
Learning Mixtures of DAG Models

Bo Thiesson, Christopher Meek, David Maxwell Chickering, and David Heckerman
Microsoft Research

Redmond WA, 98052-6399
{thiesson,meek,dmax,heckerma}@microsoft.com

Abstract

We describe computationally efficient meth-
ods for learning mixtures in which each com-
ponent is a directed acyclic graphical model
(mixtures of DAGs or MDAGs). We argue
that simple search-and-score algorithms are
infeasible for a variety of problems, and in-
troduce a feasible approach in which param-
eter and structure search is interleaved and
expected data is treated as real data. Our
approach can be viewed as a combination
of (1) the Cheeseman–Stutz asymptotic ap-
proximation for model posterior probability
and (2) the Expectation–Maximization algo-
rithm. We evaluate our procedure for select-
ing among MDAGs on synthetic and real ex-
amples.

1 Introduction

For almost a decade, statisticians and computer sci-
entists have used directed-acyclic graph (DAG) mod-
els for learning from data (e.g., Cooper & Herskovits,
1992; Spirtes, Glymour, & Scheines, 1993; Spiegelhal-
ter, Dawid, Lauritzen, & Cowell, 1993; Buntine, 1994;
and Heckerman, Geiger, & Chickering, 1995). In this
paper, we consider mixtures of DAG models (MDAG
models) and methods for choosing among models in
this class. MDAG models generalize DAG models,
and should more accurately model domains containing
multiple distinct populations. In general, our hope is
that the use of MDAG models will lead to better pre-
dictions and more accurate insights into causal rela-
tionships. In this paper, we concentrate on prediction.

We take a decidedly Bayesian perspective on the prob-
lem of learning MDAG models. In principle, learning
is straightforward: we compute the posterior probabil-
ity of each model in the class given data and use this
criterion to average over the models or to select one
or more models. From a computational perspective,
however, learning is extremely difficult. One problem
is that the number of possible model structures grows
super-exponentially with the number of random vari-
ables for the domain. A second problem is that all
available methods for computing the posterior prob-
ability of an MDAG model, including Monte-Carlo

and large-sample approximations, are slow. In combi-
nation, these problems make simple search-and-score
learning algorithms intractable for MDAG models.

In the paper, we introduce a heuristic method for
MDAG model selection that addresses both of these
difficulties. The method is not guaranteed to find the
MDAG model with the highest probability, but exper-
iments that we present suggest that it often identi-
fies a good one. Our approach handles missing data
and component DAG models that contain hidden or
latent variables. Our approach can be used to learn
DAG models (single-component MDAG models) from
incomplete data as well.

2 Multi-DAG models and mixtures of
DAG models

In this section, we describe DAG, multi-DAG, and
MDAG models. First, however, let us introduce some
notation. We denote a random variable by an upper-
case letter (e.g., X, Y, Xi, Θ), and the value of a corre-
sponding random variable by that same letter in lower
case (e.g., x, y, xi, θ). When X is discrete, we use |X |
to denote the number of values of X , and sometimes
refer to a value of X as a state. We denote a set of
random variables by a bold-face capitalized letter or
letters (e.g., X,Y,Pai). We use a corresponding bold-
face lower-case letter or letters (e.g., x,y,pai) to de-
note an assignment of value to each random variable in
a given set. When X = x we say that X is in configura-
tion x. We use p(X = x|Y = y) (or p(x|y) as a short-
hand) to denote the probability or probability density
that X = x given Y = y. We also use p(x|y) to de-
note the probability distribution (both mass functions
and density functions) for X given Y = y. Whether
p(x|y) refers to a probability, a probability density, or
a probability distribution should be clear from context.

Suppose our problem domain consists of random vari-
ables X = (X1, . . . , Xn). A DAG model for X is a
graphical factorization of the joint probability distri-
bution of X. The model consists of two components: a
structure and a set of local distribution families. The
structure b for X is a directed acyclic graph that rep-
resents conditional-independence assertions through a

factorization of the joint distribution for X:

p(x) =

n∏
i=1

p(xi|pa(b)i) (1)

where pa(b)i is the configuration of the parents of Xi

in structure b consistent with x. The local distribu-
tion families associated with the DAG model are those
in Equation 1. In this discussion, we assume that the
local distribution families are parametric. Using θb to
denote the collective parameters for all local distribu-
tions, we rewrite Equation 1 as

p(x|θb) =

n∏
i=1

p(xi|pa(b)i, θb) (2)

With one exception to be discussed in Section 6, the
parametric family corresponding to the variable X will
be determined by (1) whether X is discrete or contin-
uous and (2) the model structure. Consequently, we
suppress the parametric family in our notation, and
refer to the DAG model simply by its structure b.

Let bh denote the assertion or hypothesis that the
“true” joint distribution can be represented by the
DAG model b and has precisely the conditional inde-
pendence assertions implied by b. We find it useful to
include the structure hypothesis explicitly in the fac-
torization of the joint distribution when we compare
model structures. In particular, we write

p(x|θb,b
h) =

n∏
i=1

p(xi|pai, θb,b
h) (3)

This notation often makes it unnecessary to use the
argument b in the term pa(b)i, and we use the simpler
expression where possible.

The structure of a DAG model encodes a limited form
of conditional independence that we call context-non-
specific conditional independence. In particular, if the
structure implies that two sets of random variables
Y and Z are independent given some configuration
of random variables W, then Y and Z are also in-
dependent given every other configuration of W. In
a more general form of conditional independence, two
sets of random variables may be independent given
one configuration of W, and dependent given another
configuration of W.

A multi-DAG model, called a Bayesian multinet by
Geiger & Heckerman (1996), is a generalization of
the DAG model that can encode context-specific con-
ditional independence. In particular, a multi-DAG
model for X and distinguished random variable C is
a set of component DAG models for X, each of which
encodes the joint distribution for X given a state of
C, and a distribution for C. Thus, the multi-DAG
model for X and C encodes a joint distribution for
X and C, and can encode context-specific conditional
independence among these random variables, because
the structure of each component DAG model may be
different.

Let s and θs denote the structure and parameters of
a multi-DAG model for X and C. In addition, let
bc and θc denote the structure and parameters of the
cth DAG-model component of the multi-DAG model.
Also, let sh denote the hypothesis that the “true” joint
distribution for X and C can be represented by the
MDAG model s and has precisely the conditional in-
dependence assertions implied by s. Then, the joint
distribution for X and C encoded by this multi-DAG
model is given by

p(c,x|θs, s
h) = p(c|θs, s

h) p(x|c, θs, s
h)

= πc p(x|θc,b
h
c) (4)

where θs = (θ1, . . . , θ|C|, π1, . . . , π|C|) are the param-

eters of the multi-DAG model, πc = p(c|θs, s
h), and

bh
c is a shorthand for the conjunction of the events sh

and C = c. As with DAG models, we sometimes use
the structure alone to refer to the multi-DAG model.

In what follows, we assume that the distinguished ran-
dom variable has a multinomial distribution. In addi-
tion, with one exception to be discussed in Section 6,
we limit the structure of the component DAG models
and the parametric families for the local distributions
as follows. When Xi ∈ X is a discrete random vari-
able, we require that every random variable in Pai (for
every component model) also be discrete, and that the
local distribution families for X be a set of multino-
mial distributions, one for each configuration of Pai.
When Xi ∈ X is a continuous random variable, we re-
quire that the local distribution family for Xi be a set
of linear-regressions over Xi’s continuous parents with
Gaussian error, one regression for each configuration
of Xi’s discrete parents. Lauritzen (1992) refers to this
set of restrictions as a conditional-Gaussian distribu-
tion for a DAG model.

In this paper, we concentrate on the special case where
the distinguished random variable C is hidden. In this
situation, we are interested in the joint distribution for
X, given by

p(x|θs, s
h) =

|C|∑
c=1

πc p(x|θc,b
h
c) (5)

This joint distribution is a mixture of distributions
determined by the component DAG models, and has
mixture weights π1, . . . , π|C|. Thus, when C is hidden,
we say that the multi-DAG model for X and C is a
mixture of DAG models (or MDAG model) for X.

An important subclass of DAG models is the Gaus-
sian DAG model (e.g., Shachter & Kenley, 1989). In
this subclass, the local distribution family for every
random variable given its parents is a linear regres-
sion with Gaussian noise. It is well known that a
Gaussian DAG model for X1, . . . , Xn uniquely deter-
mines a multivariate-Gaussian distribution for those
random variables. In such a model, the structure of the
DAG model (in part) determines the “shape” of the
multivariate-Gaussian distribution. Thus, the MDAG
model class includes mixtures of multivariate-Gaussian

distributions in which each component may have a dif-
ferent shape.

3 Learning multi-DAG models

In this and the following two sections, we consider a
Bayesian approach for learning multi-DAG models and
MDAG models. Let us assume that our data is ex-
changeable so that we can reason as if the data is a
random sample from a true joint distribution. In ad-
dition, let us assume that the true joint distribution
for X is encoded by some multi-DAG model, and that
we are uncertain about both its structure and param-
eters. We define a discrete random variable Sh whose
states sh correspond to the possible true model hy-
potheses, and encode our uncertainty about structure
using the probability distribution p(sh). In addition,
for each model s, we define a continuous vector-valued
random variable Θs, whose configurations θs corre-
spond to the possible true parameters. We encode
our uncertainty about Θs using the probability den-
sity function p(θs|s

h).

Given a random sample d = (x1, . . . ,xN) from the
true distribution for X, we compute the posterior dis-
tributions for each sh and θs using Bayes’ rule.

We can use the model posterior probability for various
forms of model comparison, including model averaging
(e.g., Bernardo & Smith, 1994). In this work, we limit
ourselves to the selection of a model with a high pos-
terior probability. In what follows, we concentrate on
model selection using the posterior model probability.
To simplify the discussion, we assume that all possible
model structures are equally likely, a priori, in which
case our selection criterion is the marginal likelihood:

p(d|sh) =

∫
p(d|θs, s

h) p(θs|s
h) dθs (6)

3.1 The marginal likelihood criterion

Consider a DAG model b that encodes a conditional-
Gaussian distribution for X. Let Θi, i = 1, . . . , n de-
note the random variables corresponding to the param-
eters of the local distribution family for Xi. Buntine
(1994) and Heckerman and Geiger (1995) have shown
that, if (1) the parameters Θ1, . . . , Θn are mutually in-
dependent given bh, (2) the parameter priors p(Θi|b

h)
are conjugate for all i, and (3) the data d is complete
for C and X, then the log marginal likelihood has a
closed form that can be computed efficiently.

This observation extends to multi-DAG models. Let
Θic denote the set of random variables correspond-
ing to the local distribution family of Xi in compo-
nent c. Also, let Π denote the set of random vari-
ables (Π1, . . . , Π|C|−1) corresponding to the mixture
weights. If (1) Π, Θ11, . . . , Θn1, . . . , Θ1|C|, . . . , Θn|C|

are mutually independent given sh, (2) the parameter
priors p(Θic|s

h) are conjugate for all i and c, and (3)
the data d is complete, then the marginal likelihood

p(d|sh) has a closed form. In particular,

log p(d|sh) = log p(dC) +

|C|∑
c=1

log p(dX,C=c|bh
c) (7)

where dC is the data restricted to the variable C, and
dX,C=c is the data restricted to the variables X and
those cases in which C = c. The term p(dC) is the
marginal likelihood of a trivial DAG model having only
a single discrete node C. The terms in the sum are log
marginal likelihoods for the component DAG models
of the multi-DAG. Hence, p(d|sh) has a closed form.

3.2 Structure search

An important issue regarding model selection is the
search for models (structures) with high posterior
probabilities. Consider the problem of finding the
DAG model with the highest marginal likelihood from
the set of all models in which each node has no more
than k parents. Chickering (1996) has shown the prob-
lem for k > 1 is NP-hard. It follows immediately that
the problem of finding the multi-DAG model with the
highest marginal likelihood from the set of all multi-
DAGs in which each node in each component has
no more than k parents is NP-hard. Consequently,
researchers use heuristic search algorithms including
greedy search, greedy search with restarts, best-first
search, and Monte-Carlo methods.

One consolation is that various model-selection crite-
ria, including log marginal likelihood (under the as-
sumptions just described), are factorable. We say that
a criterion crit(s,d) for a multi-DAG structure s is fac-
torable if it can be written as follows:

crit(s,d) = f(dC) +

|C|∑
c=1

n∑
i=1

gc(d
Xi,Pa

c

i) (8)

where dC is the data restricted to the set C, Pac
i are

the parents of Xi in component c, dXi,Pa
c

i is the data
restricted to the random variables Xi and Pac

i and
to those cases in which C = c, and f and gc are
functions. When a criterion is factorable, search is
more efficient for two reasons. One, the component
DAG models have non-interacting subcriteria so that
we may search for a good DAG structure for each com-
ponent separately. Two, as we search for a good struc-
ture in any one component, we need not reevaluate the
criterion for the whole component. For example, in a
greedy search for a good DAG structure, we iteratively
transform the graph by choosing the transformation
that improves the model criterion the most, until no
such transformation is possible. Typical transforma-
tions include the removal, reversal, and addition of an
arc (constrained so that the resulting graph is acyclic).
Given a factorable criterion, we only need to reevalu-
ate gc for Xi if it’s parents have changed.

4 Learning MDAGs: A simple
approach

When learning multi-DAG models given complete
data, the marginal likelihood has a closed form. In
contrast, when learning MDAGs, the assumption that
data is complete does not hold, because the distin-
guished random variable C is hidden. When data
is incomplete, no tractable closed form for marginal
likelihood is available. Nonetheless, we can approx-
imate the marginal likelihood using either Monte-
Carlo or large-sample methods (e.g., DiCiccio, Kass,
Raftery, and Wasserman, 1995). Thus, a straightfor-
ward class of algorithm for choosing an MDAG model
is to search among structures as before (e.g., perform
greedy search), using some approximation for marginal
likelihood. We shall refer to this class as simple search-
and-score algorithms.

As we shall see, simple search-and-score algorithms for
MDAG model selection are computationally infeasible
in practice. Nonetheless, let us consider one approxi-
mation for the marginal likelihood that will help mo-
tivate a tractable class of algorithms that we consider
in the next section. The approximation that we exam-
ine is a large-sample approximation first proposed by
Cheeseman & Stutz (1995):

p(d|sh) ≈ p(d′|sh)
p(d′|θ̃s, s

h)

p(d|θ̃s, sh)
(9)

where d′ is any completion of the data set d.

The approximation is a heuristic one, but Chickering
& Heckerman (1997) give an argument that it may
perform well in practice1. Furthermore, they provide
an empirical study, using multinomial mixtures, that
shows the approximation to be quite good. In all
experiments, it was at least as accurate and some-
times more accurate than the standard approxima-
tion obtained using Laplace’s method (e.g., Tierney
& Kadane, 1986).

An important idea behind the Cheeseman–Stutz ap-
proximation is that we treat data completed by the
EM algorithm as if it were real data. This same idea
underlies the M step of the EM algorithm. As we shall
see in the next section, this idea also can be applied
to structure search.

5 Learning MDAGs: A practical
approach

Simple search-and-score algorithms for selecting
MDAG models are inefficient for two reasons. One is
that computing approximations for the marginal like-
lihood is slow (DiCiccio et al., 1995). Another is that
these approximations do not factor. Consequently, ev-
ery time a transformation is applied to a structure
during search, the entire structure may need to be

1Chickering & Heckerman (1997) discuss a version of
the Cheeseman–Stutz approximation that has a correction
for dimension.

Pick initial structure

Run EM for a while (parameter search)

Compute expected sufficient statistics of the complete model

Search structure, pretending that the expected sufficient statistics

are real sufficient statistics of complete data

Figure 1: A schematic of our approach for MDAG
model selection.

rescored. In this section, we consider a heuristic ap-
proach that addresses both of these problems.

The basic idea behind the approach is that we in-
terleave parameter search with structure search. A
schematic of this approach is shown in Figure 1. First,
we choose some initial model and parameter values.
Then, we perform several iterations of the EM algo-
rithm to find fairly good values for the parameters of
the structure. Next, we use these parameter values
and the current model to compute expected sufficient
statistics for a complete MDAG (one that encodes no
conditional-independence facts). We call these statis-
tics for the current model s, parameters θs, and data
d the expected complete model sufficient statistics and
denote the quantity by ECMSS(d, θs, s). A detailed
discussion of the computation of this quantity is given
in the Appendix. Next, we treat these expected suffi-
cient statistics as if they were sufficient statistics from
a complete data set, and perform structure search. Be-
cause we pretend the data set is complete, the model
scores have a closed form and are factorable, mak-
ing structure search efficient. After structure search,
we reestimate the parameters for the new structure
to be the MAP parameters given the expected suffi-
cient statistics. Finally, the EM, the ECMSS(d, θs, s)
computation, the structure search, and the parameter
reestimation steps are iterated until some convergence
criterion is satisfied.

In the remainder of this section, we discuss variations
of the approach. In addition, we examine the crite-
rion used for model search, the initialization of both
the structure and parameters, and an approach for de-
termining the number of mixture components and the
number of states of any hidden variables in the com-
ponent models.

Our search criterion is the log marginal likelihood of
the expected complete model sufficient statistics:

crit(s′|d, θ̃s, s) = log p(ECMSS(d, θ̃s, s)|s
′h) (10)

where s′ is the model being evaluated and (s, θs) are
the model and parameters used to compute the ex-
pected complete model sufficient statistics.

We use (s, θs) to compute sufficient statistics for the
complete model, because we want all possible depen-
dencies in the data to be reflected in the statistics. If
we were to compute sufficient statistics for an incom-
plete (constrained) model, then models visited dur-

ing search that violates these constraints would not be
supported by the data.

The criterion in Equation 10 is related to the
Cheeseman–Stutz approximation for the marginal like-
lihood, which we can rewrite as

log p(d|s
′h)= log p(ECMSS(d, θ̃s′ , s′)|s

′h)

+ log
p(d|θ̃s′ , s

′h)

p(ECMSS(d, θ̃s′ , s′)|θ̃s′ , s′h)
.(11)

Although the argument of Chickering & Heckerman
(1997) suggests that Equation 11 is a more accurate
approximation for the log marginal likelihood than is
Equation 10, we use the less accurate criterion for two
practical reasons. One, if we were to include the like-
lihood ratio “correction term” in Equation 11, then
the criterion would not factor. Two, if we were to
use just the first term in Equation 11, then we would
still need to compute the MAP configuration θ̃s′ for
every structure that we evaluate. In contrast, by us-
ing Equation 10, we compute the MAP configuration
θ̃s only once. Despite these shortcuts, experiments
described in Section 6 suggest that the use of the cri-
terion in Equation 10 guides the structure search to
good models.

Our approach requires that both an initial structure
and an initial parameterization be chosen. First, let
us consider structural initialization. We initialize the
structure of each component model by placing an arc
from every hidden variable to every observable vari-
able, with the exception that nodes corresponding to
continuous random variables do not point to nodes cor-
responding to discrete random variables. A simpler
choice for an initial graph is one in which every com-
ponent consists of an empty graph—that is, a graph
containing no arcs. However, with such an initializa-
tion and for a restricted set of priors, we conjecture
that our approach would be unable to discover con-
nections between hidden and observable variables.

Next, let us consider parameter initialization. When
the mixture components contain no hidden continu-
ous variables, we initialize parameters for a compo-
nent DAG structure b as follows. First, we remove
all hidden nodes and adjacent arcs from b, creating
model b′. Next, we determine θ̃b′ , the MAP configu-
ration for θb′ given data d. Since the data is complete
with respect to b′, we can compute this MAP in closed
form. Then, we create a conjugate distribution for θb′

whose configuration of maximum value agrees with the
MAP configuration just computed and whose equiva-
lent sample sizes are specified by the user. Next, for
each non-hidden node Xi in b and for each config-
uration of Xi’s hidden discrete parents, we initialize
the parameters of the local distribution family for Xi

by drawing from the conjugate distribution just de-
scribed. For each hidden discrete node Xi in b and
for each configuration of Xi’s (possible) parents, we
initialize the multinomial parameters associated with
the local distribution family of Xi to be some fixed
distribution (e.g., uniform). When the mixture com-

ponents contain hidden continuous variables, we use
the simpler approach of initializing parameters at ran-
dom (i.e., by drawing from a distribution such as the
prior). Methods for initializing the parameters of the
distinguished random variable C include (1) setting
the parameters to be equal, (2) setting the parameters
to their prior means, and (3) drawing the parameters
from a Dirichlet distribution.

As we have mentioned, our approach has several vari-
ations. One source of variation is the heuristic algo-
rithm used for search once ECMSS(d, θs, s)) is com-
puted. The options are the same as those for the sim-
ple search-and-score algorithms, and include greedy
search, greedy search with restarts, best-first search,
and Monte-Carlo methods. In preliminary studies, we
have found greedy search to be effective; and in our
analysis of real data in Section 6, we use this tech-
nique.

Another source of variation is the schedule used to al-
ternate between parameter and structure search. With
respect to parameter search, we can run EM to conver-
gence, for one step, for some fixed number of steps, or
for a number of steps that depends on how many times
we have performed the search phase. With respect
to structure search, we can perform model-structure
transformations for some fixed number of steps, for
some number of steps that depends on how many times
we have performed the search phase, or until we find a
local maximum. Finally, we can iterate the steps con-
sisting of EM, the computation of ECMSS(d, θs, s),
and structure search until either (1) the MDAG struc-
ture does not change across two consecutive search
phases, or (2) the approximate marginal likelihood of
the resulting MDAG structure does not increase. Un-
der the second schedule, the algorithm is guaranteed
to terminate, because the marginal likelihood cannot
increase indefinitely. Under the first schedule, we do
not know of a proof that the algorithm will terminate.
In our experiments with greedy structure search, how-
ever, we have found that this schedule halts.

We find it convenient to describe these schedules us-
ing a regular grammar, where E, M, Ec, S denote an
E step, M step, computation of ECMSS(d, θs, s), and
structure search, respectively. For example, we use
((EM)∗EcS

∗M)∗ to denote the case where, within each
outer iteration, we (1) run EM to convergence, (2)
compute the expected complete model sufficient statis-
tics, (3) run structure search to convergence, and (4)
perform an M step. Another schedule we examine is
((EM)10EcS

∗M)∗. In this schedule, we run EM for
only 10 steps before computing the expected complete
model sufficient statistics.2

In a technical report that is a companion to this paper
(Thiesson, Meek, Chickering, and Heckerman, 1997),
we evaluate various combinations of these schedules.

2When the structure search leaves the model structure
unchanged, we force another iteration of the outer loop in
which we run EM to convergence rather than for 10 steps.
If the model structure changes in this forced iteration, we
continue to iterate with 10 EM steps.

Our experiments indicate that, although it is not nec-
essary to run EM to convergence between structure
search, a single EM step between structure searches se-
lects models that have lower prediction accuracy. We
have found that the schedule ((EM)10EcS

∗M)∗ works
well for a variety of problems.

Finally, the algorithm as described can compare nei-
ther models that contain different random variables
nor models in which the same random variable has a
different number of states. Nonetheless, we can per-
form an additional search over the number of states
of each discrete hidden variable by applying the al-
gorithm in Figure 1 to initial models with different
numbers of states for the hidden variables. We can
discard a discrete hidden variable from a model by
setting its number of states to one. After the best
MDAG for each initialization is identified, we select
the overall best structure using some criterion. Be-
cause only a relatively small number of alternatives
are considered, we can use a computationally expen-
sive approximation for the marginal likelihood such as
the Cheeseman-Stutz approximation or a Monte-Carlo
method.

6 Example

In this section, we evaluate the predictive performance
of MDAG models on real data. In addition, we eval-
uate some of the assumptions underlying our method
for learning these models. In the domain that we con-
sider, all the observable random variables are continu-
ous. Consequently, we focus our attention on mixtures
of Gaussian DAG models. To accommodate the out-
liers contained in the data set that we analyze, each
of the mixture models that we consider has a noise
component in addition to one or more Gaussian com-
ponents. The noise component is modeled as a multi-
variate uniform distribution, and can be viewed as an
empty DAG model in which the distribution function
for each of the random variables is uniform.

We compare the predictive performance of (1) mix-
tures of DAG models (MDAG/n) (2) mixtures of
multivariate-Gaussian distributions for which the co-
variance matrices are diagonal (MDIAG/n), and (3)
mixtures of multivariate-Gaussian distributions for
which the covariance matrices are full (MFULL/n).
The MDIAG/n and MFULL/n model classes corre-
spond to MDAG models with fixed empty structures
and fixed complete structures, respectively, for all
Gaussian components. The /n suffix indicates the ex-
istence of a uniform noise component.

We perform an outer search to identify the num-
ber of components within each mixture model as de-
scribed in Section 5. In particular, we first learn a
two-component model (one Gaussian and one noise
component), and then increase by one the number of
Gaussian mixture components until the model score is
clearly decreasing. We choose the best number of com-
ponents using the Cheeseman–Stutz criterion. Then,
we measure the predictive ability of the chosen model

s using the logarithmic scoring rule of Good (1952):

1

|dtest|

∑
l∈dtest

log p(xl|s
h) (12)

where dtest is a set of test cases and |dtest| is the
number of test cases. We approximate p(xl|s

h) by

p(xl|θ̃s, s
h), the likelihood evaluated at the MAP pa-

rameter configuration.3

When learning MDAG/n models, we use the
((EM)10EcS

∗M)∗ search schedule; and when learning
MDIAG/n and MFULL/n models, we run the EM al-
gorithm to convergence. In all experiments, we deem
EM to have converged when the the ratio of the change
in log likelihood from the proceeding step and the
change in log likelihood from the initialization falls be-
low 10−6. We initialize structure and parameters for
our search procedures as described in Section 5 with
equivalent sample sizes equal to 200.

The example we consider addresses the digital encod-
ing of handwritten digits (Hinton, Dayan, & Revow,
1997). In this domain, there are 64 random variables
corresponding to the gray-scale values [0,255] of scaled
and smoothed 8-pixel x 8-pixel images of handwritten
digits obtained from the CEDAR U.S. postal service
database (Hull, 1994). Applications of joint predic-
tion include image compression and digit classification.
The sample sizes for the digits (“0” through “9”) range
from 1293 to 1534. For each digit, we use 1100 samples
for training, and the remaining samples for testing.

We use a relatively diffuse Normal-Wishart param-
eter prior for each of the Gaussian components of
MDIAG/n and MFULL/n models. In the notation
of DeGroot (1970), our prior has ν = 2, all values
in µ set to 64 as a rough assessment of the average
gray-scale value over pixels, α = ν + 64, and τ set
to the identity matrix. We choose α to be the sum
of ν and the number of observed variables to com-
pute the MAP parameter values in closed form. The
parameter priors for the Gaussian components of the
MDAG/n models are Normal-Wishart priors specified
using the hyperparameters described above and the
methods described in Heckerman and Geiger (1995).
We use a uniform prior on the number of components
in the mixture and, when learning MDAG/n models, a
uniform prior on the structure of the component DAG
models. Because we know that the values of each of
the 64 variables are constrained to the range [0,255],
we fix the parameters in the uniform distribution of
the noise model accordingly. Finally, the hyperparam-
eters {α0, . . . , αk} of the Dirichlet prior on the mixture
weights (i.e., the distinguished variable) are α0 = 0.01
for the noise component, and α1 = . . . = αk = 0.99/k
for the Gaussian components.

The predictive logarithmic score on the test set for
each digit is shown in Figure 2. The number of Gaus-
sian components k and the model dimension d for the

3We are currently implementing a Monte-Carlo method
to average over the parameter configurations.

-350

-300

-250

-200

-150

"0" "1" "2" "3" "4" "5" "6" "7" "8" "9"

Digits

L
o

g
ar

it
h

m
ic

 s
co

re

MDAG

MFULL

MDIAG

Figure 2: Logarithmic predictive scores on the test sets
for the digit data.

MDAG/n MFULL/n MDIAG/n
Digit k d k d k d
“0” 5 1812 2 4290 8 1032
“1” 7 2910 2 4290 5 645
“2” 6 1816 1 2145 6 774
“3” 4 1344 1 2145 6 774
“4” 7 2115 2 4290 6 774
“5” 9 2702 1 2145 6 774
“6” 9 2712 2 4290 5 645
“7” 9 3168 2 4290 4 516
“8” 6 1868 2 4290 5 645
“9” 8 2955 2 4290 5 645

Table 1: Number of Gaussian components and param-
eters in the learned models for the digit data.

best model in each class are displayed in Table 1. Fig-
ure 2 indicates that MDAG/n models, on average, im-
prove the predictive accuracy by 8% over MFULL/n
models and 20% over MDIAG/n models. Note that
the gains in predictive accuracy over MFULL/n mod-
els are obtained while reducing the average number of
parameters by one third.

Using a P6 200MHz computer, the time taken to learn
the MDAG/n, MFULL/n, and MDIAG/n models for
a single digit—including the time needed to find the
optimal number of components—is, on average, 6.0,
1.5, and 1.9 hours, respectively. These times could be
improved by using a more clever search for the optimal
number of mixture components.

To better understand the differences in the distribu-
tions that these mixture models represent, we exam-
ine the individual Gaussian components for the learned
MDAG/n, MFULL/n, and MDIAG/n models for the
digit “7”. The first row of Figure 3 shows the means
for each of the components of each of the models. The
mean values for the variables in each component are
displayed in an 8 x 8 grid in which the shade of grey
indicates the value of the mean. The displays indicate
that each of the components of each type of model are
capturing distinctive types of sevens. They do not,
however, reveal any of the dependency structure in the
component models. To help visualize these dependen-
cies, we drew four samples from each component for
each type of model. The grid for each sample is shaded
to indicate the sampled values. Whereas the samples
from the MDIAG/n components do look like sevens,
they are mottled. This is not surprising, because each
of the variables are conditionally independent given
the component. The samples for the MFULL/n com-
ponents are not mottled, but indicate that multiple
types of sevens are being represented in one compo-

-320000

-295000

-270000

-245000

-220000

1 301 601 901

Structural search step

C
h
ee

se
m

an
-S

tu
tz

 c
ri

te
ri

o
n

Figure 4: The Cheeseman–Stutz criterion for each
intermediate model obtained during structure search
when learning a three-component model for the digit
“7”. The abrupt increases around steps 1, 350, and
540 occur when structure search transitions to a new
component.

nent. That is, several of the samples look blurred and
appear to have multiple sevens superimposed. Gener-
ally, samples from each MDAG/n component look like
sevens of the same distinct style, all of which closely
resemble the mean.

Let us turn our attention to the evaluation of one of
the key assumptions underlying our learning method.
As we have discussed, the criterion used to guide struc-
ture search (Equation 10) is only a heuristic approx-
imation to the true model posterior. To investigate
the quality of this approximation, we can evaluate the
model posterior using the Cheeseman-Stutz approxi-
mation (what we believe to be a more accurate ap-
proximation) for intermediate models visited during
structure search. If the heuristic criterion is good,
then the Cheeseman–Stutz criterion should increase
as structure search progresses. We perform this evalu-
ation when learning a three-component MDAG model
for the digit “7” using the ((EM)10EcS

∗M)∗ sched-
ule. For 149 out of the 964 model transitions, the
Cheeseman–Stutz approximation decreased. Overall,
however, as shown in Figure 4, the Cheeseman–Stutz
score progresses upward to apparent convergence. We
obtain similar results for other data sets. These results
suggest that the heuristic criterion (Equation 10) is a
useful guide for structure search.

Using statistics from this same experiment, we are
able to estimate the time it would take to learn the
MDAG model using the simple search-and-score ap-
proach described in Section 4. We find that the time
to learn the three-component MDAG model for the
digit “7”, using the Cheeseman–Stutz approximation
for model comparison, is approximately 6 years on a
P6 200MHz computer, thus substantiating our previ-
ous claim about the intractability of simple search-
and-score approaches.

Finally, a natural question is whether the Cheeseman–
Stutz approximation for the marginal likelihood is ac-
curate for model selection. The answer is important,
because the MDAG models we select and evaluate are
chosen using this approximation. Some evidence for
the reasonableness of the approximation is provided by
the fact that, as we vary the number of components of
the MDAG models, the Cheeseman-Stutz and predic-

MDAG/n MFULL/n MDIAG/n

Weight

Mean

Samples

0.65 0.35 0.230.04 0.12 0.16 0.33 0.002 0.040.15 0.13 0.03 0.31 0.23 0.19

Figure 3: Means and samples from the components of the learned MDAG/n, MFULL/n, and MDIAG/n models
for digit “7”.

tive scores roughly rise and fall in synchrony, usually
peaking at the same number of components.

7 Structure learning: A preliminary
study

As we have mentioned in the introduction, many com-
puter scientists and statisticians are using statistical-
inference techniques to learn the structure of DAG
models from observational (i.e., non-experimental
data). Pearl & Verma (1991) and Spirtes et al. (1993)
have argued that, under a set of simple (and sometimes
reasonable) assumptions, the structures so learned can
be used to infer cause-and-effect relationships. An in-
teresting possibility is that these results can be gen-
eralized so that we may use the structure of learned
MDAG models to infer causal relationships in mixed
populations (populations in which subgroups have dif-
ferent causal relationships). In this section, we present
a preliminary investigation into how well our approach
can learn MDAG structure.

We perform our analysis as follows. First, we construct
a “gold-standard” MDAG model, and use the model to
generate data sets of varying size. Then, for each data
set, we use our approach to learn an MDAG model
(without a noise component). Finally, we compare the
structure of the learned model to that of the gold-
standard model, and measure the minimum number of
arc manipulations (additions, deletions, and reversals)
needed to transform each learned component structure
to the corresponding gold-standard structure.

The gold-standard model is an MDAG model for five
continuous random variables. The model has three
mixture components. The structure of the first and
third components (COMP1 and COMP3) are identical
and this structure is shown in Figure 5a. The structure
of the second component (COMP2) is shown in Fig-
ure 5b. The DAGs are parameterized so that there is
some spatial overlap. In particular, all unconditional
means in COMP1 and COMP2 are zero; all means in
COMP3 are equal to five; and all linear coefficients and
conditional variances are one (see Shachter & Kenley,
1989).

We construct a data set of size N = 3000 by sampling

(a)

X2

X1

X3X4

(b)

X5

X1

X2 X3 X4

X5

Figure 5: (a) The graphical structure for first and
third components in the gold-standard MDAG. (b)
The graphical structure for second component.

Sample Weight of three Arc differences
size k largest comp. COMP1 COMP2 COMP3
93 2 1.00 - 4 0
186 2 1.00 - 2 0
375 3 1.00 1 1 0
750 5 0.98 1 1 0
1500 3 1.00 0 3 0
3000 5 0.99 1 1 0

Table 2: Performance on the task of structure learning
as a function of sample size.

1000 cases from each component of the gold-standard
model. We then iteratively subsample this data, cre-
ating data sets of size N = 93, 186, 375, 750, 1500,
and 3000.

Table 2 shows the results of learning models from
the six data sets using the ((EM)10EcS

∗M)∗ sched-
ule. The columns of the table contain the number
of components k in the learned MDAG, the sum of
the mixture weights in the three largest components
and the minimum number of arc manipulations (ad-
ditions, deletions, and reversals) needed to transform
each learned component structure to the correspond-
ing gold-standard structure for the three components
with the largest mixture weights. Arc manipulations
that lead to a model with different structures but the
same family of distributions are not included in the
count. All learned MDAG structures are close to that
of the gold-standard model. In addition, although
not apparent from the table, the structure of every
learned component has only additional arcs in com-
parison with the gold-standard model for sample sizes
larger than 375. Finally, it is interesting to note that,
essentially, the structure is recovered for a sample size
as low as 375.

8 Related work

DAG models (single-component MDAG models) with
hidden variables generalize many well-known statisti-
cal models including linear factor analysis, latent fac-
tor models (e.g., Clogg, 1995), and probabilistic prin-
ciple component analysis (Tipping & Bishop, 1997).
MDAG models generalize a variety of mixtures models
including naive-Bayes models used for clustering (e.g.,
Clogg, 1995; Cheeseman and Stutz, 1995), mixtures
of factor analytic models (Hinton, Dayan, & Revow,
1997), and mixtures of probabilistic principle compo-
nent analytic models (Tipping & Bishop, 1997).

There is also work related to our learning meth-
ods. The idea of interleaving parameter and structure
search to learn graphical models has been discussed
by Meilă, Jordan, & Morris (1997), Singh (1997), and
Friedman (1997). Meilă et al. (1997) consider the
problem of learning mixtures of DAG models for dis-
crete random variables where each component is a
spanning tree. Similar to our approach, they treat ex-
pected data as real data to produce a completed data
set for structure search. Unlike our work, they replace
heuristic model search with a polynomial algorithm for
finding the “best” spanning-tree components given the
completed data. Also, unlike our work, they use like-
lihood as a selection criterion, and thus do not take
into account the complexity of the model.

Singh (1997) concentrates on learning a single DAG
model for discrete random variables with incomplete
data. He does not consider continuous variables or
mixtures of DAG models. In contrast to our approach,
Singh (1997) uses a Monte-Carlo method to produce
completed data sets for structure search.

Friedman (1997, 1998) describes general algorithms for
learning DAG models given incomplete data, and pro-
vides theoretical justification for some of his methods.
Similar to our approach and the approach of Meilă
et al. (1997), Friedman treats expected data as real
data to produce completed data sets. In contrast to
our approach, Friedman obtains the expected sufficient
statistics for a new model using the current model.
Most of these statistics are calculated by performing
probabilistic inference in the current DAG model, al-
though some of the statistics are obtained from a cache
of previous inferences. In our approach, we only need
to perform inference once on every case that has miss-
ing values to compute the expected complete model
sufficient statistics. After these statistics are com-
puted, model scores for arbitrary structures can be
computed without additional inference.

9 Discussion and future work

We have described mixtures of DAG models, a class of
models that is more general than DAG models, and
have presented a novel heuristic method for choos-
ing good models in this class. Although evaluations
for more examples (especially ones containing dis-
crete variables) are needed, our preliminary evalu-

ations suggest that model selection within this ex-
panded model class can lead to substantially improved
predictions. This result is fortunate, as our evaluations
also show that simple search-and-score algorithms, in
which models are evaluated one at a time using Monte-
Carlo or large-sample approximations for model poste-
rior probability, are intractable for some real problems.

One important observation from our evaluations
is that the (practical) selection criterion that we
introduce—the marginal likelihood of the complete-
model sufficient statistics—is a good guide for model
search. An interesting question is: Why? We hope
that this work will stimulate theoretical work to an-
swer this question and perhaps uncover better approx-
imations for guiding model search. Friedman (1998)
has some initial insight.

A possibly related challenge for theoretical study has
to do with the apparent accuracy of the Cheeseman–
Stutz approximation for the marginal likelihood. As
we have discussed, in experiments with multinomial
mixtures, Chickering & Heckerman (1997) have found
the approximation to be at least as accurate and some-
times more accurate than the standard Laplace ap-
proximation. Our evaluations have also provided some
evidence that the Cheeseman–Stutz approximation is
an accurate criterion for model selection.

In our evaluations, we have not considered situations
where the component DAG models themselves contain
hidden variables. In order to learn models in this class,
methods for structure search are needed. In such sit-
uations, the number of possible models is significantly
larger than the number of possible DAGs over a fixed
set of variables. Without constraining the set of pos-
sible models with hidden variables—for instance, by
restricting the number of hidden variables—the num-
ber of possible models is infinite. On a positive note,
Spirtes et al. (1993) have shown that constraint-based
methods under suitable assumptions can sometimes
indicate the existence of a hidden common cause be-
tween two variables. Thus, it may be possible to use
the constraint-based methods to suggest an initial set
of plausible models containing hidden variables that
can then be subjected to a Bayesian analysis.

In Section 7, we saw that we can recover the structure
of an MDAG model to a fair degree of accuracy. This
observation raises the intriguing possibility that we can
infer causal relationships from a population consist-
ing of subgroups governed by different causal relation-
ships. One important issue that needs to be addressed
first, however, has to do with structural identifiabil-
ity. For example, two MDAG models may superficially
have different structures, but may otherwise be statis-
tically equivalent. Although the criteria for structural
identifiability among single-component DAG models is
well known, such criteria are not well understood for
MDAG models.

Appendix: Expected complete model
sufficient statistics

In this appendix, we examine complete model suffi-
cient statistics more closely. We shall limit our discus-
sion to multi-DAG models for which the component
DAG models have conditional-Gaussian distributions.
The extension to the noise component is straightfor-
ward.

Consider a multi-DAG model for random variables C
and X. Let Γ denote the set of continuous variables in
X, γ denote a configuration of Γ, and nc denote the
number of variables in Γ. Let ∆ denote the set of all
discrete variables (including the distinguished variable
C), and m denote the number of possible configura-
tions of ∆. In addition, let d = y1, . . . ,yN , where yi

is the configuration of the observed variables in case i.
Note that different variables may be observed in dif-
ferent cases. Finally, as in Dempster et al. (1977), let
xi denote the ith complete case—the configuration of
X and C in the ith case.

Now, consider the complete model sufficient statis-
tics for a complete case, which we denote T (x).
For the multi-DAG model, T (x) is a vector
〈〈N1, R1, S1〉, . . . , 〈Nm, Rm, Sm〉〉 of m triples, where
the Nj are scalars, the Rj are vectors of length nc, the
Sj are square matrices of size nc × nc. In particular,
if the discrete variables in x take on the jth configu-
ration, then Nj = 1, Rj = γ, and Sj = γ′ ∗ γ, and
Nk = 0, Rk = 0, and Sk = 0 for k 6= j.

When we do not have a complete data set, we com-
pute the expected complete model sufficient statistics
ECMSS(d, θs, s), given by

ECMSS(d, θs, s) =

N∑
i=1

E(T (xi)|yi, θs, s
h) (13)

The expectation is taken with respect to the joint dis-
tribution over the random variables C and X given
θs, sh, and the observations for the current case. The
expectation of T (x) is computed by performing prob-
abilistic inference in the multi-DAG model. Such in-
ference is a simple extension of the work of Lauritzen
(1992). The sum of expectations are simply scalar,
vector, or matrix additions (as appropriate) in each
triple in each of the coordinates of the vector.

Note that, in the computation as we have described
it, we require a statistic triple for every possible con-
figuration of discrete variables. In practice, however,
we can use a sparse representation in which we store
triples only for those complete observations that are
consistent with the data.

References

Bernardo, J. and Smith, A. (1994). Bayesian Theory. John Wiley
and Sons, New York.

Buntine, W. (1994). Operations for learning with graphical models.
Journal of Artificial Intelligence Research, 2:159–225.

Cheeseman, P. and Stutz, J. (1995). Bayesian classification (Auto-
Class): Theory and results. In Fayyad, U., Piatesky-Shapiro, G.,

Smyth, P., and Uthurusamy, R., editors, Advances in Knowledge
Discovery and Data Mining, pages 153–180. AAAI Press, Menlo
Park, CA.

Chickering, D. (1996). Learning Bayesian Networks from Data.
PhD thesis, University of California, Los Angeles, CA.

Clogg, C. (1995). Latent class models. In Handbook of statistical
modeling for the social and behavioral sciences, pages 311–359.
Plenum Press, New York.

Cooper, G. and Herskovits, E. (1992). A Bayesian method for the
induction of probabilistic networks from data. Machine Learning,
9:309–347.

DiCiccio, T., Kass, R., Raftery, A., and Wasserman, L. (July, 1995).
Computing Bayes factors by combining simulation and asymptotic
approximations. Technical Report 630, Department of Statistics,
Carnegie Mellon University, PA.

Friedman, N. (1997). Learning belief networks in the presence of
missing values and hidden variables. In Proceedings of the Four-
teenth International Conference on Machine Learning. Morgan
Kaufmann, San Mateo, CA.

Friedman, N. (1998). The Bayesian structural EM algorithm. In
Proceedings of the Fourteenth Conference on Uncertainty in Ar-
tificial Intelligence Learning. Morgan Kaufmann, San Mateo, CA.
To appear.

Geiger, D. and Heckerman, D. (1996). Beyond Bayesian networks:
Similarity networks and Bayesian multinets. Artificial Intelligence,
82:45–74.

Good, I. (1952). Rational decisions. J. R. Statist. Soc. B, 14:107–
114.

Heckerman, D. and Geiger, D. (1995). Likelihoods and priors for
Bayesian networks. Technical Report MSR-TR-95-54, Microsoft Re-
search, Redmond, WA.

Heckerman, D., Geiger, D., and Chickering, D. (1995). Learning
Bayesian networks: The combination of knowledge and statistical
data. Machine Learning, 20:197–243.

Hinton, G., Dayan, P., and Revow, M. (1997). Modeling the mani-
folds of images of handwritten digits. IEEE Transactions on Neural
Networks, 8:65–74.

Hull, J. (1994). A database for handwritten text recognition re-
search. IEEE Transactions on Pattern Analysis and Machine In-
telligence, 16:550–554.

Lauritzen, S. (1992). Propagation of probabilities, means, and vari-
ances in mixed graphical association models. Journal of the Amer-
ican Statistical Association, 87:1098–1108.

Meilă, M., Jordan, M., and Morris, Q. (1997). Estimating depen-
dency structure as a hidden variable. Technical Report 1611, Mas-
sachusetts Institute of Technology, Artificial Intelligence Labora-
tory.

Shachter, R. and Kenley, C. (1989). Gaussian influence diagrams.
Management Science, 35:527–550.

Singh, M. (1997). Learning Bayesian networks from incomplete data.
In Proceedings AAAI-97 Fourteenth National Conference on Ar-
tificial Intelligence, Providence, RI, pages 534–539. AAAI Press,
Menlo Park, CA.

Spiegelhalter, D., Dawid, A., Lauritzen, S., and Cowell, R. (1993).
Bayesian analysis in expert systems. Statistical Science, 8:219–282.

Spirtes, P., Glymour, C., and Scheines, R. (1993). Causation, Pre-
diction, and Search. Springer-Verlag, New York.

Thiesson, B., Meek, C., Chickering, D., and Heckerman, D. (Decem-
ber, 1997). Learning mixtures of DAG models. Technical Report
MSR-TR-97-30, Microsoft Research, Redmond, WA.

Tierney, L. and Kadane, J. (1986). Accurate approximations for
posterior moments and marginal densities. Journal of the American
Statistical Association, 81:82–86.

Tipping, M. and Bishop, C. (1997). Mixtures of probabilistic prin-
ciple component analysers. Technical Report NCRG-97-003, Neural
Computing Research Group.

