
Machine Learning, 45, 279–299, 2001
c© 2001 Kluwer Academic Publishers. Manufactured in The Netherlands.

Accelerating EM for Large Databases

BO THIESSON thiesson@microsoft.com
CHRISTOPHER MEEK meek@microsoft.com
DAVID HECKERMAN heckerma@microsoft.com
Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA

Editor: Lawrence Saul

Abstract. The EM algorithm is a popular method for parameter estimation in a variety of problems involv-
ing missing data. However, the EM algorithm often requires significant computational resources and has been
dismissed as impractical for large databases. We present two approaches that significantly reduce the computa-
tional cost of applying the EM algorithm to databases with a large number of cases, including databases with large
dimensionality. Both approaches are based on partial E-steps for which we can use the results of Neal and Hinton
(In Jordan, M. (Ed.), Learning in Graphical Models, pp. 355–371. The Netherlands: Kluwer Academic Publish-
ers) to obtain the standard convergence guarantees of EM. The first approach is a version of the incremental EM
algorithm, described in Neal and Hinton (1998), which cycles through data cases in blocks. The number of cases
in each block dramatically effects the efficiency of the algorithm. We provide a method for selecting a near optimal
block size. The second approach, which we call lazy EM, will, at scheduled iterations, evaluate the significance
of each data case and then proceed for several iterations actively using only the significant cases. We demonstrate
that both methods can significantly reduce computational costs through their application to high-dimensional
real-world and synthetic mixture modeling problems for large databases.

Keywords: Expectation Maximization algorithm, incremental EM, lazy EM, online EM, data blocking, mixture
models, clustering

1. Introduction

The EM algorithm has been the object of considerable interest since its presentation in
general form by Dempster, Laird, and Rubin (1977). It is a widely applicable, and remarkably
simple algorithm for computing maximum likelihood estimates for parameters in incomplete
data models. By alternating between an expectation step (E-step), which finds expected
completions of data given the current parameterization, and a maximization step (M-step),
which re-estimates parameters on the basis of completed data, the EM algorithm gradually
improves the likelihood for the observed data until convergence at a local maximum (or
saddle point).

Unlike various other numerical techniques for optimization, the EM algorithm guaran-
tees convergence. A common criticism, however, is that convergence can be slow—see
comments by several discussants of Dempster, Laird, and Rubin (1977). For this reason,
various ways of accelerating the EM algorithm have been suggested.

A partial M-step may accelerate the algorithm in situations where the M-step is com-
putationally inefficient. There are a variety of partial M-step methods that have the same

280 B. THIESSON, C. MEEK, AND D. HECKERMAN

convergence guarantees as the standard EM algorithm. These methods can usually be cast as
variants of the generalized EM (GEM) algorithm, described in Dempster, Laird, and Rubin
(1977), which in the M-step only improves rather than maximize the expected complete
data log-likelihood. In particular, the Expectation Conditional Maximization (ECM) algo-
rithms (Meng & Rubin, 1993) with further generalizations in Meng and van Dyk (1997) are
well-known examples of such accelerations. A variety of other approaches to accelerating
EM, including the replacement of the M-step with a faster (conjugate) gradient or (quasi)
Newton type step, have also been considered in the literature. See (e.g.) Jamshidian and
Jennrich (1993) and Thiesson (1995) for examples of the former, and Louis (1992) and
Meilijson (1989) for examples of the latter.

Because the time spent in the E-step depends linearly on the number of cases, the above
described acceleration methods do not address critics of the EM algorithm who suggest that
it is impractical for application to large databases. See (e.g.) Zhang, Ramakrishnan, and
Livny (1996). In this paper, we instead provide strong empirical evidence that the use of
partial E-steps, as suggested in Neal and Hinton (1998), can significantly reduce the cost
of applying the EM algorithm to large real-world databases without losing the guaranteed
convergence to a local maximum of the likelihood function.

Other approaches for reducing the cost of applying EM by reducing the time spent in the
E-step have been considered in Moore (1999), McCallum, Nigam, and Ungar (2000), and
Bradley, Fayyad, and Reina (1998) for finite mixture model settings. None of the methods
(as described by the authors) maintain the desirable convergence guarantees of EM, but
will instead approximate a solution. Furthermore, whereas the methods in Moore (1999)
show great promise for domains with a small number of variables, the benefits diminish
significantly as the number of variables increase. The method in McCallum, Nigam, and
Ungar (2000) is closely related to Moore’s method, but can potentially provide significant
speedup for high-dimensional data sets. The method requires an inexpensive way of creating
an initial crude partition of the data into overlapping subsets of similar cases called canopies.
The speedup obtained by this method depends on the quality of the initial partition into
canopies. When the initial partition yields well-separated canopies the speedups can be
significant. In this paper, we examine data sets with dimensionality larger than those of
Moore (1999) and without requiring the existence of a method to provide an initial crude
clustering of the data set.

The two methods that we investigate are remarkably easy to implement and provide
significant computational benefit. The first method is a version of the incremental EM al-
gorithm from Neal and Hinton (1998). The method partitions data into blocks which it
traverses in a cyclic manner while incrementally updating the expected complete data log-
likelihood and parameters after visiting each of the blocks. We can expect an improved
rate of convergence for this algorithm over standard EM due to the fact that information
contained in a block of data is exploited more quickly. In particular, the incremental EM
algorithm immediately incorporates the information obtained from a block of data into
the parameterization used to update the expected complete data log-likelihood associated
with the following block. In contrast, the standard EM algorithm updates the parame-
terization only after the expected complete data log-likelihood for the entire data set is
updated.

ACCELERATING EM FOR LARGE DATABASES 281

We discuss several implementation issues for the incremental EM, which are not dis-
cussed by Neal and Hinton (1998), regarding partitioning of data into blocks of cases,
convergence, and the initial pass through the data. In particular, the partitioning of data
into blocks of proper size is important for the acceleration. Based on experimental results,
we provide a method to select a block size that results in near optimal acceleration. One
interesting fact is that it is far from optimal to traverse data cases one-by-one; the optimal
block size is much larger. This suggests that the similar online EM algorithms (see, for in-
stance, Nowlan, 1991 or Sato, 1999) may also benefit from blocking data before processing
them.

The second method that we investigate, the lazy EM algorithm, also accelerates the EM
algorithm on the basis of partial E-steps. As opposed to incremental EM, it does not traverse
statically defined blocks of data. At scheduled iterations, the algorithm selects a subset of
data cases upon which to perform several successive partial E- and M-steps. For this method,
we address issues such as how the significant data cases are to be selected and how long
they should be used before re-selection takes place.

We provide empirical results for both of the above methods on two real-world mix-
ture modeling problems and on mixture modeling problems for synthetic data. We show
that both methods can significantly reduce the computational cost of the EM algorithm
without degrading the resulting solution. It should be noted that for one of the real-world
problems, MSNBC (see Section 4), the data is extremely sparse. Chickering and Heck-
erman (1999) consider a method for speeding up the E-step for finite mixture models
with sparse data. They report a significant speedup while maintaining the convergence
guarantees of EM. We exploit their method for the MSNBC experiments and gain addi-
tional computational efficiency by applying the partial E-step methods described in this
paper.

We emphasize that although experiments are restricted to finite mixture models, the
suggested acceleration methods are generally applicable for any setting where the standard
EM algorithm is applicable.

2. ML estimation methods for incomplete data

In this paper, we consider statistical models for variables X , that is, families of distributions
p(X | θ) parameterized by θ ∈ �. We define X = (X1, . . . , X N) where N is the number of
cases in the data that we are considering and Xi is a set of variables describing a case. We
use uppercase roman letters to denote variables (e.g., X), and lowercase roman letters to
denote values of these variables (e.g., x). Suppose we wish to find the ML parameterization
for this model given incomplete data y ∈ Y ⊆ X . Let z ∈ Z = X \Y denote an arbitrary
value for the unobserved variables, then x = (y, z) will be referred to as completed data
for y, and xi = (yi , zi) referred to as a completion for the observed incomplete case yi .
We assume that the observed data is incomplete in an uninformative way—that is, missing
completely at random. Hence, the log-likelihood for the observed data satisfies

l(θ | y) = log p(y | θ) = log
∫

p(y, z | θ) dz (1)

282 B. THIESSON, C. MEEK, AND D. HECKERMAN

When it is hard to maximize the log-likelihood in (1) directly, but easy to work with the
complete data log-likelihood l(θ | x) = log p(x | θ), the EM algorithm can be use to solve
the maximization problem iteratively. In what follows, we describe the EM algorithm and
the partial E-step variants that we consider in our experiments.

2.1. The EM algorithm

Roughly speaking, the EM algorithm converts the ML estimation problem into a sequence of
“pseudo-estimations” with respect to the statistical model for complete data. Let θn denote
the current value of θ after n iterations. Each iteration of the EM algorithm involves two steps.
The nth iteration of the algorithm is as follows; in the E-step, obtain the distribution for X
given current parameterization and observed data, p̃n = p(X | y, θn) and use it to construct
the conditional expectation for the complete data log-likelihood Q(θ | θn, y) = E p̃n [l(θ | X)].
In the M-step, choose θn+1 as the value θ ∈ � that maximizes Q(θ | θn, y). In the case where
the statistical model is a subfamily of an exponential family, the EM algorithm becomes an
alternation between an E-step that computes expected sufficients for the statistical model and
an M-step that re-estimates the parameters of the model by treating the expected sufficient
statistics as if they were actual sufficient statistics (Dempster, Laird, & Rubin, 1977).

2.2. The incremental EM algorithm

The incremental EM algorithm attempts to reduce the computational cost by performing
partial E-steps. Let y = {y1, . . . , yK } denote a particular partition of the data into mutually
disjoint blocks of data cases. Observe that, in this subsection, we abuse the notation in that
a subscript refers to a block of data cases rather than an individual case. The incremental
EM algorithm iterates through the blocks in a cyclic way. Each iteration performs a partial
E-step by updating only a part of the conditional expectation for the complete data log-
likelihood (the Q-function) before performing a M-step. The nth iteration of the algorithm
is sketched below.

E-step: Select block of data yi , where i = n modulus K

Obtain p̃n
i = p(Xi | yi , θ

n)

Set Q j (θ | θn, y j) = Q j (θ | θn−1, y j) for j = i
Compute Q j (θ | θn, y j) = E p̃n

j
[l(θ | X j)] for j = i

Construct Q(θ | θn, y) = ∑
j Q j (θ | θn, y j)

M-step: Choose θn+1 as the value θ ∈ � that maximizes Q(θ | θn, y).

Notice the way in which the E-step incrementally constructs the Q-function to be max-
imized. In each iteration, the algorithm only computes a fraction of the Q-function under
consideration, namely the Qi associated with the block of data yi . For all other data blocks,
the algorithm reuses previously computed contributions to the Q-function. In an efficient

ACCELERATING EM FOR LARGE DATABASES 283

implementation, we incrementally update the Q-function by adding the difference between
the new and old Qi components:

Q(θ | θn, y) = Q(θ | θn−1, y) + Qi (θ | θn, yi) − Qi (θ | θn−1, yi)

Note that this algorithm has an additional cost beyond EM, which is the storage of Qi for
all blocks i = 1, . . . , K .

As in the EM algorithm, if the statistical model is a subfamily of an exponential family,
then the E-step can be cast as constructing expected sufficient statistics for the statistical
model.

The theoretical justification for the incremental EM algorithm is due to Neal and Hinton
(1998). They cast the algorithm into a method for maximizing the function

F(p̃, θ) =
∑

i

Fi (p̃i , θ) =
∑

i

(
E p̃i [log p(Xi | θ)] + H(p̃i)

)
(2)

where i indexes blocks, H(p̃i) = −E p̃i [log p̃i] is the entropy of p̃i , p̃ = ∏
i p̃i , and p̃i =

p(Xi , yi) is a distribution over possible values of Xi . This distribution has no support for
those values of Xi not compatible with the observed block of data yi . That is, p̃i = 0 for
{xi ∈ Xi : xi \zi = yi }. Neal and Hinton (1998) show that both the E- and M-step of the
incremental EM algorithm monotonically increase F(p̃, θ) until convergence at (p̃∗, θ∗),
where θ∗ is a local maximum (or saddle point) for the log-likelihood in Eq. (1). A key step in
the proof is to show that given θ = θn , the E-step maximizes Fi (p̃i , θ) with respect to p̃i by
setting p̃i = p(Xi | yi , θ

n) (for more details, see Lemma 1 of Neal & Hinton, 1998). For the
remaining blocks, the term Fj (p̃ j , θ) (j = i) is unchanged because the E-step only affects
the term associated with the current block. Thus, an E-step increases F by improving p̃i .
Showing that the M-step increases F is straightforward. Given fixed p̃i ’s, as obtained in the
E-step, the M-step improves θ by maximizing the Q-function, defined above. Because the
sum of expected log-likelihood terms in Eq. (2) is actually the Q-function, and the entropy
terms do not depend on θ , the M-step improves F .

Notice from this proof sketch that we may create a generalized incremental EM algorithm
in the spirit of generalized EM by improving rather than maximizing the Q-function in the
M-step for incremental EM.

The partitioning of the data into blocks in the incremental EM algorithm leads to three
implementation issues that do not arise in the standard EM algorithm. The first issue concerns
the number of cases to place in each block of data. We will restrict attention to blocks of
(approximately) equal size, where cases are blocked together in the order they appear in
the data set. Some block sizes will be better than others. We will return to this issue in
Section 4, where we provide a near optimal way of selecting the block size.

The second issue is how one should handle convergence. In practice, we do not run an
algorithm infinitely to convergence. Instead we run the algorithm until some convergence
criterion is satisfied. In the design of convergence tests for incremental EM, we have strived
to mimic tests for standard EM—tests based on relative differences in successive log-
likelihood values. Recall that K denotes the number of blocks in the partition of data.
Note that, in standard EM, K = 1. For domains with discrete variables only, we base our

284 B. THIESSON, C. MEEK, AND D. HECKERMAN

convergence criterion on the following:

cn
K = − ln − ln−K

ln
(3)

For domains involving continuous variables, we base our convergence criterion on the
following:

cn
K = ln − ln−K

ln − l0
(4)

where l0 is the log-likelihood value for the parameterization obtained after initialization
(see below). Convergence is said to have taken place at iteration n if cn

K falls below some
convergence threshold. We use l0 in the convergence test for domains involving continuous
variables because densities are not restricted to the interval [0, 1]. If we do not subtract l0 in
the denominator, we would experience an unexpected sign change if successive likelihoods
straddle the value one. Furthermore, without this subtraction, convergence would be affected
by the scales of the continuous variables.

The convergence criteria for standard EM are based on the fact that the log-likelihood
values on successive iterations increase monotonically. For incremental EM, current the-
oretical results guarantee that the F function in Eq. (2) increases monotonically, and at
convergence yields a local maximum for the log-likelihood. However, monotonic behavior
is not guaranteed for log-likelihood values evaluated at successive iterations. Furthermore,
the evaluation of the log-likelihood values would add additional computational cost to the
incremental EM algorithm for the following reason. In standard EM the log-likelihood is
basically constructed as part of the evaluation of all the data cases in the E-step. This is
not the case for incremental EM, because the E-step for this algorithm evaluates only one
block of data. Consequently, we use the convergence criteria in Eqs. (3) and (4) with an
approximation of the log-likelihood for all data by the incremental update

l(θn, y) ≈ l̃(θn, y) = l̃(θn−1, y) − l(θn−1, yi) + l(θn, yi)

where l̃ denotes an approximated log-likelihood. Theoretical results showing monotonic
behavior of this approximation are also lacking. Nonetheless, experimental results suggest
that sub-sequences of the approximate log-likelihoods, obtained one full pass of the data
apart, increase monotonically. In other words, we have found that ln > ln−K for all n > K.
Therefore, similar to standard EM, we deem incremental EM to have converged when cn

K
falls below a convergence threshold.

As an alternative to likelihood-based convergence tests, one may use a distance measure
between parameter values of successive steps or between parameter values obtained one
full pass of the data apart. Another possibility is to base convergence tests on values for the
F function in Eq. (2) at successive iterations or successive full passes through the data. Both
alternatives add a computational overhead compared to the likelihood-based convergence
tests we use. This overhead will, in most practical situations, be insignificant compared to

ACCELERATING EM FOR LARGE DATABASES 285

the overall runtime for the algorithm. It will, however, become significant if one chooses to
test convergence after each step of the algorithm and the block size is small.

The last implementation issue that we consider is related to the initial pass through the
data. This pass can be problematic for small block sizes. As an illustration, consider a two
component univariate Gaussian mixture model with the sequence of observations 1, 2, 10,
1, 0, 11. If we apply the incremental EM algorithm with blocks of size two with initial
component means near 1 and 10, then the Gaussian with mean near 1 will be supported
by the inferred completion p̃n

i = p(Xi | yi , θ
n) for both cases in the first block, whereas

the Gaussian with mean near 10 will have practically no support. In fact, if we are using
a maximum likelihood approach, the weight of the component with mean near 10 will
after the first M-step be equal to 0 (to within the precision of the computer). It is therefore
impossible to infer any support for this component in following iterations. This problem
of “premature starvation” and other small sample issues can be avoided by waiting several
iterations before performing the first M-step. A conservative choice, the one used in our
experiments in Section 4, is to perform the first M-step only after completing one full pass
through the data.

2.3. The lazy EM algorithm

The lazy EM algorithm is based on the assumption that not all data is of equal significance
for each iteration. Given data cases y1, y2, . . . , yN , the lazy EM algorithm attempts to
periodically identify significant cases and focuses attention on this subset of data for several
iterations. Roughly speaking, a case is significant if the change in the inferred completion,
p̃i , between two successive iterations is large. Let yl ¯azy denote the set of data cases assessed
as significant and denote the remaining data cases by ylazy. According to a predetermined
schedule, each iteration involves either a full or lazy E-step followed by a standard M-step,
as illustrated below. A full E-step updates the expected complete data log-likelihood (the
Q-function) for all cases in the data set. In addition, it identifies the set of significant data
cases to be used in lazy iterations. A lazy E-step only updates the part of the Q-function
associated with significant cases. Naturally, the E-step in the first iteration must be scheduled
as full.

If full E-step is scheduled for iteration n:

Obtain p̃n = p(X | y, θn)

Identify ylazy the set of data cases to be ignored in lazy iterations.
Construct Q(θ | θn, y) = E p̃n [l(θ | X)]

Else lazy E-step is scheduled for iteration n:

Obtain p̃n
l ¯azy = p(Xlāzy | ylāzy, θ

n)

Set Qlazy(θ |θn, ylazy) = Qlazy(θ |θn−1, ylazy)

Compute Qlāzy(θ |θn, ylāzy) = E p̃n
lāzy

[l(θ | Xlāzy)]
Construct Q(θ |θn, y) = Qlāzy(θ |θn, ylāzy) + Qlazy(θ |θn, ylazy)

M-step: Choose θn+1 as the value θ ∈ � that maximizes Q(θ |θn, y).

286 B. THIESSON, C. MEEK, AND D. HECKERMAN

Similar to the incremental EM algorithm, an efficient implementation updates the
Q-function for the lazy E-step in the following way

Q(θ | θn, y) = Q(θ | θn−1, y) − Qlāzy(θ | θn−1, ylāzy) + Qlāzy(θ | θn, ylāzy)

Hence, we obtain computational efficiency for lazy E-steps at the additional cost of storing
Qlāzy associated with the fraction of data for which we update. Again, when the statistical
model is a subset of an exponential family, the E-steps can be cast as computing the expected
sufficient statistics.

The viability of the lazy EM algorithm rests in part on the assumption that not all data is of
equal importance. It also depends on the computational overhead for assessing significance
of individual data cases and the cost of storing the inferred completions needed for assessing
significance.

For finite mixture models, we can construct a significance criterion for which the compu-
tational overhead can be greatly reduced and the cost of storing inferred completions can be
avoided. The intuition behind this criterion is based on the following empirical observation.
If a data case is strongly assigned to a particular component in the mixture, it is unlikely to
move to another component; and if it does, it will not suddenly jump but rather gradually
shift towards the other component. Consequently, we expect that cases that are not strongly
assigned to a component contribute the most to parameter changes. The case yi is therefore
assessed as significant if the maximum inferred support for any component in the mixture

Supp(yi) = max
xi ∈Xi

[p(xi | yi , θ
n)] (5)

is less than some predefined significance threshold, denoted ST .
The lazy EM algorithm is theoretically justified by noticing that the formulation of Neal

and Hinton (1998) is applicable for any arbitrary partitioning of data, as long as all data
is visited regularly. Hence, the lazy EM algorithm is guaranteed to converge to a local
maximum (or saddle point).

As with the incremental EM algorithm, monotonic behavior of log-likelihood values
is not guaranteed. Nonetheless, convergence tests can be based on log-likelihood values
obtained at full E-steps at little additional computational cost.

3. MAP estimation methods

As a alternative to traditional ML estimation we may consider a Bayesian interpretation of
the estimation problem. Rather than maximize the likelihood, we incorporate prior infor-
mation about parameters and find the largest posterior mode, the MAP. Dempster, Laird,
and Rubin (1977) briefly describe how to modify the EM algorithm to produce the MAP.
This has been further discussed in Green (1990).

Suppose we have information about parameters θ in the form of a prior distribution p(θ),
then

p(θ | y) ∝ p(y | θ) p(θ)

ACCELERATING EM FOR LARGE DATABASES 287

We can then use the EM algorithm for MAP estimation by simply constructing the condi-
tional expectation for the log-posterior mode

Q∗(θ | θn, y) = Q(θ | θn, y) + log p(θ)

In the M-step, Q∗ is maximized instead of Q.
It is a trivial exercise to apply the results of Neal and Hinton (1998) to cover convergence

guarantees for MAP estimation based on partial E-steps.

4. Experiments

Our experiments were performed on two real-world databases. The first data set, MSNBC,
is a sparse, discrete data set that encodes the stories that people read on the MSNBC web
site on December 21, 1998. The variables correspond to the most popular 303 stories. The
data cases correspond to 597,971 visitors. Each data case stores, for each story, whether or
not a particular visitor read that story.

The second real-world data set, Speech, holds data cases for a single sub-phonetic event
observed for continuous speech. 33 continuous variables represent 12 mel-scale frequency
cepstrum coefficients (MFCCs), log-energy and their first and some second order dynamics
(Huang et al., 1995). The data set contains 21,888 cases for which the particular sub-phonetic
event was observed for 10 ms time frames of the speech.

For both domains, we investigate finite mixture models in which each component model
encodes the mutual independence of the variables X = (X1, X2, . . . , Xm). These models
can be viewed as a naive-Bayes model with a hidden class node, also known as an AutoClass
model (Cheeseman & Stutz, 1995). For the MSNBC domain, we consider mixtures with 25,
50, and 100 mixture components, where each variable in each component has a binomial
distribution.1 For the Speech domain, we consider mixtures of 2, 4, and 8 components, where
each variable in each component is a univariate Gaussian—that is, mixtures of multivariate
Gaussians with diagonal covariance matrices.

For the data sets, we evaluate the effectiveness of our methods for different sizes of
training data by creating various subsets of the original data to be used as training data.

All experiments are performed on a PII 333 mHz dual processor machine with enough
random access memory (RAM) to avoid paging.

In addition to the two real-world data sets, we created numerous synthetic data sets,
Synthetic, by drawing 40,000 random cases from mixtures of M-variate Gaussians with N
mixture components for M = 1, 2, 4, 8, 16 and N = 5, 10, 20, 40, 80. Each Gaussian has
a mean positioned randomly within the unit hypercube, and the overlap between Gaussians
is controlled by a diagonal covariance matrix with randomly generated elements between
0 and 4σ 2 for σ = 0.05, 0.1, 0.2, 0.4. The results for the synthetic data sets are similar to
those for the real data sets, and will not be reported in detail.

4.1. Evaluation method

For our experiments we chose to perform MAP estimation using diffuse priors similar to
those described in Chickering and Heckerman (1997) and in Thiesson, Meek, Chickering,

288 B. THIESSON, C. MEEK, AND D. HECKERMAN

Figure 1. Incremental EM compared to standard EM for (a) MSNBC and (b) Speech. Each curve correspond
to a particular convergence threshold and shows the log-posterior of the test set obtained for different block size
partitionings. Standard EM correspond to block size 614400 for MSNBC and block size 25600 for Speech.

ACCELERATING EM FOR LARGE DATABASES 289

and Heckerman (1999) for discrete and continuous domains, respectively. Hence, we evalu-
ate an algorithm according to how fast it approaches the MAP estimate compared to standard
EM when starting from the same parameter initialization. A speedup factor is computed as
the elapsed time for an algorithm to reach convergence divided by the elapsed time for stan-
dard EM to reach convergence. Thus, a speedup factor greater than 1 means the algorithm
improves performance.

We can measure the quality of an estimate as an algorithm progresses through decreasing
convergence thresholds by monitoring the progress in the log-posterior value, log p(θ |
y) = log p(y | θ) + log p(θ) for each iteration. However, for the real-world experiments,
the computational cost is too high to be manageable in practice, when we compute the log-
likelihood for all data at each iteration stepping through the data in small blocks. Instead, we
compute the log-likelihood for a fixed random subset of the training data. For MSNBC, we
use 29,899 of the training cases. For Speech, we use 4378 cases. To obtain the log-posterior
value we proceed as if the random subset is representative of all data and scale the obtained
log-likelihood appropriately before adding the log-prior. In the Synthetic experiments we
use all training cases for the log-likelihood computations.

We use 10−5 as the convergence threshold for all of our experiments. To help justify this
threshold, figure 1 shows representative convergence results for MSNBC with 50 mixture
components and Speech with 4 components. The figure shows, at different values for the
convergence threshold, the log-posterior of the test set obtained by incremental EM for
different block-size partitionings. Standard EM correspond to block size 614400 for MSNBC
and block size 25600 for Speech.

Two patterns are visible in the figure. One, as we decrease block size, the incremental
EM converges to a higher log-posterior value than standard EM. Two, as we decrease the
convergence threshold, the difference between incremental and standard EM diminishes.
For a threshold of 10−5, both algorithms converge to essentially the same log-posterior
value. The second observation is important, because it allows us to fairly compare runtimes
for the two algorithms. That is, we easily can measure the time it takes for both algorithms
to converge to the similar log-posterior values, by using a small convergence threshold for
both algorithms. A similar pattern can be observed for the lazy EM algorithm.

4.2. Results for incremental EM

All models were trained with the incremental EM algorithm for partitions of the training data
into various block sizes. For MSNBC, we used block sizes 600 × 2n for n = 0, 1, . . . , 10;
for Speech we used blocks of size 25 × 2n with n = 0, 1, . . . , 10. The last block size was
most often smaller than the others. As described in Section 2.2, we were careful about
initialization in all experiments: we processed each data block once before performing the
initial M-step.

Figure 2 shows speedup results for MSNBC with 50 mixture components and Speech with
4 components. These results are representative for the remaining experiments. The figure
shows the speedup for varying sizes of training data with different block size partitionings.

For each data set, our algorithm converged to the same log-posterior value regardless of
block size. With full data sets, the incremental algorithm speeds up EM by a factor of 2.3

290 B. THIESSON, C. MEEK, AND D. HECKERMAN

Figure 2. Incremental EM compared to standard EM for (a) MSNBC and (b) Speech. The figures show speedup
as a function of data size and block size partitioning. Entries with block sizes greater than the data size correspond
to standard EM.

ACCELERATING EM FOR LARGE DATABASES 291

for a partition of the MSNBC data into 8 blocks of size 76,800, and a factor of 1.9 for the
Speech data partitioned into 55 blocks of size 400. Note that the speedup on the MSNBC
data is in addition to the improvement from data sparsity, mentioned in Section 1.

Two characteristic patterns can be observed in the figure. First, optimal block size is fairly
constant as training data size is varied. Second, speedup increases with training data size.
The second observation follows from the first, because increasing training data size results
in more blocks, which is exploited by the incremental EM algorithm. In fact, we expect the
speedup to increase indefinitely with sample size. Roughly speaking, we expect the optimal
speedup to increase by a factor between one and two when doubling the size of the training
data. The more similar the data, the greater the speedup factor.

Figure 2 also reveals a great variation in speedup for different block sizes. In particular,
the figure shows that too large a block size is not optimal and too small a block size may
even slow the algorithm down compared to standard EM. For example, speedup for full
data MSNBC starts decreasing at block size 38,400 and at block size 2,400 it is slower
than standard EM. This observation raises an important issue in order to make incremen-
tal EM operational as an acceleration method: How do we select the block size for data
partitioning?

Further experimental investigations revealed the following three patterns that lead to an
answer in situations where the local maximum in log-posterior is independent of block size,
for instance, obtained by a small convergence threshold (see Section 4.1). One, the block size
that yields the best speedup during the initial iterations of the incremental EM algorithm is
roughly the block size that yields the best speedup at convergence. Furthermore, if one block
size is better than another during the initial iterations, the same holds true at convergence.
Here, speedup at iteration n (n small) is measured as the elapsed time for incremental EM
to reach the same log-posterior value achieved by standard EM at iteration n divided by
the elapsed time for standard EM to get this far. Two, the log-posterior values increase
approximately linearly with time during initial iterations. Three, speedup (at convergence)
versus block size exhibit a single broad peak around the optimal block size.

Given these observations, we can roughly identify the optimal block size as follows.
Let s0 and s1 be the log-posterior values that the incremental EM algorithm achieves after,
respectively, initialization and a single pass though the data. Let t be the time required for
this first pass. Let r be the ratio (s1 − s0)/t . Given the first two observations, the block size
that minimizes r will be roughly equal to the optimal block size. Given the third observation,
we can find the block size that minimizes r using a simple search.

Our selection method applied to the MSNBC and Speech domains is illustrated in Tables 1
and 2. Table 1 shows r versus block size. Table 2 shows speedup at convergence both for
the optimal block size and the block size selected using our approach. We see that, using
our method, we achieve a significant speedup over standard EM that is optimal or close to
optimal. In the Speech experiments, although the selected and optimal block sizes are not
equal, the corresponding speedups are nearly identical.

Finally, the results in this section have been presented in terms of speedup factors obtained
for a convergence level of 10−5. It is also interesting, however, to look at how much time
it takes standard EM and incremental EM to achieve various degrees of convergence. To
investigate this dependence, we plot the log-posterior value obtained on successive iterations

292 B. THIESSON, C. MEEK, AND D. HECKERMAN

Table 1. Initial speedup ratios (r = (s1 − s0/t) used to select the block size for incremental EM.

Block size

614400 307200 153600 76800 38400 19200 9600 4800 2400 1200 600

MSNBC 25 40.7 46.2 48.4 47.9 45.1 38.0 30.2 20.7 12.7 7.2 3.8

MSNBC 50 15.6 17.7 18.8 18.9 17.4 15.0 11.6 7.9 4.8 2.7 0.7

MSNBC 100 8.1 9.3 10.0 10.1 9.5 8.1 6.3 4.3 2.6 0.9 0.4

Block size

25600 12800 6400 3200 1600 800 400 200 100 50 25

Speech 2 0.37 0.95 1.60 1.68 1.84 1.90 1.86 1.83 1.72 1.55 1.28

Speech 4 0.14 0.44 0.85 0.93 1.06 1.12 1.11 1.10 1.03 0.96 0.79

Speech 8 0.46 0.70 0.92 0.96 1.03 1.07 1.04 1.04 0.98 0.90 0.76

Block size 614400 for MSNBC and block size 25600 for Speech correspond to standard EM. The number after
the domain name is the number of components in the considered mixture model.

versus the accumulated time to complete the iteration for the standard EM algorithm and
compare this with a similar plot for the incremental EM algorithm.

Figure 3(a) contains comparative plots for the incremental EM algorithm with block
size 76,800 and the standard EM algorithm for the MSNBC data set. Similarly, figure 3(b)
contains comparative plots for the incremental EM algorithm with block size 400 and the
standard EM algorithm for the Speech data set. Both figures are truncated at the log-posterior
value obtained for standard EM at iteration 10.

First note that, for both datasets, incremental EM dominates standard EM in that incre-
mental EM achieves any particular log-posterior value more quickly than does standard
EM. Furthermore, note that speedup varies (non-monotonically) with log-posterior. For
both comparative plots we have marked the largest and smallest speedups with horizontal
lines. The largest speedup for MSNBC is obtained at iteration 129 with a value of 2.8 and
the smallest at iteration 26 with a value of 1.7. At convergence determined by a threshold of
10−5, the speedup is 2.3. Similarly, for Speech, the largest speedup is obtained at iteration
12 with a value of 2.2, the smallest speedup is 1.8 obtained at iteration 1 (not in the figure),
and the speedup at convergence is 1.9.

Table 2. Block sizes and speedup at convergence for block sizes determined by our approach (auto) and by search
at convergence (optimal).

Auto block size Optimal block size Auto speedup Optimal speedup

MSNBC 25 153600 153600 2.0 2.0

MSNBC 50 76800 76800 2.3 2.3

MSNBC 100 76800 76800 1.4 1.4

Speech 2 800 800 1.9 1.9

Speech 4 800 400 1.8 1.9

Speech 8 800 200 1.8 2.0

The number after the domain name is the number of components in the considered mixture model.

ACCELERATING EM FOR LARGE DATABASES 293

Figure 3. The curves show log-posterior value versus accumulated time at each iteration for standard EM and
incremental EM for (a) MSNBC and (b) Speech. Both figures are truncated at the log-posterior value obtained
for standard EM at iteration 10. Horizontal lines show largest and smallest speedup points, except for the Speech
minimum speedup point, which is before the first iteration depicted in the graph.

294 B. THIESSON, C. MEEK, AND D. HECKERMAN

4.3. Results for lazy EM

Speech models were trained with the lazy EM algorithm for schedules with 1, 2, 4, 8 lazy
steps between full EM steps. The subset of cases used in lazy steps were determined by
significance thresholds, ST set to 50, 70, 80, 85, 90, 95, 99 percent.

Representative of most experiments (we will comment on the remaining experiments
later), figure 4 shows the speedup results for full data with four mixture components.

As indicated in the figure, there is an optimal value for ST . With a low value for ST ,
only a few cases will be considered in the lazy E-steps and time to convergence is long.
On the other hand, choosing too large a value for ST leads to most cases being significant
and hence used for the lazy E-steps. Lazy EM will in this case approximate standard EM
with the additional computational overhead for assessing significant data. In general, the
best results were obtained for ST equal to 90% or 95%.

There is also an optimal value for the laziness schedule. This pattern is explained by the
pattern in figure 5, which shows a trace of log-posterior values versus accumulated runtime
at each iteration for the full data Speech experiment with eight lazy E-steps and ST set to
95%. For reference, the figure also shows a similar trace for standard EM. We see that the
effect of successive lazy steps decreases in a monotonic way until a new set of lazy cases
are selected by a full E-step. After a certain number of successive lazy steps, the increase in
log-posterior value is too small and we will do better by re-setting the set of lazy cases. In
general, the best results were obtained for 2 or 4 successive lazy steps with little difference
between the two choices.

For the Synthetic experiments, we found that with increasing overlap between mix-
ture components, cases were more rarely assigned to a particular component with high

Figure 4. Lazy EM compared to standard EM for Speech. The figure shows speedup as a function of laziness
schedule and significance thresholds. Standard EM correspond to a laziness schedule of zero.

ACCELERATING EM FOR LARGE DATABASES 295

Figure 5. Traces of log-posterior value versus accumulated runtime at each iteration for standard and lazy EM
Speech experiments. The figure is truncated at the log-posterior value obtained for lazy EM at the second full
E-step (iteration 10).

probability. In some of the experiments we had to consider a lower ST value in order to
prevent all cases from being assigned to the subset used for lazy steps. A natural alternative
that addresses this problem of our simplistic method for choosing significant cases is to se-
lect the subset of cases used in lazy steps as some (decaying) percentage of most significant
cases.

The speedup factor for the Speech experiments is roughly 1.6 and in general a little less
for the Synthetic experiments.

5. Related work

There are several alternative methods for accelerating EM in situations where the size of
the data makes the computational cost of the E-step expensive. We describe two types
of methods: methods that partially forget earlier statistics and methods that compress or
summarize multiple cases.

A forgetful variant of incremental EM is a method that uses expected sufficient statistics
computed as an (exponential) decaying average of recently visited data blocks. Forgetful or
on-line variants of EM have been proposed by several authors. See, for instance, Nowlan
(1991) or Sato and Ishii (2000) with generalizations in Sato (1999). These variants often
assume that the blocks consist of individual cases, but can be easily extended to blocks of
arbitrary size.

Forgetful methods are often used to estimate time-varying parameters, however, they are
also potentially useful for extremely large data sets. In such situations, it may be possible for
a forgetful incremental EM algorithm to converge more quickly than a non-forgetful algo-
rithm. This possibility arises due to the fact that the expected statistics for blocks computed
during early passes through the data contain relatively large inaccuracies. By forgetting

296 B. THIESSON, C. MEEK, AND D. HECKERMAN

these statistics one can more rapidly improve the parameter estimates. On the other hand,
in our limited comparison of forgetful and non-forgetful methods, we have found that the
forgetful methods do not provide significant improvement over incremental EM in situa-
tions where multiple passes through the data are required for convergence. This observation
is not surprising, given that the incremental EM is in fact a coarse forgetful method which
completely forgets the statistics computed for a block after one pass through the data.

Application of forgetful methods to large data sets requires selection of a decay rate.
In addition, to allow convergence in less than one pass through the data, an alternative
convergence criterion is required. Finally, unlike the incremental EM algorithm, naive
implementations cannot guarantee convergence to a local maximum of the likelihood for
finite data sets.

The second type of method for accelerating EM relies on compression. Roughly, in such
a method, one represents a set of cases by a compressed case. These methods accelerate EM
by (approximately) updating the statistics for a set of cases associated with a compressed
case by computing the expected statistics for the compressed case. Note that the choice of
cases to be compressed need not be fixed in advance and different sets of compressed cases
can be used on different iterations of the algorithm.

One such compression method is that of Moore (1999) who reports exceptional speedup
results for low dimensional mixture model problems with large sample size. In Moore’s
approach, one first builds a multi-resolution kd-tree for the cases in the data set. In this
representation, a compressed case is a vertex in the kd-tree that represents all of the cases
stored below that vertex. Then, one runs a version of EM in which the expected sufficient
statistics are computed on the basis of compressed cases. The choice of compressed cases
(i.e., the choice of vertices) is determined anew on each E-step so as to balance the quality
of the approximation with the computational cost of the E-step. Unfortunately, kd-tree
algorithms do not scale well with dimensionality.

A closely related method, which scales with dimensionality, is that of McCallum, Nigam,
and Ungar (2000). Instead of a hard partitioning of the data into a multi-resolution kd-tree,
this method uses a crude similarity measure to first divide the data into so-called canopies,
which are subsets of the data that may be overlapping. During an iteration of the EM
algorithm, individual components of a mixture model are associated with one or more
overlapping canopies, and the update of a mixture component is only influenced by the
subset of data cases that belong to canopies associated with that component. In a vari-
ation of the method, the update of a component is additionally influenced by the mean
of each canopy not associated with the component. The speedup and accuracy of their
method is closely related to the overlap of canopies. The resulting speedup will be sig-
nificant if the data cases permit a division into well-separated canopies and the method
identifies such a division. When data cases are generated from overlapping clusters, how-
ever, we expect that either the speedup or the accuracy of the final estimate will decrease.
Although McCallum, Nigam, and Ungar (2000) do not report results as a function of clus-
ter overlap, Moore (1999), whose method is similar, does. In experiments with synthetic
data, he finds that speedup indeed decreases with increasing clustering overlap. In con-
trast, in similar synthetic experiments, our algorithms do not experience a decrease in
speedup.

ACCELERATING EM FOR LARGE DATABASES 297

A different type of compression method is described in Bradley, Fayyad, and Reina
(1998). Their method partitions the data set into blocks of cases, and then iterates across these
blocks, adding a new block to a working set on each iteration. During an iteration, a standard
EM algorithm is run to convergence, and then cases that are close in Mahalanobis distance
are compressed into a compressed case. The E-step is modified to accommodate these
compressed cases. Once cases are compressed, they can not be separated. Consequently,
this approach does not guarantee convergence to a local maximum of the likelihood.

6. Summary and future work

We have considered two approaches for accelerating the EM algorithm for large databases.
Both approaches, the incremental EM and lazy EM, are based on partial E-steps for which
we can use the theoretical results of Neal and Hinton (1998) to obtain standard convergence
guarantees of EM. For both of these methods we have discussed implementation details
that are important for coding operational algorithms that will in fact accelerate EM.

For incremental EM, we described a method for selecting a near-optimal block size for
partitioning the training data. Our experiments showed that this selection is an important
part of the incremental EM algorithm, as the speedup obtained depends dramatically on
the chosen block size. We also described a convergence test for incremental EM that can
be related to standard convergence tests for EM. Finally, we pointed out that small sample
problems may appear during the first pass through the data, and we described how to avoid
these problems.

We have demonstrated a significant speedup for incremental EM over standard EM—a
speedup that increases with sample size. For extremely large data sets, forgetful variants of
incremental EM may even increase the speedup further, as argued in Section 5. Perhaps our
method for selecting an optimal block size can be used for these variants as well.

Additional research into choosing the optimal block size is also needed in situations
where only a subset of the data fits in RAM. In these situations, the paging cost needs to be
factored into the choice of block size.

The viability of lazy EM rests on the assumption that not all data is of equal importance
throughout the iterations. We described a computationally efficient criterion which can be
used to determine the significance of cases in finite-mixture-model settings. The speedup
depends on the scheduling for lazy iterations as well as the threshold for choosing the sub-
set of data used during these iterations. Using a simple approach with a constant schedule
and a constant significance threshold, we were able to demonstrate the effectiveness of the
approach.

For both the lazy EM and incremental EM algorithms, we expect that further research on
alternative schedules and selection methods will improve both algorithms. Potential alter-
natives include non-cyclical traversal of blocks in the incremental EM algorithm, dynamic
schedules for choosing the number of lazy iterations and choosing the significant data in the
lazy EM algorithm, and mechanisms for ensuring disparity among cases in the considered
block of data for both algorithms.

Finally, the lazy and incremental algorithms can be combined into a single algorithm
which could lead to further improvements. There are many possibilities. For instance, one

298 B. THIESSON, C. MEEK, AND D. HECKERMAN

could imagine an incremental algorithm which, in addition to an incremental iteration for a
block of data, performs a few lazy iterations based on significant cases in that block before
moving on to the next block of data. Another possibility would be to perform the full E-step
iteration in the lazy algorithm as an incremental pass through the data.

Acknowledgments

We thank Christopher M. Bishop for helpful discussions on convergence criteria, and we
thank Steven White from MSNBC for making data available. We also thank the anonymous
reviewers for their comments on a preliminary version of this paper.

Note

1. This model is also known as a log-linear model with main effects only. See, for example, Agresti (1990).

References

Agresti, A. (1990). Categorical Data Analysis. New York: John Wiley and Sons.
Bradley, P., Fayyad, U., & Reina, C. (1998). Scaling EM (Expectation Maximization) clustering to large databases.

Technical Report MSR-TR-98-35, Microsoft Research.
Cheeseman, P. & Stutz, J. (1995). Bayesian classification (AutoClass): Theory and results. In U. Fayyad, G.

Piatesky-Shapiro, P. Smyth, & R. Uthurusamy (Eds.), Advances in Knowledge Discovery and Data Mining
(pp. 153–180). Menlo Park, CA: AAAI Press.

Chickering, D. M. & Heckerman, D. (1997). Efficient approximations for the marginal likelihood of Bayesian
networks with hidden variables. Machine Learning, 29, 181–212.

Chickering, D. M. & Heckerman, D. (1999) Fast learning from sparse data. In K. B. Laskey & H. Prade (Eds.),
Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (pp. 109–115). San Mateo,
CA: Morgan Kaufmann Publishers.

Dempster, A. P., Laird, N., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm
(with discussion). Journal of the Royal Statistical Society, Series B, 39, 1–38.

Green, P. J. (1990). On use of the EM algorithm for penalized likelihood estimation. Journal of the Royal Statistical
Society, Series B, 52, 443–452.

Huang, X., Acero, A., Alleva, F., Hwang, M.-Y., Jiang, L., & Mahajan, M. (1995). Microsoft Windows highly
intelligent speech recognizer: Whisper. In IEEE International Conference on Acoustics, Speech, and Signal
Processing, 1995. ICASSP-95 (Vol. 1, pp. 93–96).

Jamshidian, M. & Jennrich, R. I. (1993). Conjugate gradient acceleration of the EM algorithm. Journal of the
American Statistical Association, 88(421), 221–228.

Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal
Statistical Society, Series B, 44(2), 226–233.

McCallum, A., Nigam, K., & Ungar, L. H. (2000). Efficient clustering of high-dimensional data sets with appli-
cation to reference matching. In R. Ramakrishnan & S. Stolfo (Eds.), Proceedings of the Sixth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (pp. 169–178). New York: ACM.

Meilijson, I. (1989). A fast improvement to the EM algorithm on its own terms. Journal of the Royal Statistical
Society, Series B, 51(1), 127–138.

Meng, X.-L. & Rubin, D. B. (1993). Maximum likelihood estimation via the ECM algorithm: A general framework.
Biometrika, 80(2), 267–278.

Meng, X.-L. & van Dyk, D. (1997). The EM algorithm—an old folksong sung to a fast new tune (with discussion).
Journal of the Royal Statistical Society, Series B, 59, 511–567.

ACCELERATING EM FOR LARGE DATABASES 299

Moore, A. (1999). Very fast EM-based mixture model clustering using multiresolution kd-trees. In M. S. Kearns,
S. A. Solla, & D. A. Cohn (Eds.), Advances in Neural Information Processing Systems. Proceedings of the 1998
Conference (Vol. 11, pp. 543–549). Cambridge, MA: MIT Press.

Neal, R. & Hinton, G. (1998). A view of the EM algorithm that justifies incremental, sparse, and other variants. In
M. Jordan (Ed.), Learning in Graphical Models (pp. 355–371). The Netherlands, Kluwer Academic Publishers.

Nowlan, S. J. (1991). Soft competitive adaptation: Neural network learning algorithms based on fitting statistical
mixtures. Ph.D. Thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh.

Sato, M. (1999). Fast learning of on-line em algorithm. Technical Report, ATR Human Information Processing
Research Laboratories 2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan.

Sato, M. & Ishii, S. (2000). On-line EM algorithm for the normalized Gaussian network. Neural Computation,
12(2), 407–432.

Thiesson, B. (1995). Accelerated quantification of Bayesian networks with incomplete data. In U. M. Fayyad,
& R. Uthurusamy (Eds.), Proceedings of First International Conference on Knowledge Discovery and Data
Mining (pp. 306–311). Menlo Park, CA: AAAI Press.

Thiesson, B., Meek, C., Chickering, D., & Heckerman, D. (1999). Computational efficient methods for selec-
tiong among mixtures of graphical models, with discussion. In J. M. Bernardo, J. O. Berger, A. P. Dawid, &
A. F. M. Smith (Eds.), Bayesian Statistics: Proceedings of the Sixth Valencia International Meeting (Vol. 6,
pp. 631–656). Oxford: Oxford University Press.

Zhang, T., Ramakrishnan, R., & Livny, M. (1996). Birch: An efficient data clustering method for very large
databases. In Proceedings of the Fifteenth ACM SIGMOD International Conference on Management of Data
and Symposium on Principles of Database Systems (pp. 103–114). New York: ACM.

Received April 27, 2000
Revised April 11, 2001
Accepted April 11, 2001
Final manuscript April 23, 2001

