θijk > 0. In addition, we use θij =
{θijk|1 ≤ k ≤ ri} to denote the parameters associated
with node i for a given instance of the parents Pai,
and θi = {θij |1 ≤ j ≤ qi} to denote the parameters
associated with node i. Thus, θs = {θi|1 ≤ i ≤ n}.
When S is unambiguous, we use θ instead of θs.

To compute p(D|Sh) in closed form, several assump-
tions are usually made. First, the data D is as-
sumed to be a random sample from some Bayesian net-
work (S, θs). Second, for each network structure, the
parameter sets θ1, . . . , θn are mutually independent
(global independence [Spiegelhalter and Lauritzen,
1990]), and the parameter sets θi1, . . . , θiqi

for each
i are assumed to be mutually independent (local inde-
pendence [Spiegelhalter and Lauritzen, 1990]). Third,
if a node has the same parents in two distinct networks,
then the distribution of the parameters associated with
this node are identical in both networks (parameter
modularity [Heckerman et al., 1994]). Fourth, each
case is complete. Fifth, the prior distribution of the
parameters associated with each node is Dirichlet—
that is, p(θij |Sh) ∝ ∏

k θ
αijk

ijk where αijk can be inter-
preted as the equivalent number of cases seen in which
Xi = xk

i and Pai = pa
j
i .

Using these assumptions, Cooper and Herskovits
(1992) obtained the following exact formula for the
marginal likelihood:

p(D|Sh) =

n
∏

i=1

qi
∏

j=1

Γ(αij)

Γ(αij + Nij)

ri
∏

k=1

Γ(αijk + Nijk)

Γ(αijk)

where Nijk is the number of cases in D in which Xi =

xk
i and Pai = pa

j
i . We call this expression the Cooper–

Herskovits scoring function.

The last two assumptions are made for the sake of
convenience. Namely, the parameter distributions be-
fore and after data are seen are in the same family:
the Dirichlet family. Geiger and Heckerman (1995)
provide a characterization of the Dirichlet distribu-
tion, which shows that the fifth assumption is im-
plied from the first three assumptions and from one
additional assumption that if S1 and S2 are equiva-
lent Bayesian networks (i.e., they represent the same



sets of joint distributions), then the events Sh
1 and

Sh
2 are equivalent as well (hypothesis equivalence

[Heckerman et al., 1995]). This assumption was made
explicit, because it does not hold for causal networks
where two arcs with opposing directions correspond
to distinct hypotheses [Heckerman, 1995a]. To satisfy
these assumptions, Heckerman et al. (1995) show that
one must use

αijk = α q(Xi = xk
i ,Pai = pa

j
i )

in the Cooper–Herskovits scoring function, where
q(X1, . . . , Xn) is the joint probability distribution of
X obtained from an initial or prior Bayesian network
specified by the user, and α is the user’s effective sam-
ple size or confidence in the prior network.

The Cooper–Herskovits scoring function does not lend
itself to a qualitative analysis. Nonetheless, by letting
N grow to infinity yet keeping Nij/N and Nijk/N fi-
nite, Eq. 1 can be derived by expanding Γ(·) using
Sterling’s approximation. This derivation hinges on
the assumptions of global and local independence and
on a Dirichlet prior, although, as we show, the result
still holds without these assumptions. Intuitively, with
a large sample size N , the data washes away any con-
tribution of the prior.

3 Assymptotics Without Hidden

Variables

We shall now rederive Herskovits’ (1991) and Bouck-
aert’s (1995) asymptotic result. The technique we
use is Laplace’s method, which is to expand the log
likelihood of the data around the maximum likeli-
hood value, and then approximate the peak using a
multivariate-normal distribution.

Our derivation bypasses the need to compute
p(DN |Sh) for data DN of a sample size N , which re-
quires the assumptions discussed in the previous sec-
tion. Instead, we compute limN→∞ p(DN |Sh). Fur-
thermore, our derivation only assumes that the prior
for θ around the maximum likelihood value is posi-
tive. Finally, we argue in the next section that our
derivation can be extended to Bayesian networks with
hidden variables.

We begin by defining f(θ) ≡ log p(DN |θ, Sh). Thus,

p(DN |Sh) =

∫

p(DN |θ, Sh) p(θ|Sh) dθ =

∫

exp{f(θ)} p(θ|Sh) dθ (3)

Assuming f(θ) has a maximum—the ML value θ̂—we

have f ′(θ̂) = 0. Using a Taylor-series expansion of

f(θ) around the ML value, we get

f(θ) ≈ f(θ̂) + 1/2(θ− θ̂)f ′′(θ)(θ − θ̂) (4)

where f ′′(θ) is the Hessian of f—the square matrix of
second derivatives with respect to every pair of vari-
ables {θijk, θi′j′k′}. Consequently, from Eqs. 3 and 4,

log p(D|Sh) ≈ f(θ̂)+ (5)

log

∫

exp{1/2(θ− θ̂)f ′′(θ)(θ − θ̂)}p(θ|Sh)dθ

We assume that −f ′′(θ) is positive-definite, and that,
as N grows to infinity, the peak in a neighborhood
around the maximum becomes sharper. Consequently,
if we ignore the prior, we get a normal distribution
around the peak. Furthermore, if we assume that the
prior p(θ|Sh) is not zero around θ̂, then as N grows it
can be assumed constant and so removed from the inte-
gral in Eq. 5. The remaining integral is approximated
by the formula for multivariate-normal distributions:

∫

exp{1/2(θ− θ̂)f ′′(θ)(θ − θ̂)}dθ ≈
√

2π det
[

−f ′′(θ̂)
]d/2

(6)

where d is the number of parameters in θ, d =
∏n

i=1
(ri − 1)qi. As N grows to infinity, the above ap-

proximation becomes more precise because the entire
mass becomes concentrated around the peak. Plug-

ging Eq. 6 into Eq. 5 and noting that det
[

−f ′′(θ̂)
]

is

proportional to N yields the BIC:

p(DN |Sh) ≈ p(DN |θ̂, Sh)− d/2 log(N) (7)

A careful derivation in this spirit shows that the er-
ror in this approximation does not depend on N
[Schwarz, 1978].

For Bayesian networks, the function f(θ) is known.
Thus, all the assumptions about this function can be
verified. First, we note that f ′′(θ) is a block diago-
nal matrix where each block Aij corresponds to vari-
able Xi and a particular instance j of Pai, and is of
size (ri − 1)2. Let us examine one such Aij . To sim-
plify notation, assume that Xi has three states. Let
w1, w2 and w3 denote θijk for k = 1, 2, 3, where i and
j are fixed. We consider only those cases in DN where
Pai = j, and examine only the observations of Xi.
Let D′

N denote the set of N values of Xi obtained in
this process. With each observation, we associate two
indicator functions xi and yi. The function xi is one
if Xi gets its first value in case i and is zero otherwise.
Similarly, yi is one if Xi gets its second value in case i
and is zero otherwise.



The log likelihood function of D′
N is given by

λ(w1, w2) = log

N
∏

i=1

wxi

1 wyi

2 (1 − w1 − w2)
1−xi−yi (8)

To find the maximum, we set the first derivative of this
function to zero. The resulting equations are called the
maximum likelihood equations:

λw1
(w1, w2) =

N
∑

i=1

[

xi

w1

− 1− xi − yi

1− w1 − w2

]

= 0

λw2
(w1, w2) =

N
∑

i=1

[

yi

w2

− 1− xi − yi

1− w1 − w2

]

= 0

The only solution to these equations is given by w1 =
x =

∑

i xi/N , w2 = y =
∑

i yi/N , which is the maxi-
mum likelihood value. The Hessian of λ(w1, w2) at the
ML value is given by

λ′′(w1, w2) =

(

λ′′
w1w1

λ′′
w1w2

λ′′
w1w1

λ′′
w2w2

)

=

−N

(

1

x + 1

1−x−y
1

1−x−y
1

1−x−y
1

y + 1

1−x−y

)

(9)

This Hessian matrix decomposes into the sum of two
matrices. One matrix is a diagonal matrix with posi-
tive numbers 1/x and 1/y on the diagonal. The second
matrix is a constant matrix in which all elements equal
the positive number 1/(1− x− y). Because these two
matrices are positive and non-negative definite, respec-
tively, the Hessian is positive definite. This argument
also holds when Xi has more than three values.

Because the maximum likelihood equation has a single
solution, and the Hessian is positive definite, and be-
cause as N increases the peak becomes sharper (Eq.9),
all the conditions for the general derivation of the BIC
are met. Plugging the maximum likelihood value into
Eq. 7, which is correct to O(1), yields Eq. 1.

4 Assymptotics With Hidden

Variables

Let us now consider the situation where S contains
hidden variables. In this case, we can not use the
derivation in the previous section, because the log-
likelihood function log p(DN |Sh, θ) does not necessar-
ily tend toward a peak as the sample size increases.
Instead, the log-likelihood function can tend toward a
ridge. Consider, for example, a network with one arc
H → X where H has two values h and h̄ and X has
two values x and x̄. Assume that only values of X
are observed—that is, H is hidden. Then, the like-
lihood function is given by

∏

i wxi(1 − w)1−xi where

w = θhθx|h +(1−θh)θx|h̄, and xi is the indicator func-
tion that equals one if X gets value x in case i and
zero otherwise. The parameter w is the true proba-
bility that X = x unconditionally. The ML value is
unique in terms of w: it attains its maximum when
w =

∑

i xi/N . Nonetheless, any solution for θ to the
equation

∑

i

xi/N = θhθx|h + (1− θh)θx|h̄

will maximize the likelihood of the data. In this sense,
the network structure H → X has only one non-
redundant parameter. In this section, we provide an
informal argument describing how to identify a set of
non-redundant parameters for any Bayesian network
with hidden variables.

Given a Bayesian network for domain X with observ-
able variables O ⊂ X, let W = {wo|o ∈ O} denote
the parameters of the true joint probability distribu-
tion of O. Corresponding to every value of θ is a value
of W . That is, S defines a (smooth) map g from θ to
W . The range of g is a curved manifold M in the
space defined by W .1 Now, consider g(θ̂), the image

of all ML values of θ. In a small region around g(θ̂),
the manifold M will resemble Euclidean space with
some dimension d. That is, in a small region around
g(θ̂), M will look like Rd with orthogonal coordinates
Φ = {φ1, . . . , φd}. Thus, the log-likelihood function
written as a function of Φ—log p(DN |Φ)—will become
peaked as the sample size increases, and we can apply
the BIC approximation:

log p(DN |Sh) ≈ log p(DN |Φ̂, Sh)− d

2
log N (10)

Note that log p(DN |Φ̂, Sh) = log p(DN |θ̂, Sh).

It remains to understand what d is and how it can
be found. When considering a linear transformation
j : Rn → Rm, the transformation is a matrix of size
n ×m. The dimension d of the image of j equals the
rank of the matrix. When k : Rn → Rm is a smooth
mapping, it can be approximated locally as a linear
transformation, where the Jacobian matrix J(x) serves
as the linear transformation matrix for the neighbor-
hood of x ∈ Rn. The dimension of the image of k in
a small region around k(x) is the rank of J(x) (Spi-
vak, 1979). This observation holds when the rank of
the Jacobian matrix does not change in a small ball
around x, in which case x is called a regular point.

Returning to our problem, the mapping from θ to W is
a polynomial function of θ. Thus, as the next theorem

shows, the rank of the Jacobian matrix
[

∂θ
∂W

]

is almost

1For terminology and basic facts in differential geome-
try, see Spivak (1979).



everywhere some fixed constant d, which we call the
regular rank of the Jacobian matrix. This rank is the
number of non-redundant parameters of S—that is,
the dimension of S.

Theorem 1 Let θ be the parameters of a network S
for variables X with observable variables O ⊂ X. Let

W be the parameters of the true joint distribution of

the observable variables. If each parameter in W is

a polynomial function of θ, then rank
[

∂θ
∂W (θ)

]

= d

almost everywhere, where d is a constant.

Proof: Because the mapping from θ to W is polyno-

mial, each entry in the matrix J(θ) =
[

∂θ
∂W (θ)

]

is a

polynomial in θ. When diagonalizing J , the leading
elements of the first d lines remain polynomials in θ,
whereas all other lines, which are dependent given ev-
ery value of θ, become identically zero. The rank of
J(θ) falls below d only for values of θ that are roots
of some of the polynomials in the diagonalized matrix.
The set of all such roots has measure zero. 2

Our heuristic argument for Eq. 10 does not provide
us with the error term. If the image manifold is
too curved, it might be possible that the local region
will never become “sufficiently flat” to obtain an O(1)
bound on the error of the approximate marginal likeli-
hood. We conjecture that, for manifolds corresponding
to Bayesian networks with hidden variables, the local
region will always be sufficiently flat. Researchers have
shown that O(1) bounds are attainable for a variety of
statistical models (e.g., Schwarz, 1978, and Haughton,
1988). Although the arguments of these researchers
do not directly apply to our case, it may be possible
to extend their methods to prove our conjecture.

5 Computations of the Rank

We have argued that the second term of the BIC for
Bayesian networks with hidden variables is the rank of
the Jacobian matrix of the transformation between the
parameters of the network and the parameters of the
observable variables. In this section, we explain how
to compute this rank, and demonstrate the approach
with several examples.

Theorem 1 suggests a random algorithm for calculat-
ing the rank. Compute the Jacobian matrix J(θ) sym-
bolically from the equation W = g(θ). This compu-
tation is possible since g is a vector of polynomials in
θ. Then, assign a random value to θ and diagonalize
the numeric matrix J(θ). Theorem 1 guarantees that,
with probability 1, the resulting rank is the regular
rank of J . For every network, select—say—ten val-
ues for θ, and determine r to be the maximum of the
resulting ranks. In all our experiments, none of the

randomly chosen values for θ accidentally reduced the
rank.

We now demonstrate the computation of the needed
rank for a naive Bayes model with one hidden variable
H and two feature variables X1 and X2. Assume all
three variables are binary. The set of parameters W =
g(θ) is given by

wx1x2
= θhθx1|hθx2|h + (1− θh)θx1|h̄θx2|h̄

wx̄1x2
= θh(1− θx1|h)θx2|h + (1− θh)(1 − θx1|h̄)θx2|h̄

wx1x̄2
= θhθx1|h(1 − θx2|h) + (1− θh)θx1|h̄(1 − θx2|h̄)

The 3 × 5 Jacobian matrix for this transformation is
given in Figure 5 where θx̄i|h = 1−θxi|h (i = 1, 2). The
columns correspond to differentiation with respect to
θx1|h, θx2|h, θx1|h̄, θx2|h̄ and θh, respectively. A sym-
bolic computation of the rank of this matrix can be
carried out; and it shows that the regular rank is equal
to the dimension of the matrix—namely, 3. Nonethe-
less, as we have argued, in order to compute the regular
rank, one can simply choose random values for θ and
diagonalize the resulting numerical matrix. We have
done so for naive Bayes models with one binary hidden
root node and n ≤ 7 binary observable non-root nodes.
The size of the associated matrices is (1+2n)×(2n−1).
The regular rank for n = 3, . . . , 7 was found to be
1 + 2n. We conjecture that 1 + 2n is the regular rank
for all n > 2. For n = 1, 2, the rank is 1 and 3, re-
spectively, which is the size of the full parameter space
over one and two binary variables. The rank can not
be greater than 1 + 2n because this is the maximum
possible dimension of the Jacobian matrix. In fact, we
have proven a lower bound of 2n as well.

Theorem 2 Let S be a naive Bayes model with one

binary hidden root node and n > 2 binary observable

non-root nodes. Then

2n ≤ r ≤ 2n + 1

where r is the regular rank of the Jacobian matrix be-

tween the parameters of the network and the parame-

ters of the feature variables.

The proof is obtained by diagonalizing the Jacobian
matrix symbolically, and showing that there are at
least 2n independent lines.

The computation for 3 ≤ n ≤ 7 shows that, for naive
Bayes models with a binary hidden root node, there
are no redundant parameters. Therefore, the best way
to represent a probability distribution that is repre-
sentable by such a model is to use the network repre-
sentation explicitly.

Nonetheless, this result does not hold for all models.
For example, consider the following W structure:

A→ C ← H → D ← B







θhθx2|h θhθx1|h (1− θh)θx2|h̄ (1− θh)θx1|h̄ θx1|hθx2|h − θx1|h̄θx2|h̄

−θhθx2|h θhθx̄1|h −(1− θh)θx2|h̄ (1− θh)θx̄1|h̄ θx̄1|hθx2|h − θx̄1|h̄)θx2|h̄

(1− θhθx2|h) −θhθx1|h (1− θh)θx̄2|h̄ −(1− θh)θx1|h̄ θx1|hθx̄2|h − θx1|h̄θx̄2|h̄)





Figure 1: The Jacobian matrix for a naive Bayesian network with two binary feature nodes

where H is hidden. Assuming all five variables are
binary, the space over the observables is representable
by 15 parameters, and the number of parameters of the
network is 11. In this example, we could not compute
the rank symbolically. Instead, we used the following
Mathematica code.

There are 16 functions (only 15 are independent) de-
fined by W = g(θ). In the Mathematica code, we use
fijkl for the true joint probability wa=i,b=j,c=k,d=l,
cij for the true conditional probability θc=0|a=i,h=j,
dij for θd=0|b=i,h=j, a for θa=0, b for θb=0, and h0 for
θh=0.

The first function is given by

f0000 [a , b , h0 , c00 , . . . , c11 , d00 , . . . , d11 ] :=

a ∗ b ∗ (h0 ∗ c00 ∗ d00 + (1 − h0) ∗ c01 ∗ d01)

and the other functions are similarly written. The Ja-
cobian matrix is computed by the command Outer,
which has three arguments. The first is D which
stands for the differentiation operator, the second is
a set of functions, and the third is a set of variables.

J [a , b , h0 , c00 , . . . , c11 , d00 , . . . , d11 ] :=

Outer[D, {f0000 [a, b, h0, c00, c01, . . . , d11] ,

f0001 [a, b, h0, c00, . . . , c11, d00, . . . , d11] ,

. . . ,

f1111 [a, b, h0, c00, . . . , c11, d00, . . . , d11]},
{a, b, h0, c00, c01, c10, c11, d00, d01, d10, d11}]

The next command produces a diagonalized matrix at
a random point with a precision of 30 decimal digits.
This precision was selected so that matrix elements
equal to zero would be correctly identified as such.

N [RowReduce[J [a, b, h0, c00, . . . , c11, d00, . . . , d11]/.{
a→ Random[Integer, {1, 999}]/1000,

b→ Random[Integer, {1, 999}]/1000,

. . . ,

d11→ Random[Integer, {1, 999}]/1000}], 30]

The result of this Mathematica program was a diago-
nalized matrix with 9 non-zero rows and 7 rows con-
taining all zeros. The same counts were obtained in
ten runs of the program. Hence, the regular rank of
this Jacobian matrix is 9 with probability 1.

The interpretation of this result is that, around almost
every value of θ, one can locally represent the hidden
W structure with only 9 parameters. In contrast, if we
encode the distribution using the network parameters
(θ) of the W structure, then we must use 11 parame-
ters. Thus, two of the network parameters are locally
redundant. The BIC approximation punishes this W
structure according to its most efficient representation,
which uses 9 parameters, and not according to the rep-
resentation given by the W structure, which requires
11 parameters.

It is interesting to note that the dimension of the W
structure is 10 if H has three or four states, and 11
if H has 5 states. We do not know how to predict
when the dimension changes as a result of increasing
the number of hidden states without computing the
dimension explicitly. Nonetheless, the dimension can
not increase beyond 12, because we can average out
the hidden variable in the W structure (e.g., using arc
reversals) to obtain another network structure that has
only 12 parameters.

6 AutoClass

The AutoClass clustering algorithm developed by
Cheeseman and Stutz (1995) uses a naive Bayes
model.2 Each state of the hidden root node H repre-
sents a cluster or class; and each observable node repre-
sents a measurable feature. The number of classes k is
unknown a priori. AutoClass computes an approxima-
tion of the marginal likelihood of a naive Bayes model
given the data using increasing values of k. When this
probability reaches a peak for a specific k, that k is
selected as the number of classes.

Cheeseman and Stutz (1995) use the following formula
to approximate the marginal likelihood:

log p(D|S) ≈
log p(Dc|S) + log p(D|S, θ̂s)− log p(Dc|S, θ̂s)

where Dc is a database consistent with the expected
sufficient statistics as computed by the EM algo-
rithm. Although Cheeseman and Stutz suggested

2The algorithm can handle conditional dependencies
among continuous variables.



this approximation in the context of simple AutoClass
models, it can be used to score any Bayesian net-
work with discrete variables as well as other models
[Chickering and Heckerman, 1996]. We call this ap-
proximation the CS scoring function.

Using the BIC approximation for p(Dc|S), we obtain

log p(D|S) ≈ log p(D|S, θ̂s)− d′/2 logN

where d′ is the number of parameters of the net-
work. (Given a naive Bayes model with k classes
and n observable variables each with b states, d′ =
nk(b− 1) + k− 1.) Therefore, the CS scoring function
will converge asymptotically to the BIC and hence to
p(D|S) whenever d′ is equal to the regular rank of S
(d). Given our conjecture in the previous section, we
believe that the CS scoring function will converge to
p(D|S) when the number of classes is two. Nonethe-
less, d′ is not always equal to d. For example, when
b = 2, k = 3 and n = 4, the number of parameters
is 14, but the regular rank of the Jacobian matrix is
13. We computed this rank using Mathematica as de-
scribed in the previous section. Consequently, the CS
scoring function will not always converge to p(D|S).

This example is the only one that we have found so
far; and we believe that incorrect results are obtained
only for rare combinations of b, k and n. Nonetheless,
a simple modification to the CS scoring function yields
an approximation that will asymptotically converge to
p(D|S):

log p(D|S) ≈ log p(Dc|S) + log p(D|S, θ̂s)−
log p(Dc|S, θ̂s)− d/2 logN + d′/2 logN

Chickering and Heckerman (1996) show that this scor-
ing function is often a better approximation for p(D|S)
than is the BIC.

7 Gaussian Networks

In this section, we consider the case where each of the
variables {X1, . . . , Xn} = X are continuous. As be-
fore, let (S, θs) be a Bayesian network, where S is the
network structure of the Bayesian network, and θs is
a set of parameters associated with the network struc-
ture. A Gaussian network is one in which the joint
likelihood is that of a multivariate Gaussian distribu-
tion that is a product of local likelihoods. Each local
likelihood is the linear regression model

p(xi|pai, θi, S) = N(mi + ΣXj∈Pai
bjixj , vi)

where N(µ, v) is a normal (Gaussian) distribution with
mean µ and variance v > 0, mi is a conditional mean
of Xi, bji is a coefficient that represents the strength

of the relationship between variable Xj and Xi, vi is a
variance,3 and θi is the set of parameters consisting of
mi, vi, and the bji. The parameters θs of a Gaussian
network with structure S is the set of all θi.

To apply the techniques developed in this paper, we
also need to specify the parameters of the observ-
able variables. Given that the joint distribution is
multivariate-normal and that multivariate-normal dis-
tributions are closed under marginalization, we only
need to specify a vector of means for the observed
variables and a covariance matrix over the observed
variables. In addition, we need to specify how to trans-
form the parameters of the network to the observable
parameters. The transformation of the means and
the transformation to obtain the observable covariance
matrix can be accomplished via the trek-sum rule (for
a discussion, see Glymour et al. 1987).

Using the trek-sum rule, it is easy to show that the
observable parameters are all sums of products of the
network parameters. Given that the mapping from
θs to the observable parameters is W is a polynomial
function of θ, it follows from Thm. 1 that the rank of

the Jacobian matrix
[

∂θs

∂W

]

is almost everywhere some

fixed constant d, which we again call the regular rank of
the Jacobian matrix. This rank is the number of non-
redundant parameters of S—that is, the dimension of
S.

Let us consider two Gaussian models. We use Mathe-
matica code similar to the code in Section 5 to compute
their dimensions, because we can not perform the com-
putation symbolically. As in the previous experiments,
none of the randomly chosen values of θs accidentally
reduces the rank.

Our first example is the naive-Bayes model

�
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Sw

HHHHj
�����

H

X3 X2 X4X1

in which H is the hidden variable and the Xi are ob-
served. There are 14 network parameters: 5 condi-
tional variances, 5 conditional means, and 4 linear pa-
rameters. The marginal distribution for the observed
variables also has 14 parameters: 4 means, 4 variances,
and 6 covariances. Nonetheless, the analysis of the
rank of the Jacobian matrix tells us that the dimension
of this model is 12. This follows from the fact that this
model imposes tetrad constraints (see Glymour et al.
1987). In this model the three tetrad constraints that

3
mi is the mean of Xi conditional on all parents being

zero, bji corresponds to the partial regression coefficient of
Xi on Xj given the other parents of Xi, and vi corresponds
to the residual variance of Xi given the parents of Xi.



hold in the distribution over the observed variables are

cov(X1, X2)cov(X3, X4)−cov(X1, X3)cov(X2, X4)=0

cov(X1, X4)cov(X2, X3)−cov(X1, X3)cov(X2, X4)=0

cov(X1, X4)cov(X2, X3)−cov(X1, X2)cov(X3, X4)=0

two of which are independent. These two independent
tetrad constraints lead to the reduction of dimension-
ality.

Our second example is the W structure described
in Section 5 where each of the variables is continu-
ous. There are 14 network parameters: 5 conditional
means, 5 conditional variances, and 4 linear parame-
ters. The marginal distribution for the observed vari-
ables has 14 parameters, whereas the analysis of the
rank of the Jacobian matrix tells us that the dimension
of this model is 12. This coincides with the intuition
that many values for the variance of H and the linear
parameters for C ← H and H → D produce the same
model for the observable variables, but once any two of
these parameters are appropriately set, then the third
parameter is uniquely determined by the marginal dis-
tribution for the observable variables.

8 Sigmoid Networks

Finally, let us consider the case where each of the vari-
ables {X1, . . . , Xn} = X is binary (discrete), and each
local likelihood is the generalized linear model

p(xi|pai, θi, S) = Sig(ai + ΣXj∈Pai
bjixj)

where Sig(x) is the sigmoid function Sig(x) = 1

1+e−x .
These models, which we call sigmoid networks, are use-
ful for learning relationships among discrete variables,
because these models capture non-linear relationships
among variables yet employ only a small number of
parameters [Neal, 1992, Saul et al., 1996].

Using techniques similar to those in Section 5, we can

compute the rank of the Jacobian matrix
[

∂θs

∂W

]

. We

can not apply Thm. 1 to conclude that this rank is al-
most everywhere some fixed constant, because the lo-
cal likelihoods are non-polynomial sigmoid functions.
Nonetheless, the claim of Thm. 1 holds also for ana-
lytic transformations, hence a regular rank exists for
sigmoid networks as well (as confirmed by our experi-
ments).

Our experiments show expected reductions in rank for
several sigmoid networks. For example, consider the
two-level network
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This network has 14 parameters. In each of 10 tri-
als, we found the rank of the Jacobian matrix to be
14, indicating that this model has dimension 14. In
contrast, consider the three-level network.
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This network has 17 parameters, whereas the dimen-
sion we compute is 15. This reduction is expected,
because we could encode the dependency between the
two variables in the middle level by removing the vari-
able in the top layer and adding an arc between these
two variables, producing a network with 15 parame-
ters.
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