
Fast Learning From Sparse Data

David Maxwell Chickering and David Heckerman Microsoft Research

Redmond WA 98052-6399
dmax,heckerma@microsoft.com

Abstract

We describe two techniques that significantly
improve the running time of several stan-
dard machine-learning algorithms when data
is sparse. The first technique is an algo-
rithm that efficiently extracts one-way and
two-way counts—either real or expected—
from discrete data. Extracting such counts
is a fundamental step in learning algorithms
for constructing a variety of models includ-
ing decision trees, decision graphs, Bayesian
networks, and naive-Bayes clustering models.
The second technique is an algorithm that
efficiently performs the E-step of the EM al-
gorithm (i.e., inference) when applied to a
naive-Bayes clustering model. Using real-
world data sets, we demonstrate a dramatic
decrease in running time for algorithms that
incorporate these techniques.

1 INTRODUCTION

Many real-world data sets represent domains for which
there are hundreds or thousands of variables of inter-
est. Furthermore, these data sets can contain thou-
sands or millions of records. Statistical analyses of
such data sets typically require all (or a significant
sample) of the records to be resident in the main mem-
ory of a computer. Even with the growing memory
sizes of modern-day machines, a large domain can be
problematic if each record needs to explicitly store a
value for every variable in the domain. Fortunately,
for many large data sets, many or all of the variables
appear in the same state for a large fraction of the
records.

Consider a study of television-watching behavior for a
population of viewers. For simplicity, assume that the
variables of interest are binary indicators of whether
or not a person watched each show during some time

period (e.g. a week). Such a study would probably
include hundreds of television shows and thousands
of viewers. Each record in the data set encodes ei-
ther “watched” or “didn’t watch” for each one of the
hundreds of shows. Any particular viewer, however,
probably only watched a handful of television shows,
and consequently the majority of the values for the
corresponding record will be “didn’t watch”.

It seems obvious in this example that a dense represen-
tation of the data—where each record explicitly con-
tains a value for every television show—is extremely
inefficient. A better approach is to store, for each
viewer, a (relatively short) list of shows that they
watched. Such a sparse representation implicitly en-
codes the same information as the dense representa-
tion.

Regardless of the representation of the data, many
standard machine-learning algorithms take a dense
view of the data set. That is, these algorithms explic-
itly “request” values of variables in the records without
regard to the representation of the data. It is straight-
forward to implement such a view for a sparse data
set: whenever an algorithm requests the value for a
variable that is not explicitly stored in a record, the
default value (“didn’t watch” in our example) is re-
turned. The problem with hiding the sparse represen-
tation this way is we lose the ability to exploit the fact
that the data is sparse in the implementation of the
algorithms.

In this paper, we describe two techniques that al-
low several standard machine-learning algorithms to
take advantage of sparse data. These techniques ap-
ply to algorithms that use models whose sufficient
statistics—either real or expected—are one-way and
two-way counts. Examples include (1) decision-tree
learning algorithms (e.g. Breiman, 1984), (2) decision-
graph learning algorithms (e.g. Chickering et al.,
1997), (3) structure initialization for Bayesian-network
learning algorithms (e.g. Cooper and Herskovitz, 1991,
Buntine, 1991, Spiegelhalter et al., 1993, Heckerman et

al., 1995), and (4) model-based clustering algorithms
(e.g. Cheeseman and Stutz, 1995). The second tech-
nique we describe is a method to speed up inference in
the E-step of the EM algorithm. We show that when
used in conjunction with the first technique, we can
speed up clustering algorithms dramatically.

Our method for efficiently extracting one-way and two-
way counts from sparse data uses a trick that Moore
and Lee (1998) use for caching all possible n-way
counts in memory using an ADtree data structure.
The algorithms we consider in this paper could, in fact,
be applied to a data set that is represented using an
ADtree. The emphasis of this paper, however, is mod-
ifying existing algorithms to take advantage of sparse
data, and not on the representation of the data itself.
In addition, our modifications allow efficient extraction
of expected one-way and two-way counts.

In Section 2, we present notation, definitions, and
background material. In Section 3, we describe how
to efficiently extract one-way and two-way counts from
sparse data. In Section 4, we show how to take advan-
tage of sparse data when performing inference in the
E-step of the EM algorithm. In Section 5, we pro-
vide experimental results that demonstrate a signifi-
cant reduction in running time for machine-learning
algorithms applied to sparse data that use the tech-
niques described in this paper.

2 BACKGROUND AND NOTATION

In this paper, we assume that all variables in the do-
main of interest are discrete. For many applications,
this assumption is not tremendously restrictive, as con-
tinuous variables can be discretized dynamically and
the techniques we discuss apply directly.

We use upper case letters (e.g. Xi) to denote variables,
and lower case letters (e.g. xi) to denote values of
variables. We use bold-face letters (e.g. X) to denote
sets of variables. We use ri to denote the number of
states for variable Xi.

There are many ways to represent sparse data effi-
ciently, both in memory and on disk. The results of
this paper apply to any representation with the follow-
ing two properties:

• Each variable Xi in the domain has a correspond-
ing default value di. Whenever a variable occurs
in its default value in a particular record, the value
of that variable is not explicitly stored in the rep-
resentation.

• For any record in the datatset, we can extract
the values for the set of all variables that do not

occur with their default value in time that is pro-
portional to the number of variables in that set.

The first condition ensures that the size of the repre-
sentation is proportional to the number of non-default
values in the data set. The second condition ensures
that we can efficiently extract the non-default values.

To simplify presentation, we assume for the remainder
of the paper that each record in the data set is repre-
sented as a linked-list of variable/value pairs (Xi, xi),
where xi 6= di. This simple representation clearly sat-
isfies the requirements above.

As mentioned in the introduction, we will describe a
method to extract one-way and two-way counts effi-
ciently. The one-way counts for a variable is a set
that stores the number of times the variable occurs
(marginally) in each of its states in the data. We use
SS(Xi) to denote the set of one-way counts for vari-
able Xi, and we use SS(Xi = xi) to denote the number
of cases in which Xi = xi in the data set. Two-way
counts for a pair of discrete variables Xi and Xj en-
code, for each unique combination of (xi, xj), the num-
ber of records in the data set for which Xi = xi and
Xj = xj . We use SS(Xi, Xj) to denote the set of two-
way counts for Xi and Xj . To denote a specific count
in this set, we use SS(Xi = xi, Xj = xj).

Record A B C

1 1 1 0
2 2 2 0
3 1 0 2
4 1 2 1
5 0 0 0
6 1 0 2
7 1 0 0

Record List
1 {(B, 1)}
2 {(A, 2), (B, 2)}
3 {(C, 2)}
4 {(B, 2), (C, 1)}
5 {(A, 0)}
6 {(C, 2)}
7 {}

(a) (b)

Figure 1: Two representations for a data set: (a) dense
representation and (b) corresponding linked list. De-
fault values for A, B, and C are 1, 0 and 0, respectively.

Consider the matrix shown in Figure 1a, which repre-
sents a dense view of a small data set defined over three
variables A, B, and C, where all variables have three
states. To store the given data set in the sparse repre-
sentation most efficiently, we define the default value
for each variable to be the value that occurs most fre-
quently in the data. Thus, the default value for A,
B and C in the example would be 1, 0 and 0 respec-
tively. The resulting linked-list sparse representation
for the data is shown in Figure 1b. Figure 2a shows
the two-way counts SS(A, C), and Figure 2b shows the
one-way counts SS(C).

A = 0 A = 1 A = 2
C = 0 1 2 1
C = 1 0 1 0
C = 2 0 2 0

C = 0 4
C = 1 1
C = 2 2

(a) (b)

Figure 2: (a) Two-way counts SS(A, C) and (b) one-
way counts SS(C) for the data set shown in Figure
1

3 EFFICIENTLY EXTRACTING

TWO-WAY COUNTS

In this section, we describe a method to extract one-
way and two-way counts from sparse data efficiently.
We concentrate on the task of (1) extracting the one-
way counts for all variables, and (2) extracting the two-
way counts between a single target variable T and all

other variables X = {X1, ..., Xn} in the domain. These
two operations are fundamental to decision-tree learn-
ing algorithms when evaluating potential splits on a
leaf node. A straightforward extension to the method
yields the two-way counts between every pair of vari-
ables in the domain, which can be used to identify a
maximum-branching (Edmonds, 1967) Bayesian net-
work. As we shall see in Section 4, our method is also
relevant to naive-Bayes clustering.

We use t to denote a state of T , and td to denote the
default state of T .

The basic idea behind the method is to accumulate
the counts only for variables that do not occur in their
corresponding default states. We then derive the re-
maining counts using the known number of cases m.
This trick was used by Moore and Lee (1998) to reduce
the size of a data-structure they use to store all n-way
counts from a data set.

A simple (dense-view) algorithm to extract the two-
way counts

{SS(T, X1), ...,SS(T, Xn)}

can be described as follows. First we initialize, for
each value i, all entries in SS(T, Xi) to zero. Then,
for each record in the data set, we add one to the
relevant element in every set SS(T, Xi). That is, if
T = t and Xi = xi in the record, we increment
SS(T = t, Xi = xi) by one. Note that we can easily
calculate the one-way counts as well during the scan
of the data set.

Let m denote the number of records in the data set.
Then the time to calculate the one-way and two-way
counts, as a function of m and n, is proportional to
m · n. Note that m · n is the total number of values in
a dense representation of the data.

Recall that, in the sparse representation, we only ex-
plicitly store a value for a variable in a record if that
value is not the default value for the variable. Let l

denote the total number of (non-default) values in the
sparse representation. Figure 3 shows our algorithm
that can extract all one-way and two-way counts in
time proportional to l. In the next section, we show
how the algorithm can also speed up the extraction of
expected sufficient statistics.

For large data sets, the time to complete the algo-
rithm in Figure 3 is dominated by the scan of the data
in Step 2. Consequently, if only l out of the m · n

possible values in the data are non-default values, the
optimization yields an algorithm that is roughly m·n

l

times faster than the simple algorithm that checks the
value for every variable in every record. In Section 5,
we verify that speedups of this magnitude are achieved
on real-world data sets.

4 CLUSTERING

In this section, we describe a method to efficiently clus-
ter a sparse data set. In particular, we show how to
perform inference in the E-step of the EM algorithm
(Dempster, Laird and Rubin, 1977) such that the step
completes in time that is proportional to the num-
ber of values explicitly stored in the sparse represen-
tation of the data set. We concentrate on the EM
algorithm applied to a naive-Bayes model, shown in
Figure 4, although the method applies to other clus-
tering algorithms (such as K-means) and to other mod-
els whose expected sufficient statistics are one-way and
two-way counts. The naive-Bayes model has been used
by Cheeseman and Stutz (1995) in their system called
AutoClass, and has been studied in depth by statisti-
cians (e.g. Clogg, 1995).

The EM algorithm is a method that can be used to de-
termine the maximum a posteriori or maximum likeli-
hood configuration for the parameter values contained
in a naive-Bayes model. Once identified, we can use
these parameters to (fractionally) assign cluster mem-
bership to each record in the data. The resulting pa-
rameter values can also be used to approximate the
marginal likelihood of the model, which allows learn-
ing algorithms to automatically identify the number of
states for the cluster variable (Chickering and Hecker-
man, 1997).

To describe the EM algorithm, we adopt the following
notation. We use Θ to denote the set of all parameters
stored in the model, and use rC to denote the number
of states of the cluster node (i.e. the number of clusters
for the model). The cluster node stores parameters
{θC=1, ..., θC=rC

}, specifying the prior probability of a
record (or person) belonging to any particular cluster.

1. Initialize to zero all counts in the sets
{SS(T),SS(X1), ...,SS(Xn),SS(T, X1), ...,SS(T, Xn)}

2. For each record R in the data set

(a) Let t denote the value of T in record R. (If t
does not exist in the linked-list, then t = td)

(b) If t 6= td, increment the one-way count SS(T = t)
by one

(c) For each (Xi, xi) pair in the linked-list represen-
tation for the case, increment the one-way count
SS(Xi = xi) by one. If t 6= td, increment the
two-way count SS(T = t, Xi = xi) by one.

3. Derive all counts corresponding to default values, us-
ing the known number of cases m, as follows:

(a) Derive the one-way counts for each variable Xi

(and T) using the following equality:

SS(Xi = di) = m −
∑

xi 6=di

SS(Xi = xi) (1)

(b) Using the one-way counts, derive all two-way
counts. In particular, for xi 6= di

SS(T = td, Xi = xi) = (2)

SS(Xi = xi) −
∑

t 6=td

SS(T = t, Xi = xi)

for t 6= td

SS(T = t, Xi = di) = (3)

SS(T = t) −
∑

xi 6=di

SS(T = t, Xi = xi)

and for xi = di, t = dd

SS(T = td, Xi = di) = (4)

SS(Xi = di) −
∑

t 6=td

SS(T = t, Xi = di)

Figure 3: Algorithm to efficiently extract one-way and
two-counts

X1 X2 X
n

C

Figure 4: Naive-Bayes model

That is

p(C = c|Θ) = θC=c

Node Xi stores, for each value c of the cluster variable,
a set of ri parameters {θXi=1|C=c, ..., θXi=ri|C=c} that
specify the conditional probability that the variable is
in each of its states, given that the record is in cluster
c. That is,

p(Xi = xi|C = c, Θ) = θXi=xi|C=c

The EM algorithm repeatedly applies two steps—the
E-step and the M-step—until some convergence crite-
rion is met. In the E-step, we use the parameters of
the model and the given data to fill in expected values
for (1) the one-way counts SS(C) and (2) the two-way
counts {SS(C, X1), ...,SS(C, Xn)}. These resulting ex-
pected counts are the expected sufficient statistics for
the naive-Bayes model. In the M-step of the EM algo-
rithm, we use the expected sufficient statistics derived
in the E-step to set new parameter values Θ for the
model. Dempster et al. (1977) show that the algo-
rithm is guaranteed to converge to a local maximum.

To simplify discussion, we use x
j
i to denote the value

of variable Xi in the jth record.

In a traditional (dense view) implementation, the ex-
pected counts can be calculated as follows. First we
initialize all one-way and two-way (expected) counts
to zero. Then, for each record j in the data set, we
use the parameters of the model to derive the posterior
probability of each state of the cluster node:

pj
c = p(C = c|X1 = x

j
1
, ..., Xn = xj

n, Θ)

= α · θC=c

n∏

i=1

θ
Xi=x

j

i
|C=c

(5)

where α is the normalizing constant. Then, for each
value c of the cluster variable, we increment SS(C = c)

by pj
c. Similarly, for each value c of the cluster vari-

able, and for each variable Xi in X, we increment
SS(C = c, Xi = x

j
i) by pj

c. After iterating through all
the cases, the one-way and two-way counts contain
the expected sufficient statistics for the naive-Bayes
model.

We update the parameters of the model using the ex-
pected sufficient statistics. For example, if we’re iden-
tifying the maximum likelihood configuration of the
parameters, the M-step will update all of the parame-
ters as follows:

θC=c =
SS(C = c)

m

and

θXi=xi|C=c =
SS(Xi = xi, C = c)

SS(C = c)

If we’re identifying the maximum a posteriori parame-
ter values, a prior term is added to the numerator and
denominator in the above equations1.

In a dense-view implementation of the E-step, we eval-
uate Equation 5 (n + 1 multiplications) once for each
record, and the resulting algorithm will run in time
proportional to m ·n. (Note that the time to complete
the M-step of the EM algorithm does not depend on
m).

We now describe how to implement the E-step of the
EM algorithm in time proportional to the number of
values l that are explicitly stored in the sparse repre-
sentation.

The first speedup, used before each scan of the data
set, is to pre-compute the (non-normalized) posterior
for each state of the cluster variable, given a (possibly
hypothetical) record in which each variable is in the
default state. In particular, for each state c of the
cluster variable, we compute

pdefault
c = p(C = c, X1 = d1, ..., Xn = dn, Θ)

= θC=c

n∏

i=1

θXi=di|C=c (6)

Given pdefault
c , we efficiently compute pj

c for each
record in the data set by performing only as many
multiplications as there are non-default values in the
record. The idea is that, for each value in the linked
list of a record, we adjust pdefault

c by multiplying by a
corresponding correction term L(xi, c):

1See (e.g.) Chickering and Heckerman (1997).

L(xi, c) =
θXi=xi|C=c

θXi=di|C=c

(7)

All correction terms L(xi, c) are pre-computed before
each scan of the data. Substituting Equation 7 and
Equation 6 into Equation 5 we have

pj
c = α · pdefault

c ·
∏

xi∈Recordj

L(xi, c) (8)

where the product is taken over the variables in the
record that do not occur in their default values. Note
that we still need to evaluate the normalization con-
stant for each record.

The second speedup to the E-step is to apply the meth-
ods from Section 3 to efficiently update the expected
sufficient statistics of the model. In particular, for each
record in the data set, we only update SS(C, Xi) for
the variables Xi that explicitly appear in the linked
list. Note that the one-way counts SS(C) are always
updated, and that there is no default state for variable
C. After completing the scan of the data set, we de-
rive the two-way counts for the default values di using
Equation 3.

Combining these two speedups, we complete the
scan of the data in the E-step in time proportional
to l. Although we incur overhead when (1) pre-
computing pdefault

c and the correction terms and (2)
post-computing the expected sufficient statistics corre-
sponding to default values of Xi, the time to complete
these computations does not depend on the number of
records m in the data set. As we see in the following
section, the implementation yields dramatic runtime
improvements over a dense-view implementation when
data is sparse.

5 EXPERIMENTS

Our experiments were performed on three real-world
data sets.

The first data set, Television, uses the Nielsen net-
work television viewing data for a two week period in
the winter of 1995. Each variable in the domain cor-
responds to one of 203 television shows, and each of
the 3275 records stores, for each show, whether or not
a particular person watched that show. The default
value for each show is “didn’t watch”.

The second data set, MS Web2, contains data on the
browsing patterns of people who visited the Microsoft
corporate web site in October of 1996. Each of the

2The MS Web data set is available on the UC Irvine
repository.

282 variables in the domain corresponds to a partic-
ular URL cluster (vroot) on the site, and each of the
10000 records stores, for each vroot, whether or not a
particular person visited that vroot. The default value
for each vroot is “didn’t visit”.

The final data set, MSNBC, encodes the stories that
people read on the MSNBC web site. The variables
correspond to the most popular 2922 stories. The
records correspond to the 1,043,878 visitors to MSNBC
on one day in December of 1998. Each record stores,
for each story, whether or not a particular visitor read
that story. The default value for each story is “didn’t
read”.

Table 1 shows summary statistics for each of the data
sets. Recall that n is the number of variables, m is the
number of records, and l is the number of non-default
entries. The last column in the table shows the ratio
of the number of logical entries in a dense view of the
data (m · n) to the number of explicit values stored in
a sparse representation of the data (l). We expect the
running times of the modified algorithms to be faster
by an amount that is the same order of magnitude as
this ratio.

Data Set n m l dn·m
l

e
Television 203 3,275 27,957 24
MS Web 282 10,000 57,086 49
MSNBC 2,922 1,043,878 12,348,863 247

Table 1: Summary statistics for the data sets used in
the experiments

Table 2 shows, for each data set, the total time spent
executing the E-step of the EM algorithm3 for two
implementations of a naive-Bayes clustering algorithm.
The implementations are identical except that one uses
a dense view of the data, and the other uses the sparse-
data techniques described in Section 4 to optimize the
E-step. For each data set, we used a model containing
20 clusters and ran EM to convergence. Because the
dense-view implementation was so slow, we relaxed the
convergence criterion for the MSNBC data set so that
convergence was reached after two iterations of the
EM algorithm. The average times reported are from
ten separate runs using the same parameters, except
for the MSNBC/dense-view experiment which is an
average of four runs. The variance in times within
each experiment was very small.

Table 3 shows results from applying two implementa-
tions of a decision-tree learning algorithm to the data
sets; the first implementation uses a dense view of the

3We report only the cumulative times spent in the E-
step, but for large data sets such as MSNBC, this time
dominates the total running time of the EM algorithm

Data Set Dense (ms) Sparse (ms) d Ratio e
Television 76,776 5,454 14
MS Web 397,152 9,901 40
MSNBC 28,301,773 519,250 55

Table 2: Clustering results

Data Set Dense (ms) Sparse (ms) d Ratio e
Television 44848 3342 13
MS Web 368005 10613 35
MSNBC 1674595 13188 127

Table 3: Decision-tree results

data, and the second implementation extracts the two-
way counts as described in Section 3. The table shows
the average total time each algorithm spent extracting
two-way counts when scoring splits, where the average
was taken over ten separate runs. For each data set,
except for MSNBC, we used the algorithms to con-
struct a decision tree for each variable in the domain
based on the values for all other variables in the do-
main. For the MSNBC data set, we restricted the
experiment to learn a decision tree for a single vari-
able. The algorithms applied a greedy search strategy
and used the Bayes-factor criterion (Chickering et al.,
1997).

As expected, sparser data (i.e. larger values of
m·n

l
) yielded larger improvements in running time for

the modified algorithms. Furthermore, the relative
speedups in Tables 2 and 3 are of the same order
of magnitude as the corresponding ratios n·m

l
shown

in Table 1. The most dramatic improvement was
achieved when learning decision trees for the MSNBC
dataset: our sparse implementation of the algorithm
took roughly 13 seconds to learn a decision tree,
whereas the dense-view implementation took almost
a half hour.

6 CONCLUSION

In this paper, we described two methods for speed-
ing up several machine-learning algorithms when data
is sparse. We demonstrated that these methods yield
dramatic improvements in running time for both clus-
tering algorithms and decision-tree learning algorithms
when applied to three real-world data sets. The meth-
ods are generally applicable to algorithms that extract
one-way and two-way counts from the data.

References

Breiman, L., Friedman, J., Olshen, R., and Stone,
C. (1984). Classification and Regression Trees.
Wadsworth & Brooks, Monterey, CA.

Buntine, W. (1991). Theory refinement on Bayesian
networks. In Proceedings of Seventh Conference

on Uncertainty in Artificial Intelligence, Los An-
geles, CA, pages 52–60. Morgan Kaufmann.

Cheeseman, P. and Stutz, J. (1995). Bayesian
classification (AutoClass): Theory and results.
In Fayyad, U., Piatesky-Shapiro, G., Smyth,
P., and Uthurusamy, R., editors, Advances in

Knowledge Discovery and Data Mining, pages
153–180. AAAI Press, Menlo Park, CA.

Chickering, D. and Heckerman, D. (1997). Efficient
approximations for the marginal likelihood of
Bayesian networks with hidden variables. Ma-

chine Learning, 29:181–212.

Chickering, D., Heckerman, D., and Meek, C. (1997).
A Bayesian approach to learning Bayesian net-
works with local structure. In Proceedings of

Thirteenth Conference on Uncertainty in Artifi-

cial Intelligence, Providence, RI. Morgan Kauf-
mann.

Clogg, C. (1995). Latent class models. In Hand-

book of statistical modeling for the social and be-

havioral sciences, pages 311–359. Plenum Press,
New York.

Cooper, G. and Herskovits, E. (1991). A Bayesian
method for constructing Bayesian belief net-
works from databases. In Proceedings of Seventh

Conference on Uncertainty in Artificial Intelli-

gence, Los Angeles, CA, pages 86–94. Morgan
Kaufmann.

Dempster, A., Laird, N., and Rubin, D. (1977). Max-
imum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical

Society, B 39:1–38.

Edmonds, J. (1967). Optimum branching. J. Res.

NBS, 71B:233–240.

Heckerman, D., Geiger, D., and Chickering, D. (1995).
Learning discrete Bayesian networks. Machine

Learning, 20:197–243.

Moore, A. and Lee, M. S. (1998). Cached sufficient
statistics for efficient machine learning with large
datasets. Journal of Artificial Intelligence Re-

search, 8:67–91.

Spiegelhalter, D., Dawid, A., Lauritzen, S., and Cow-
ell, R. (1993). Bayesian analysis in expert sys-
tems. Statistical Science, 8:219–282.

