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Abstract

We present a specification and proof of correctness for the Paxos replicated
state machine consensus protocol in which replica-set-change is implemented
with replica-set-specific views.

1 Introduction

We present a specification and proof of correctness for the Paxos replicated
state machine consensus protocol. This technical report assumes that the reader
is familiar with Paxos [2, 3], with the TLA+ specification language [4], and
with our extensions to Paxos to implement replica-set change using replica-set-
specific views [5].

The proof is rigorous in that it involves a high degree of detail. It is not
formal in that it is not machine-checkable, and in fact not all lemmas are proven
in the same degree of detail. The proofs follow a hierarchical style as recom-
mended by Lamport [1] so that the reader can read as much or as little detail as
she likes. This document provides an informal overview of the rigorous proof,
outlining its structure and identifying the most important and interesting lem-
mas. The reader is encouraged to start by reading the highest-level statements
of the interesting lemmas, and then drill down one level at a time into those
statements that capture her interest or raise suspicion.

Section 2 provides a review of why Paxos works, and why our replica-set-
change protocol works, in slightly more detail than the OSDI submission [5].
Section 3 is a guide to reading the specification. Understanding the structure of
the specification facilitates refering to it while examining the proof. Section 4
is a guide to reading the proof proper.



2 The Argument

This section provides an overview of the basic argument behind Paxos and
behind our replica-set-change extension. Knowing the argument will help the
reader understand the protocol specification and the proof.

2.1 Why Paxos Works

The purpose of Paxos’ agreement protocol is to determine a sequence of
operations to feed to a deterministic state machine. If all cohorts agree on the
sequence, then the cohorts will drive their state machines identically. We call
the indices of the sequence slots. The goal of the protocol is for the cohorts to
agree on a unique operation for each slot.

In normal operation, a distinguished cohort called the primary proposes
operations for slots. If a single cohort were always the primary, it could trivially
guarantee uniqueness by never proposing for the same slot twice; in fact, Paxos
relies on exactly this property for the term in which a single primary serves,
called a view. To tolerate failures, of course, the protocol cannot rely on a
single primary. When a primary fails, the group can replace it by executing a
view change.

Paxos relies on quorums to guarantee unique decisions in the presence of
view changes. Every proposed operation is always prepared by a quorum of
cohorts before it is chosen. Every cohort that prepares an operation promises
to remember (that is, commits to stable storage before sending its Prepared
message) the proposal. In the event of a view change, another quorum of cohorts
elects a new primary, and conveys to that primary the list of preparations they
have made in earlier views.

It is this use of quorums and relaying of prior preparations that guarantees
unique decisions. If two conflicting operations were proposed for the same slot
in different views, some quorum must have prepared the operation in the first
view, and a second quorum must have elected the primary in the second view.
Since some cohort is in both quorums, that cohort must relay the preparation
from the earlier view to the primary in the later view, preventing the conflict.

2.2 Why Replica-Set Change Works

Our contribution to Paxos is to define replica-set change using replica-set-
specific views. This definition makes it fairly straightforward to extend the
reasoning above to handle changing replica sets.

Changing replica sets complicates the argument above, for we must consider
the possibility that the preparing quorum involved members of a replica set en-
tirely disjoint from the one that elected the later view. We resolve this quandary
by assigning a well-defined replica set to decide each slot. The preparing quorum
and the electing quorum will both be quorums of the same replica set.

Recall that we use replica sets that are entirely disjoint. In typical use, one
might want to make less drastic changes to the set of machines participating in



a consensus group. That is why we use the specific term cohort: a cohort is a
logical entity defined as a {(machine, epoch) pair. Thus every physical machine
has an infinite supply of cohort identities. Whenever we change the set of
machines participating, we increment the epoch, so the new replica set contains
only cohorts we have never used before.

The execution of the state machine at slot n — a determines the replica set
responsible for deciding slot n. If we make the proof invariants coinductive, we
can show that all cohorts that have executed slot n — « agree on the replica
set responsible for slot n. Because the Proposed, Prepared, and Committed
messages refer to a specific slot, we know that the quorum that prepares the
operation belongs to the unique replica set for that slot.

Unlike the preparation messages, the primary election messages Initiate-
ViewChange, VcAck, and DesignatePrimary do not mention any specific slot.
With replica-set-specific views, the system avoids ambiguity by using epochs to
assign each new replica set a set of cohorts disjoint from all other replica sets.
All of the cohorts involved in a view election therefore belong to the same replica
set, and the designated primary belongs to the same replica set, as well. Since
the primary only proposes for slots for which its replica set is responsible, it
ensures that the electing replica set is the same as any replica set that prepares
operations for the slot.

3 The Specification

The TLA+ modules that specify the system are arranged in four categories,
as shown in Figure 1.

3.1 Environment

The Environment modules define the context in which the system works.
PhysicalComponents assumes a set of Clients that will interact with the ser-
vice. The MachineParameter module introduces the assumption of an abstract
state machine AbState representing the desired service. The ClientIfc describes
the messages comprising the communication protocol between clients and the
service. Clients see the same interface regardless of whether the service is pro-
vided by a central implementation of the state machine or a replicated state
machine.

DistributedComponents introduces the set of hosts from which replica sets
may be constructed. MembershipMachineParameter extends the service inter-
face to allow the service to request a replica set change, indicating the new set
of hosts.

The Messenger represents the network that interconnects the clients and the
replica hosts. The messenger simply records a set of all messages that have
been sent in the behavior of the system; once a message has been sent, it may
be received at any time thereafter. The messenger assumes a broadcast model,
rather than delivering messages to particular hosts; this model is simple and
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Figure 1: EXTEND and INSTANCE relationships among the specification modules



adequate for our purposes. The model allows for duplicate delivery (the Re-
ceiveMessage action is forever enabled), out-of-order delivery (all sent messages
are ready for receipt at the same time), and message drops (our specification is
silent regarding liveness).

3.2 Abstract System

The Abstract System provides a reference for what the replicated state ma-
chine is trying to achieve. We wire together the set of clients and a single copy of
the abstract state machine. The abstract state machine has a single action that
receives network messages, processes them, and sends the reply to the client.

3.3 Replicated System

The replicated system modules form the heart of the specification.

The Constants module defines behavior-independent operators; we separate
this module from the others so that it may be extended directly by the proof,
and its definitions accessed without reference to a particular replica. The most
important definitions build a state machine, CsState, as an extension of AbState
with replica set information.

The Consensus Messages module defines the set of protocol messages ex-
changed among replicas. It also defines only constants, so that the message
definitions can be directly referenced by the proof. The Consensus Messenger
instantiates the environment Messenger to carry both the protocol messages
and the client interface messages.

The State module introduces the state variables each replica maintains to
participate in the protocol. These variables comprise a copy of the CsState
extended state machine and the protocol control variables. The State module
also defines a cohort’s local idea of which replica set it is participating in. The
Init module defines the initial values for the state variables in every behavior.

The Actions module defines the activity of the protocol proper. It defines
four agreement actions Propose, Prepare, Commit, and Execute. It defines four
view management actions InitiateViewChange, VcAck, DesignatePrimary, and
BecomePrimary. It defines a Crash action that clears a cohort’s volatile state.

The Replicated System module instantiates one Replica per cohort and all
of the Clients, and interconnects them with the ConsensusMessenger.

Note that in the OSDI paper, we describe cohorts colocated on the same
machine as sharing a common Execution Module. For simplicity, our specifica-
tion assumes that each cohort has its own Execution Module. While the proof
shows that no two cohorts will produce divergent executions, the simplification
obscures the fact that a shared EM can make one cohort’s state machine magi-
cally jump beyond the operations that cohort knows of. This property leads to
correctness requirements in the implementation; a more detailed specification
would model shared EMs.



3.4 Proof

The Refinement module instantiates one abstract system and one replicated
system. The Proof module introduces some system-wide definitions, and fol-
lows them with a series of invariants and theorems. Its content is the focus of
Section 4.

4 The Proof

In this section, we prepare the reader to read the proof.

4.1 Terminology

We have refined our terminology over time for pedagogical purposes. Our
presentation of the protocol [5] uses the most recent, clearest terminology. The
specification and proof use slighty older terms that match those used in the
implementation. Here is a dictionary:

| spec | presentation | meaning |

cohort AM A logical replica, eligible to participate in
only one replica set. A single machine
may host several cohorts, distinguished by
their epoch number.

opn slot An index into the sequence of inputs to
be executed by the state machine.

membership | replica set A set of cohorts responsible for deciding
some slot.

quora quorums The plural of quorum, both of which

sound pretty poor.
Committed | CHOSEN The action a primary takes to announce
that a slot’s operation has been chosen.

4.2 Hierarchical organization

The proof is a collection of sixty-some lemmas. Section 4.4 organizes those
lemmas into six general areas. Section 4.5 describes the idioms used in the
detailed proofs, and points the reader at the most interesting lemmas. The
proofs of the lemmas vary from a few lines to several pages.

In a conventional proof, the author must decide how much detail to present.
Less detail may leave one reader wanting, but other readers may not enjoy
slogging through greater detail. Our proofs are structured in a hierarchical
style as recommended by Lamport [1], so that you may understand the high-
level structure of each proof before diving into the details of any particular part.
We recommend that you avoid reading the proofs linearly. Instead, read each
top-level statement (Step 1, Step 2, Step 3), understand how they connect to
justify the statement of the lemma, and then delve into any particular substep
as you see fit, again reading breadth-first to manage detail in the substep.



4.3 Omissions

The Abstract State Machine specification does not handle client requests cor-
rectly: it treats duplicate network messages as duplicate client requests, rather
than supressing them. The state machine has a client-request timestamping
mechanism to prevent this problem, but we have not specified it yet because it
may be reasonably omitted until proving refinement.

The replicated system specification refers to truncation points and a variable
called CsStateSnapshot. We specified the system to include log truncation, but
decided that it was orthogonal to our proof and hence needlessly complicated.
Because the log-truncating operations are elided from our Next disjunction, any
behavior admitted by the present specification has rather dull Crash actions
that simply reinitialize the cohort’s state. The reader may skip any references
to log truncation.

We omit the proofs of the base cases for the inductive proofs of the invariants
because they are trivial. Our specification has a simple Init condition, and the
invariants are generally ovbiously true in the initial condition. For example,
most of the invariants have as an antecedent that some message has been sent,
and in the initial state, no messages have been sent; therefore, any such invariant
is vacuously true.

The Refinement module should define a refinement mapping that maps states
of the replicated system onto states of the abstract system. This mapping would
take the AbState field of a state in KnownStates onto the AbState variable in
the abstract system. Our proof would then show that the refinement holds; that
is, the refinement mapping takes every behavior of the replicated system to a
legal behavior of the abstract system. Once refinement is shown, we can see
that the clients cannot actually distinguish whether they are attached to the
replicated system or the abstract system. For sake of time, we proved only the
key theorem needed for the refinement, but not the refinement itself.

There is a typesetting problem with the detailed proof: often a Reasoning
block does not appear at the correct indentation level matching the step to
which it applies.

4.4 The map

This technical report includes a map of the structure of the proof, broken
logically into six continents of related lemmas. This section describes each of
the six continents.

Page 14 is an overiew of the six continents, showing how they relate to one
another. Pages 15—-20 show each continent in detail, one continent per page.

If you can print 11 x 17 sheets (or have fantastic eyesight), you may prefer
to fetch and assemble the one-page map (two sheets of 11 x 17 paper joined).
The one-page map shows both the detail and context at the same time. Yellow
regions on the one-page map delineate the continents.

The map should greatly assist navigating the full collection of lemmas in
the same way that the hierarchical style helps navigate a single lemma. For



example, one can infer the important conclusions (“outputs”) of a continent by
examining the dependency edges entering the continent. In Section 4.5.1, we
describe the meanings of each symbol on the map.

4.4.1 State consonance

The primary goal of the proof appears in the continent labeled state conso-
nance. The proof defines a notion of the Known State that collects the sequence
of operations that have been committed by the system, and computes from that
the history of the state machine’s execution up through the last consecutively-
available decided operation. The invariant shows that every cohort’s local state
agrees with some point in the history of the Known State. Typically, we expect
most of the cohorts in the active replica set to have state near the most-recent
available.

4.4.2 Nonconflicting decisions

The definition of globally-known state uses a CHOOSE statement (Hilbert’s
epsilon). Our proof strategy requires first proving that these sets are always
singletons, making the choice unambiguous. Hence we must ensure that no two
different operations are committed for the same slot. This statement reduces to
showing that preparation by a quorum in an earlier view prevents any conflicting
proposal in a later view. The latter lemma contains the primary contradiction
proof underlying Paxos’ view change described in Section 2.1.

4.4.3 Primaries behave well

Paxos is a practical consensus algorithm because it does minimal work in
the common case, when everything is working correctly; it reserves most of
its complexity for view changes, which handle failures. As a result, the good
behavior of the common-case work of the protocol, proposal and preparation, is a
fairly small part of the proof. The continent labeled Primaries behave well shows
how a primary never proposes different operations for a single slot in the view it
is responsible for. Even simpler, the statement Prepared Implies Proposed shows
that preparers behave correctly: cohorts only prepare in response to proposals.

4.4.4 VcAcks relay information about prior prepares

When a view change does occur, it is crucial that the each cohort correctly
relays information about previous operations it has prepared. Lemmas on this
continent relates the Prepared Ops information in each VcAck message to the
operations prepared in preceding views.

4.4.5 Elections and designation

The Elections and designation continent traces each view change election
through from the quorum of VcAcks that ratify it to the designation of the



primary, which should transmit to the primary the Prepared Op information
from the election quorum.

A warning: the proof does not reason about the actual quorum involved
in an election. This choice is an artifact of the exclusive use of sent messages
to observe history (see Section 4.5.3): No message records the actual set of
VcAcks that the view initiator considered in designating the primary for the
view. Instead, we simply define a Plausible Election Quorum as any quorum
whose VcAcks together justify the primary designation. Note that any Plausible
Election Quorum witness differs from the actual quorum at most by the presence
or absence of cohorts whose VcAck message was completely redundant with
other participants in the election.

4.4.6 Replica-set change

If the system had a constant replica set, the proof would be complete. When
we introduce replica-set change, however, we must be careful that the quorums in
the proof of Quorum Preparation Prevents Conflicting Proposal in fact intersect.
We do so by showing that they are quorums of the same replica set.

Most of the theorems are concerned with the complexity of identifying the
replica set associated with a view. Recall that each message in the proposal
phase of the protocol identifies a slot, which maps directly to a replica set: on
cohorts through the CsState.membershipMap, and in the proof through
KnownState[opn — a].membershipMap.

The view change phase of the protocol is more subtle: a cohort will only
initiate a view if the cohort knows that it belongs to some replica set. The
Nonconflicting View Memberships theorem says that if a replica set has been
established of which the view initiator is a member, then that is the only replica
set associated with that view.

The key theorem Quorum Preparation Prevents Conflicting Proposal uses
Proposed Implies Electing Quorum to find an election quorum in the view replica
set; then it uses Proposed Constrains View Membership to ensure that the view
replica set is the same as the replica set assigned to the slot under consideration.

4.5 Detailed Proofs

This section prepares the reader to dig into the detailed proofs. Sections 4.5.1
through 4.5.3 describe the idioms used in the detailed proofs. Section 4.5.4
points the reader at good places to start reading the proof.

4.5.1 Types of lemmas

Each lemma in the proof is labeled either a basic Theorem or an Invariant
theorem. Invariant theorems prove the inductive step of some invariant: if R
then R'.

A nontemporal Theorem is one whose statement has no primed expressions,
and hence refers only to a single state. Such a statement’s antecedent typically



incorporates some invariant by reference. For convenience, any lemma may
incorporate the antecedents (“Assume” statements) of a Theorem by reference.
This lets us use the same name for the proof of a statement and the statement
itself. To save space, we do not repeat the incorporated hypotheses in the
detailed presentation.

A temporal Theorem is one whose statement has a primed expression, and
hence relates two consecutive states of a behavior of the specification. Most
of these depend on no invariants, and are simply statements of monotonicity:
In any state, be it reachable in a behavior accepted by the specification or
not, the specification will preserve some property in the following state. More
specifically, many such theorems say that once a message has been sent, it
stays sent; these follow easily from the way the Messenger always expands the
SentMessages set. The monotonicity lemmas are sufficiently dull that they do
not warrant inclusion in the map.

A basic Invariant theorem is one of the form R —> R'. The proof assumes
R, and proves R', providing the inductive step of a proof that all behaviors
satisfying the specification hold R true at every step. Another lemma may
incorporate the statement R of an invariant by name.

An implication Invariant theorem is one where the invariant R is of the form
P = (@, so that the statement of the inductive step is (P = () =
(P' = @'). The inductive proofs are written as

P = Q
Pl
A
because it avoids a repetitive layer of tedious logic. The invariant itself, however,
is still just P = (@, and that is the statement that is incorporated when the
invariant hypothesis is refered to by name, not (P = Q) A P'.

Each blue oval on the map is a nontemporal statement of an invariant prop-
erty, the R of the invariant theorem with the corresponding name. Each green
parallelogram is the corresponding statement R —> R’ showing the inductive
step of the proof of the invariant. Each white rectangle is a basic theorem.

Each edge represents a dependency. For example, the proof of an invariant
inductive step (Proposeds In Same View Do Not Conflict) may rely on the
validity of a theorem (Unique Primary Designated), which itself may rely on
the assumption of an invariant property (Unique Primary Designation Message
Property). When a theorem relies on an invariant inductive step (as Prepareds
in Same View Do Not Conflict relies on Prepared Implies Proposed), it is because
the theorem uses the inductive step to show the invariant statement true in the
primed state. Red dashed edges distinguish the induction hypotheses, where
an induction step relies on its invariant statement being true in the unprimed
state.

Although not explicitly stated in the detailed proof, there is a temporal
statement ORy AR A- - -, proven by induction. The proof assumes Rj ARy A- - -,
and simply applies each invariant inductive step to prove each of R}, R}, - -.

10



4.5.2 Proof strategies

Per Lamport’s hierarchical proof style, each Step inside a lemma is itself a
little numbered but unnamed lemma. A step may refer to any step preceding
it at the same scope, or to any step that its parent may refer to, recursively up
to the root lemma.

Every step or lemma begins with an assertion of what is to be proved, fol-
lowed by the proof itself. For example,

Introduce z €S
Assume P(z)
Definition Q(z) £z <7
Assume Q(x)
Prove R(x)

proves the logical formula:
Ve €S: LET Q(z) 22 <7 IN P(z) AQ(z) = R(z).

Variables and definitions introduced in the assertion are visible in the ar-
gument for the step. The argument itself is a series of steps. Definitions may
intersperse the steps; like the statement proven by a step, that definition is visi-
ble to all of the remaining steps in the argument and their descendents. The end
of an argument (and in some cases the entire argument) is a Reasoning block
that explains how the substeps together prove the assertion.

To prove a statement by contradiction, we introduce a substep that assumes
the contradiction hypothesis, and then prove FALSE.

To prove a statement by case analysis, we introduce as many substeps as we
have cases. Each substep has as its assertion simply

Case P

Such a case step has the same goal statement as the parent step, but introduces
the additional assumption P. A step whose assertion is DefaultCase assumes
the negation of the disjunction of all preceding Case statements. When a step
is proven by case substeps, it should be clear that the cases are exhaustive, so
that this proof rule applies:

— R
— R

Pve

i=v]BavE Wliae!

When a DefaultCase step is present, exhaustion is automatic; in other cases,
exhaustion may be obvious and left unsaid. Most proofs by case analysis break
cases up according to which action has occurred.

11



4.5.3 Examining history through SentMessages

Many of the lemmas in the proof prove that certain bad things can never
have occurred; for example, never will two commit messages be sent for the same
slot and different operations. That is, in no state of any accepted behavior will
one see a SentMessages set containing two conflicting commit messages.

Inspecting the SentMessages set is the only way the proof examines history.
It is a sufficient historical record because in our Messenger model, once sent, a
message never disappears. Lemmas in the system fall into two categories: First
are exzternal invariants that constrain history by relating the messages in the
SentMessages set, such as the example in the previous paragraph. Second are
local invariants that constrain a cohort’s local state, perhaps with respect to
SentMessages.

We commonly prove an external invariant from a local one. The local invari-
ant may be insufficient, for example, if its antecedent makes it useful only while
a cohort remains in a certain view. But we may show the inductive step of an
external invariant by reference to the local one: no cohort sends the disallowed
message because its local state prevents it. The external statement regards his-
tory and thus remains true forever, making it valuable for use in later lemmas.

4.5.4 'Where to start

The goal statement of the proof is Local State Consonant With Known State.
Read the statements of that invariant theorem, and each theorem on the path
down through the map to Quroum Preparation Prevents Conflicting Proposal,
the key theorem.

Dive into the substatements of Quroum Preparation Prevents Conflicting
Proposal. It has links into each of the remaining continents on the map; when
you see a Reasoning reference to another theorem, you can find it on a map and
decide if it is an interesting direction to pursue.

5 Summary

The text and figures of this report provide a guide to the bulk of the report,
a formal specification and rigorous hierarchical proof of the correctness of Paxos
with replica-set-specific views.
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MODULE PazosPhysicalComponents

EXTENDS FiniteSets, Naturals
Defn Opns = Nat

CONSTANT Clients
Defn  Timestamp £ Nat

CONSTANT ClientEndpoint
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MODULE PazosMachineParameter

EXTENDS Stubs
CONSTANT AbStates

CONSTANT AbOps

CONSTANT AbReplies

CONSTANT AbTx

ASSUME AbTz € [AbStates x AbOps — [state : AbStates, reply : AbReplies]]

CONSTANT AbStatelnit
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MODULE PazosClientIfc

EXTENDS Stubs, Naturals, PaxosPhysicalComponents, PaxosMachineParameter
For definition of Clients

We only really need AbOps and AbReplies, but they’re presently packaged together with the
rest of the machine.
Defn  MTRequest = “MTRequest”
Defu  MTReply = “MTReply”
Defn  ClientMessage Type = {MTRequest, MTReply}

Defn  RequestMessage =

[type : { M TRequest}, client : Clients, timestamp : Timestamp, op : AbOps)]
Defn MakeRequestMessage (i_client, i_timestamp, i_op) =

[type — MTRequest, op — i_op]

Defn  ReplyMessage =

[type : { M TReply}, client : Clients, timestamp : Timestamp, reply : AbReplies]
Defn MakeReplyMessage (i_ client, i_timestamp, i_reply) =

[type — MTReply, reply — i_reply]
Defn  ClientMessage = UNION {RequestMessage, ReplyMessage}
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MODULE PazxosDistributedComponents

EXTENDS PazosPhysicalComponents
CONSTANT Hosts

CONSTANT InitialHosts
CONSTANT Alpha
Defn  Epochs = Nat

Defn  Cohorts = [host : Hosts, epoch : Epochs]
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MODULE PazxosMembershipMachineParameter

EXTENDS PazosMachineParameter, PazosDistributedComponents

We assume that the “abstract” state machine also has a function on the side to specify membership
changes. This doesn’t belong in the abstract state machine per se, because it’s aware of the
distributed nature of the system. But it appears before the Cs state machine (the extended
machine run by the distributed consensus group cohorts), because it’s a parameter to the system.

Notes: 1. The membership changes specified by AbMembership are considered “advisory”: the
implementation is allowed to ignore membership change requests it doesn’t care to implement.

2. The abstract interface is that the machine specifies a set of hosts to implement the group. The
consensus group converts hosts into “cohorts” (\langle host, epoch \rangle - pairs), but that’s a
detail that the abstract interface shouldn’t be aware of.

CONSTANT AbMembership
ASSUME AbMembership € [AbStates x AbOps — SUBSET Hosts]

Proof doesn’t depend on how AcceptMembershipChange works, as long as all cohorts agree
on its value (which we enforce by only supplying CsState, an already-agreed-upon value).
One reasonable function would be “TRUE” (accept all changes).

CONSTANT AcceptMembership Change(-)
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MODULE PaxosMessenger

EXTENDS Util, PaxosPhysicalComponents
2004.04.05.03

CONSTANT Messages

CONSTANT Cohorts

=

Defn  Endpoints Cohorts U ClientEndpoint

VARIABLE SentMessages
Defn  SentMessagesType £ SUBSET Messages
Defn  ReceiveMessageSet(messages) = messages C SentMessages

A fine point about specification in TLA+:

Note that SendMessageSet includes an enabling condition: you’re never allowed to re-send
a message you’ve already sent. This condition is reasonable in this spec because: (a) re-
sending identical messages is unnecessary for our protocol, since this Messenger can redeliver
messages at any time, and (b) it ensures that any particular action only happens once. For
example, once a primary proposes an operation for a slot in a view, it is no longer enabled to
perform exactly that action again. Therefore, if we’re in a case analysis in the proof, and we
say that a Propose action relates the unprimed and primed states, we know that the action
really is happening now (the message hadn’t been sent before).

Without this condition, we’d have to restate all of the cases as “a message m, with the
following properties, is in SentMessages’ and not in SentMessages.” From that, we’d then
conclude that the action must relate the two states. It’s clumsier, and besides, it seems odd
to leave an action “enabled” once it has occurred, when the only effect in can have is as a
synonym for Stutter.

Defn  SendMessageSet(messages) =
A messages N SentMessages = {}
A (SentMessages') = SentMessages U messages

Defn  NoMessageTraffic = SendMessageSet({})
Defn  SendMessage(m) = SendMessageSet({m})

Defn  ReceiveMessage(m) = ReceiveMessageSet({m})
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MODULE PazosAbstractMessages

EXTENDS PazosClientIfc
VARIABLE SentMessages

Detn  CentralCohort = “CentralCohort”
CONSTANT Cohorts

Msgr =
INSTANCE PazosMessenger WITH
Messages < ClientMessage, ClientEndpoint < ClientEndpoint

Defn  SendMessageSet(m) = Msgr!SendMessageSet(m)
Defn  ReceiveMessageSet(m) = Msgr!ReceiveMessageSet(m)
Defn  SendMessage(m) = Msgr!SendMessage(m)

Defn  ReceiveMessage(m) = Msgr!ReceiveMessage(m)
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MODULE PazosAbstractStateMachine

EXTENDS PazosAbstractMessages, PaxosMachineParameter
VARIABLE AbState

Defn  Init = AbState = AbStatelnit

Defn  Next =
Im € RequestMessage :
A ReceiveMessage(m)
A (AbState') = AbTz[AbState, m.op].state
A SendMessage(MakeReplyMessage(m.client, m.timestamp, AbTz[AbState, m.op].reply))

Defn Stutter = UNCHANGED AbState
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MODULE PazosClient

EXTENDS PazosClientlfc, PazosAbstractMessages
CONSTANT ThisClient

Defn  ThisClientType = Clients
VARIABLE LastTimestamp

Defn  LastTimestamp Type = Timestamp
Defu  Nonme = “None”

VARIABLE QutstandingRequest

Defn  OutstandingRequest Type =
[timestamp : Timestamp, request : AbOps] U {None}

Defn  Init £
A LastTimestamp = 0
A OutstandingRequest = None

Defn  SendRequest =
dnewTimestamp € Timestamp, newRequest € AbOps :
A newTimestamp > LastTimestamp
A OutstandingRequest = None
A (OutstandingRequest') = [timestamp — newTimestamp, request — newRequest]
A (LastTimestamp') = newTimestamp
A SendMessage( MakeRequestMessage( ThisClient, newTimestamp, newRequest))

Defn Crash =
A UNCHANGED LastTimestamp
A (OutstandingRequest') = None

Defn  ReceiveReply =
Im € ReplyMessage :
A ReceiveMessage(m)
A OutstandingRequest # None
A m.client = ThisClient
A m.timestamp = OutstandingRequest.timestamp
A (OutstandingRequest’) = None

Defn Next =
V SendRequest
V ReceiveReply
V Crash

Defn  Stutter =
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A UNCHANGED QutstandingRequest
A UNCHANGED QutstandingRequest
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MODULE PazosAbstractSystem

EXTENDS PazosAbstractMessages, PaxosMachineParameter
VARIABLE ClientState

Client(client) =
INSTANCE PazosClient WITH
ThisClient < client,
LastTimestamp < ClientState.last Timestamp,
OutstandingRequest < ClientState.outstandingRequest

VARIABLE AbState

Server = INSTANCE PazosAbstractStateMachine

A

Defn Init =
A (Y client € Clients : Client(client)!Init)
A Server!Init

Defn  Next =
V (3 client € Clients :
A Client(client)! Next
A (Y oc € Clients : oc # client = Client(oc)!Stutter)
A Server!Stutter)
V (A (Vclient € Clients : Client(client)! Stutter)
A Server!Next)
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MODULE PazosConstants

EXTENDS
Util,
PazosMachineParameter,
PazosMembershipMachineParameter,
PazosDistributed Components
Defu  Memberships =
{cohortSet € (SUBSET Cohorts)\ {} :
(F epoch € Epochs : (¥ cohort € cohortSet : cohort.epoch = epoch))

}

Defn  MakeMembership(hosts, epoch) =
{cohort € Cohorts :
( A cohort.host € hosts
A cohort.epoch = epoch)
}

Defn  EpochOf (membership) =
LET
Defn  arbitraryCohort = CHOOSE cohort € membership : TRUE
IN
arbitraryCohort.epoch

Defn  MembershipMap = {[1 .. endOpn — Memberships] : endOpn € Opns}

A

Defn  QuoraOfMembership(membership)
{memberSet € SUBSET membership :
(Cardinality(memberSet) > Cardinality(membership) + 2)

}
Defn  TimestampXReplies = [timestamp : Timestamp, reply : AbReplies]
Defn  LastClient TimestampMap = [Clients — TimestampXReplies]
Consensus state machine parameters (wraps abstract state machine)

Defn CsStates =

[
ab : AbStates,

membershipMap : MembershipMap,
numBzecuted : Opns,
lastClient TimestampMap : LastClient TimestampMap

]

Defn  NoOp = [type — “NoOp”]
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ASSUME NoOp ¢ AbOps
ASSUME VY esState € CsStates : AcceptMembershipChange(csState) € Boolean

An example of the definition Jay’s implementation uses: allow a change only if there’s not
already one pending.
Defn  AcceptMembership Change_ NoConcurrency(csState) =
I membership € Memberships :
(V opn € csState.numEzecuted . . (csState.numBEzecuted + Alpha) :

csState.membershipMap[opn] = membership)

Defn CsOps = AbOps U {NoOp}
Defn CsTx =
[st € CsStates, op € CsOps —
IF op = NoOp
THEN
st
ELSE
LET
Defn  oldMembership = st.membershipMap|(st.numBzecuted + Alpha)
Defu  newMembership =
IF AcceptMembership Change(st)
THEN
MakeMembership( AbMembership[st.ab, op], EpochOf (oldMembership) + 1)
ELSE
oldMembership
Defn  newMembershipMap =
[opn € 1 .. ((st.numFEzecuted + Alpha) + 1) —
IF opn = (st.numEzecuted + Alpha) + 1 THEN newMembership ELSE st.membershipMap[opn]

]
IN
[
ab — AbTx[st.ab, op],
membershipMap +— newMembershipMap,
numEzecuted — st.numEzecuted + 1,
lastClient TimestampMap — TODO

]
]

Defn  CsTazType = [CsStates x CsOps — CsStates]

Defn CsStatelnit =

[

ab — AbStatelnit,
membershipMap — [opn € 1 .. Alpha — MakeMembership(InitialHosts, 1)]

]
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Defn  CsStatelnitType = CsStates

Defn  ViewNumbers = Nat

Defn  Viewlds = [viewNumber : ViewNumbers, viewInitiator : Cohorts]

Defn  PreparedOplnfo = [view : Viewlds, opv : CsOps]

Defn  PreparedOpZero = [view — 0]

Defn  PreparedOpInfoWithZero = PreparedOpInfo U {PreparedOpZero}

Defn  PreparedOpsType = {[opnSet — PreparedOplnfo] : opnSet € SUBSET Opns}

Defn  PreparedOps WithZero Type =
{[opnSet — PreparedOplInfoWithZero] : opnSet € SUBSET Opns}

These auxiallary operators are part of BecomePrimary.
They were once defined in a LET -IN , but they’re factored out into global scope here so that the
proof can refer to them.
A
Defn  MazPreparedOpn(m) =
Mazimum(DOMAIN (m.prevPrepares U {m.maxzTruncationPoint}))

Defn  NotPrevPrepared(m) =
((m.mazTruncationPoint + 1) .. MazPreparedOpn(m)) \ DOMAIN m.prevPrepares
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MODULE PazosConsensusMessages

EXTENDS PazosConstants
[2004.03.31.02]

Defn  MTProposed = “MTProposed”

Defn ~ MTPrepared = “MTPrepared”

Defn  MTCommitted = “MTCommitted”

Defu  MTMembership = “MTMembership”

Defn  MTVelnitted = “MTVclnitted”

Defu  MTVcAcked = “MTVcAcked”

Defn  MTPrimaryDesignated = “MT PrimaryDesignated”

Defn M TPersisted “MTPersisted”

Defn  MTSnapshot “MTSnapshot”

Defn  MessageType
{
MTProposed,
MTPrepared,
MTCommitted,
MTMembership,
MTVelnitted,
MTVcAcked,
MTPrimaryDesignated,
MTPersisted,
MTSnapshot

}

Defu  ProposedMsg =

[type : { M TProposed}, sender : Cohorts, view : Viewlds, opn : Opns, opv : CsOps|
Defn MakeProposedMsg(i_sender, i_view, i—opn, i—opv) =

[type — MTProposed, opn — i_opn, opv — i_opv]

[ 11> 11>

Defn  PreparedMsg =

[type : {MTPrepared}, sender : Cohorts, view : Viewlds, opn : Opns, opv : CsOps]
Defn MakePreparedMsg(i_sender, i_view, i_opn, i opv) =

[type — MTPrepared, opn — i_opn, opv — i_opv]
Defn  VelnittedMsg = [type : { MTVclnitted}, sender : Cohorts, view : Viewlds]
Defn  MakeVelnittedMsg(i_sender, i_view) = [type — MTVelnitted]

Defn  VcAckedMsg =
[
type : {MTVcAcked},
sender : Cohorts,
view : Viewlds,
log TruncationPoint : Opns,
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preparedOps : PreparedQOps Type
]

Defn  MakeVcAckedMsg(i—sender, i_view, i_logTruncationPoint, i_preparedOps) =
[
type — MTVcAcked,
log TruncationPoint — i_log TruncationPoint,
preparedOps — i_preparedOps

]

Defn  PrimaryDesignatedMsg =
[
type : { MTPrimaryDesignated },
sender : Cohorts,
view : Viewlds,
newPrimary : Cohorts,
maz TruncationPoint : Opns,
prevPrepares : PreparedOpsType
]
Defn
MakePrimaryDesignatedMsg(
i—sender, i_view, i—newPrimary, i—mazTruncationPoint, i_prevPrepares) =
[
type — M TPrimaryDesignated,
newPrimary — i_newPrimary,
maz TruncationPoint — i_mazTruncationPoint,
prevPrepares — i_prevPrepares
]
Defn  ViewMessage =
UNION {ProposedMsg, PreparedMsg, VelnittedMsg, VeAckedMsg, PrimaryDesignatedMsg}

Defn CommittedMsg = [type : { MTCommitted}, sender : Cohorts, opn : Opns, opv : CsOps]
Defn MakeCommittedMsg (i_sender, i_opn, i_opv) =
[type — MTCommitted, opn — i_opn, opv — i_opv]

Defu  MembershipMsg =

[type : {MTMembership}, sender : Cohorts, opn : Opns, membership : Memberships]
Defn MakeMembershipMsg(i_sender, i_opn, i_membership) =

[type — MTMembership, opn — i_opn, membership — i_membership]

Defn  PersistedMsg = [type : { MTPersisted}, sender : Cohorts, opn : Opns]
Defn  MakePersistedMsg(i_sender, i_opn) = [type — MTPersisted, opn s i_opn]

Defn  SnapshotMsg =

[type : {MTSnapshot}, sender : Cohorts, opn : Opns, snapshot : CsStates|
Defn MakeSnapshotMsg(i_sender, i_opn, i_snapshot) =

[type — MTSnapshot, opn — i_opn, snapshot — i_snapshot]
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Defn  ConsensusMessage =
UNION { ViewMessage, CommittedMsg, MembershipMsg, PersistedMsg, SnapshotMsg}

Defn PreparedOplInfoFromPreparedOps(preparedOps, opn) =
IF opn € DOMAIN preparedOps THEN preparedOps[opn] ELSE PreparedOpZero

Defn  MazTruncationPoint(msgs) = Mazimum({m.logTruncationPoint : m € msgs})

Defn  AggregatePreparedOps(msgs) =
LET
Defn  senders = {m.sender : m € msgs}

Defu  PrevPrepDom =
UNION ({DOMAIN m.preparedOps : m € msgs}\ (1 .. MazxTruncationPoint(msgs)))
Defn Msg(cohort) = CHOOSE m € msgs : m.sender = cohort
Defn CohortPreparedOp(opn, cohort) =
PreparedOpInfoFromPreparedOps(Msg(cohort).preparedOps, opn)
Defn  PreparedOp(opn) =
LET
Defu  mazView =
Mazimum({ CohortPreparedOp(opn, cohort).view : cohort € senders})
Defn  mazCohort =
CHOOSE cohort € senders : CohortPreparedOp(opn, cohort) = maxView
IN
CohortPreparedOp(opn, mazCohort).opv
IN
[opn € PrevPrepDom — PreparedOp(opn)]

Here we define the set of ’configuration records’ that describe the set of legitimate
DesignatePrimary actions. This definition is here (not in PazosActions) because we use
this definition in the proof.

TODO move this general note to the right place: Some modules (PazosConstants,
PazosConsensusMessages) make no reference to state (they have no Variables), and so we
can include (EXTEND) them in both the spec and the proof. By including them in the proof,
we can refer to them without a (needless) reference to a specific cohort’s instantiation of the
constant definition. Thus we sometimes promote constant definitions up into a “constant
module.”

The DesignationConfigurations.msgs specifically disallows the empty set of messages to fa-
cilitate the proof. If we didn’t, we’d need to prove that the message set is nonempty, which
would require chasing around an invariant that the quorum size is always nonzero, which
we’d have to chase all the way through to the AcceptMembershipChange predicate. Yikes!
Instead, we simply disable the DesignatePrimary action for empty message sets. That’s
fine, because any system with zero members would wedge (er, “fail liveness”) at view change
initiation, before reaching this point.

The DesignationConfigurations contain redundant information: the .view field constrains the
views of the messages in .msgs. So we construct a larger set of records first, and then enforce
the (redundant) condition by removing those records that disobey it.

Defn  BasicDesignationConfigurations =
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designator : Cohorts,

view : Viewlds,

msgs : (SUBSET VcAckedMsg) \ {},
quorum : Memberships,
newPrimary : Cohorts

]

Defn  DesignationConfigurations =
{dc € BasicDesignationConfigurations :
(A (Ym € dc.msgs : m.view = dc.view)
A de.newPrimary € dc.quorum)
}
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MODULE PazosConsensusMessenger

EXTENDS PazosConsensusMessages, PazosClientlfc
VARIABLE SentMessages

Msgr =
INSTANCE PazosMessenger WITH
Messages < (ConsensusMessage U ClientMessage)

Defn  SendMessageSet(m) = Msgr!SendMessageSet(m)
Defn  ReceiveMessageSet(m) = Msgr!ReceiveMessageSet(m)
A

Defn  SendMessage(m) Msgr!SendMessage(m)

Defn  ReceiveMessage(m) = Msgr!ReceiveMessage(m)

Defn  MessagesMatchPrototype(msgs, proto) =
A (Ym € msgs : (VY field € DOMAIN proto : field # “sender” = m/[field] = proto[field]))

Defn EachCohortSentAMessage(cohorts, msgs) =
A (V cohort € cohorts : (3m € msgs : m.sender = cohort))

Defn  ReceiveFromQuorum(msg, quora) =
dmSet € SUBSET ConsensusMessage, quorum € quora :
A ReceiveMessageSet(mSet)
A MessagesMatchPrototype(mSet, msg)
A EachCohortSentAMessage(quorum, mSet)

42



MODULE PazosState

EXTENDS Util, PazosDistributedComponents, PaxosMachineParameter, PazosConstants
CONSTANT ThisCohort

ASSUME ThisCohort € Cohorts
Variables
VARIABLE IAmPrimary
Defn  IAmPrimary Type £ Boolean
StaleView is set upon a crash, preventing a cohort from becoming primary until it enters a
new view. This keeps a primary from crashing, losing track of its non-persistent LastProposed

variable, and then deciding to become primary again in the same view, possibly making conflicting
proposals.

This new variable arose when attempting to prove the spec correct uncovered a bug. Specifically,
I was working on Theorem LastProposedTracksProposals. 2004.04.27

VARIABLE Stale View
Defn  StaleViewType = Boolean
VARIABLE LogTruncationPoint

=

Defn  LogTruncationPointType Opns
VARIABLE DesignationNeeded

Defn  DesignationNeeded Type = Boolean
VARIABLE LastProposed

Defn  LastProposedType = Opns
VARIABLE PreparedOps

VARIABLE CsState

Defn  CsStateType = CsStates
VARIABLE CsStateSnapshot

Defn  CsStateSnapshotType = CsStates
VARIABLE LocalStable Point

Defn  LocalStablePointType = Opns

Defu  Membership =
CHOOSE membership € Range(CsState.membershipMap) : ThisCohort € membership
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Defu  Membership Type = Memberships
Defu  ActiveMember = ThisCohort € Membership
ActiveMember \implies \box ActiveMember
Defn  OpInEpoch(opn) = ThisCohort.epoch = EpochOf (CsState.membershipMap[opn))
VARIABLE KnownStablePoints
Defn  KnownStablePointsType = [Membership — Opns]
VARIABLE CurView
Defn  CurViewType = Viewlds
Defn  Quora = QuoraOfMembership(Membership)

Helpful definitions

Defu  CollectiveStablePoint =
Mazimum(
{opn € Opns :
(3 quorum € Quora : (¥ cohort € quorum : KnownStable Points[cohort] > opn))
)
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MODULE PazosInit

EXTENDS PazosState

Initialization
Defn  FirstPrimary = [host — Minimum(InitialHosts), epoch — 1]

Defn  Init =
A [IAmPrimary = FALSE
A StaleView = TRUE
A LogTruncationPoint = 0
A KnownStablePoints = [cohort € Membership — 0]
A DesignationNeeded = FALSE
A LastProposed = 0
A PreparedOps = [z € {} — 0]
A CsState = CsStatelnit
A CurView = [viewNumber w 1, viewInitiator — FirstPrimary)
A CsStateSnapshot = CsStatelnit
A LocalStablePoint = 0
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MODULE PazosActions

EXTENDS PazosState, PaxosConsensusMessenger
Defn ActiveMember_Auz = ActiveMember

Actions

Defn  Propose(opv) =

LET
Defn  opn = LastProposed + 1

IN
A ActiveMember
A opn € DOMAIN CsState.membershipMap
A ThisCohort € CsState.membershipMap[opn)]
A IAmPrimary
A SendMessage( MakeProposedMsg( ThisCohort, CurView, opn, opv))
A (LastProposed') = opn
A UNCHANGED IAmPrimary
A UNCHANGED PreparedOps
A UNCHANGED CsState
A UNCHANGED CurView
A UNCHANGED DesignationNeeded
A UNCHANGED CsStateSnapshot
A UNCHANGED KnownStablePoints
A UNCHANGED LocalStablePoint
A UNCHANGED LogTruncationPoint
A UNCHANGED Stale View

Defn  ProposeAction(view, opn, opv) =
A Propose(opv)
A view = CurView
A opn = LastProposed + 1

Defn  Prepare(m) =
A ActiveMember_Aux
A ReceiveMessage(m)
A m.view = CurView
A SendMessage( MakePreparedMsg( ThisCohort, CurView, m.opn, m.opv))
A (PreparedOps') =
[z € DOMAIN (PreparedOps U {m.opn}) —
IF & = m.opn THEN [view — CurView, op — m.opv] ELSE PreparedOps|z]
]
A UNCHANGED IAmPrimary
A UNCHANGED LastProposed
A UNCHANGED CsState
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A UNCHANGED CurView

A UNCHANGED DesignationNeeded

A UNCHANGED CsStateSnapshot

A UNCHANGED KnownStablePoints
A UNCHANGED LocalStable Point

A UNCHANGED LogTruncationPoint
A UNCHANGED StaleView

A

Defu  PrepareAction(v, opn, opv)
Im € ProposedMsg :
A Prepare(m)
A m.view = v
A m.opn = opn
A m.opv = opv

Defn Commit(m) =
A ActiveMember
A ReceiveFromQuorum(m, Quora)
A m.view = CurView
A IAmPrimary
A SendMessage(MakeCommittedMsg( ThisCohort, m.opn, m.opv))
A UNCHANGED IAmPrimary
A UNCHANGED LastProposed
A UNCHANGED PreparedOps
A UNCHANGED CsState
A UNCHANGED CurView
A UNCHANGED DesignationNeeded
A UNCHANGED CsStateSnapshot
A UNCHANGED KnownStablePoints
A UNCHANGED LocalStablePoint
A UNCHANGED LogTruncationPoint
A UNCHANGED StaleView

A

Defn  CommitAction(opn, opv)
dm € PreparedMsg :
A Commit(m)
A m.opn = opn
A m.opv = opv

Defn  Crash =

StaleView') = TRUE

IAmPrimary') = FALSE

LastProposed') = 0

KnownStablePoints') = [cohort € Membership — 0]
DesignationNeeded') = FALSE

CsState’) = CsStateSnapshot
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A UNCHANGED PreparedOps

A UNCHANGED LogTruncationPoint
A UNCHANGED CurView

A UNCHANGED CsStateSnapshot

A UNCHANGED LocalStablePoint

A MsgrlNoMessage Traffic

i3

Defn  Ezecute(m)
LET
Defn  newState = CsTxz[CsState, m.opv]
IN
A ReceiveMessage(m)
A m.view = CurView
A m.opn = CsState.numExecuted + 1
A (CsState') = newState
A SendMessage(
MakeMembershipMsg(
ThisCohort, m.opn + Alpha, newState.membershipMap[(m.opn + Alpha)]))
A UNCHANGED IAmPrimary
A UNCHANGED LastProposed
A UNCHANGED PreparedOps
A UNCHANGED CurView
A UNCHANGED DesignationNeeded
A UNCHANGED CsStateSnapshot
A UNCHANGED KnownStablePoints
A UNCHANGED LocalStablePoint
A UNCHANGED LogTruncationPoint
A UNCHANGED StaleView

Defn  Initiate ViewChange =
LET
Defn  newView =
[viewNumber — CurView.viewNumber + 1, viewInitiator — ThisCohort]
IN
A ActiveMember
A SendMessage( MakeVelnittedMsg( ThisCohort, newView))
A UNCHANGED CsState
A UNCHANGED IAmPrimary
A UNCHANGED LastProposed
A UNCHANGED PreparedOps
A UNCHANGED CurView
A UNCHANGED DesignationNeeded
A UNCHANGED CsStateSnapshot
A UNCHANGED KnownStablePoints
A UNCHANGED LocalStablePoint
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A UNCHANGED LogTruncationPoint
A UNCHANGED Stale View

Defn  VcAck(m) =
A ActiveMember_Aux
A ReceiveMessage(m)
A m.view > CurView
A (CurView') = m.view
A (IAmPrimary’) = FALSE
A (StaleView') = FALSE
A (DesignationNeeded') = (m.view.viewInitiator = ThisCohort)
A SendMessage(
MakeVcAckedMsg( ThisCohort, CurView, LogTruncationPoint, PreparedOps))
A UNCHANGED CsState
A UNCHANGED CsStateSnapshot
A UNCHANGED KnownStablePoints
A UNCHANGED LastProposed
A UNCHANGED LocalStablePoint
A UNCHANGED LogTruncationPoint
A UNCHANGED PreparedOps

A

Defn  VcAckAction(view, preparedOps)
dm € VelnittedMsg :
A VeAck(m)
A m.view = view
A preparedOps = PreparedOps

TODO: comments not making it out to .tla as

Defn  DesignatePrimaryAction(msgs, quorum, newPrimary) =
A ActiveMember
A ReceiveMessageSet(msgs)
A quorum € Quora
A EachCohortSentAMessage(quorum, msgs)
A (Ym € msgs : m.view = CurView)
A ThisCohort = CurView.viewInitiator
A DesignationNeeded
A (DesignationNeeded') = FALSE
A SendMessage(
MakePrimaryDesignatedMsg(
CurView,
ThisCohort,
newPrimary,
Maz TruncationPoint(msgs),
AggregatePreparedOps(msgs)))

49



Only the three parameters of the preceding operator are actually relevant for the protocol.
The DesignationConfiguration record type and the following definition are here to facilitate
the proof construction; the .designator and .view fields are strictly redundant.
Defn  DesignatePrimary(config) =

A config.designator = ThisCohort

A DesignatePrimaryAction(config.msgs, config.quorum, config.newPrimary)

A UNCHANGED CsState

A UNCHANGED CsStateSnapshot

A UNCHANGED CurView

A UNCHANGED IAmPrimary

A UNCHANGED KnownStablePoints

A UNCHANGED LastProposed

A UNCHANGED LocalStablePoint

A UNCHANGED LogTruncationPoint

A UNCHANGED PreparedOps

A UNCHANGED StaleView

Defn  BecomePrimary(m) =

A ReceiveMessage(m)
A m.view = CurView
A m.newPrimary = ThisCohort
A (~IAmPrimary)
A (—Stale View)
A (LastProposed') = MaxzPreparedOpn(m)
A (IAmPrimary') = TRUE
A (PreparedOps') = m.prevPrepares
A SendMessageSet(
{MakeProposedMsg( ThisCohort, CurView, opn, m.prevPrepares[opn]) :
opn € DOMAIN m.prevPrepares
}
U
{MakeProposedMsg( ThisCohort, CurView, opn, NoOp) : opn € NotPrevPrepared(m)})
A UNCHANGED CsState
A UNCHANGED CsStateSnapshot
A UNCHANGED CurView
A UNCHANGED DesignationNeeded
A UNCHANGED KnownStablePoints
A UNCHANGED LocalStablePoint
A UNCHANGED LogTruncationPoint
A UNCHANGED StaleView

Defn  Persist =
A (CsStateSnapshot’) = CsState
A SendMessage( MakePersistedMsg( ThisCohort, CsState.numFEzecuted))

Defn  Transmit =
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SendMessage(MakeSnapshotMsg( ThisCohort, LocalStablePoint, CsStateSnapshot))

Defu  Transfer =
dm € SnapshotMsyg :
A ReceiveMessage(m)
A m.snapshot.numFEzecuted > CsState.numEzecuted
A (CsState") = m.snapshot

Whenever a cohort discovers (by way of a Membership message) that it has been elected
to an upcoming membership, it requests (by some as-yet-undefined message type) that an
existing cohort Transmit its state to the new electee.

That chain of actions is only needed for liveness, to ensure that new cohorts get a state

transfer and find their ActiveMember predicate true. Since we’re proving nothing about
liveness, we don’t bother specifying the extra action and message.

Defn  UpdateStablePoints =
dm € PersistedMsg :
A ReceiveMessage(m)
A m.opn > KnownStablePoints[m.sender]
A (KnownStablePoints') = [KnownStablePoints EXCEPT ![m.sender] = m.opn]

Defn  Truncate(collectiveStablePoint) =
A collectiveStablePoint > LogTruncationPoint
A (LogTruncationPoint") = collectiveStablePoint
A (PreparedOps') =
[i € DOMAIN (PreparedOps \ {1 .. collectiveStablePoint}) — PreparedOps|[i]]

Defn Truncatel =
A ActiveMember
A Truncate( CollectiveStablePoint)

Defn  Next =
V (Fopv € CsOps : Propose(opv))
V (3m € ProposedMsg : Prepare(m))
V (3m € PreparedMsg : Commit(m))
V (3m € CommittedMsg : Execute(m))
V Crash
V Initiate ViewChange
V (Im € VelnittedMsg : VeAck(m))
V (3 config € DesignationConfigurations : DesignatePrimary(config))
V (3m € PrimaryDesignatedMsg : BecomePrimary(m))

Defn Stutter =
A UNCHANGED IAmPrimary
A UNCHANGED LogTruncationPoint
A UNCHANGED DesignationNeeded
A UNCHANGED LastProposed
A UNCHANGED PreparedOps
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A UNCHANGED CsState

A UNCHANGED CsStateSnapshot

A UNCHANGED LocalStablePoint

A UNCHANGED KnownStablePoints
A UNCHANGED CurView
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MODULE PazosReplica

EXTENDS PazosInit, PaxosActions
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MODULE PazosReplicatedSystem

EXTENDS
PazxosPhysicalComponents,
PazosDistributed Components,
PazosMachineParameter,
PazosConsensusMessenger

VARIABLE replicaState

Replica(cohort) =
INSTANCE PazosReplica WITH

ThisCohort < cohort,
IAmPrimary < replicaState[cohort]).IAmPrimary,
Stale View < replicaState]cohort].Stale View,
LogTruncationPoint < replicaState[cohort].Log TruncationPoint,
DesignationNeeded <+ replicaState[cohort]. DesignationNeeded,
LastProposed < replicaState]cohort]. LastProposed,
PreparedOps < replicaState[cohort]. LastProposed,
CsState < replicaState[cohort].CsState,
CsStateSnapshot < replicaState[cohort]. CsStateSnapshot,
LocalStablePoint < replicaState[cohort). LocalStablePoint,
KnownStablePoints < replicaState[cohort]. KnownStablePoints,
CurView < replicaState[cohort]. Cur View

VARIABLE clientState

Client(client) =
INSTANCE PazosClient WITH
ThisClient < client,
OutstandingRequest < clientState[client]. OutstandingRequest,
LastTimestamp < clientState[client]. Last Timestamp

Defn  Init = V¢ € Cohorts : Replica(c) Init

[I>

Defn  Next

A DOMAIN replicaState = Cohorts

A DOMAIN clientState = Clients

A (V (3 cohort € Cohorts :
A Replica(cohort)! Next
A (Y other € Cohorts \ { cohort} : Replica(other)!Stutter)
A (V client € Clients : Client(client)!Stutter))

V (A client € Clients :

A Client(client)! Newt
A (Y other € Clients \ {client} : Client(other)! Stutter)
A (Y cohort € Cohorts : Replica(cohort)!Stutter)))
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MODULE PazosRefinement

EXTENDS
PazosMachineParameter,
PazxosPhysicalComponents,
PazosDistributed Components,
PaxosMembershipMachineParameter
VARIABLE hlState

HL =
INSTANCE PazosAbstractSystem WITH
SentMessages < hiState.SentMessages,
AbState < hlState. AbState,
ClientState < hlState.ClientState,
Cohorts < {"DummyCohort" }

VARIABLE [lState

LL =
INSTANCE PazosReplicatedSystem WITH
SentMessages < llState.SentMessages,
replicaState < llState.replicaState,
clientState < llState.clientState
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MODULE PazosProof

EXTENDS PazosRefinement, PazosClientIfc, PaxosConsensusMessages
Defn SentMessages = LL!Msgr!SentMessages

Defn SentMessagesMatching(sender, mtype) =
{m € SentMessages N mtype : (m.sender = sender)}

Defn VeAcked(v, ¢, preparedOps) =
Im € SentMessages N VecAckedMsg :
A m.sender = ¢
A m.view = v
A m.preparedOps = preparedOps

Defn  VeAckedView(v, ¢) =
I preparedOps € PreparedOpsType : VcAcked (v, ¢, preparedOps)

A

Defu VcAckPreparedOpAs(v, ¢, opn, preparedOplnfo) =
dpreparedOps € PreparedOpsType :
A VeAcked (v, ¢, preparedOps)
A preparedOpInfo = PreparedOpInfoFromPreparedOps(preparedOps, opn)

Defn  Choose VeAckPreparedOplInfo(v, ¢, opn) =
CHOOSE preparedOplnfo € PreparedOplnfo :
VeAckPreparedOpAs(v, ¢, opn, preparedOplnfo)

Defn  PrimaryDesignatedAs(view, primary) =
dm € SentMessages N PrimaryDesignatedMsg :
A m.view = view
A m.newPrimary = primary

Defn  PrimaryDesignated(view) =
dprimary € Cohorts : PrimaryDesignatedAs(view, primary)

Defn  ProposedAs(v, ¢, opn, opv) =
dm € SentMessages N ProposedMsq :
A m.sender = ¢
A m.view = v
A m.opn = opn
A m.opv = opv

Defn  Proposed(v, ¢, opn) = Jopv € CsOps : ProposedAs(v, ¢, opn, opv)
Defn  ProposedByAnyAs(v, opn, opv) = 3¢ € Cohorts : ProposedAs(v, ¢, opn, opv)

Defn  ProposedByAny(v, opn) = Jopv € CsOps : ProposedByAnyAs(v, opn, opv)
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Defn PreparedAs(v, ¢, opn, opv) =
dm € SentMessages N PreparedMsg :
A m.sender = ¢
A m.view = v
A m.opn = opn
A m.opv = opv

Defn Prepared(v, ¢, opn) = Jopv € CsOps : PreparedAs(v, ¢, opn, opv)

Defn DesignationReflects VeAcks(view, cohortSet) =
ddesignationMsg € LL!SentMessages N PrimaryDesignatedMsg,
veAckMsgSet € SUBSET (LL!SentMessages N VeAckedMsg)

A (YvcAckMsg € veAckMsgSet :
A veAckMsg.sender € cohortSet
N veAckMsg.view = view)

A designationMsg.view = view

A designationMsg.prevPrepares = Aggregate PreparedOps(vcAckMsgSet)

A constant (level — 0) predicate that defines whether a given SentMessage set defines the
membership of opn as membership’.

Defn  MembershipAs(opn, membership, sentMessages) =
IF opn < Alpha
THEN
membership = MakeMembership(InitialHosts, 1)
ELSE
Imsg € sentMessages N MembershipMsg :
A msg.opn = opn
A msg.membership = membership

A level — 1 (state-sensitive) expression that extracts a (the) membership declared for opn in
the current state.

Defn  Membership(opn) =
CHOOSE membership € Memberships :
MembershipAs(opn, membership, LL!SentMessages)

Defn  Quora(opn) = QuoraOfMembership( Membership(opn))

The ViewMembership is the membership that contains the cohort that initiated the specified view

Defn  ViewMembership(view) =
CHOOSE membership € Memberships :

A (Fopn € Opns : MembershipAs(opn, membership, LL!SentMessages))
A EpochOf (membership) = view.viewInitiator.epoch

Defn  QuorumPreparedAs(v, opn, opv) =
3 quorum € Quora(opn) : (V¢ € quorum : PreparedAs(v, ¢, opn, opv))
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Defn MembershipDefined(opn) =
I membership € Memberships : MembershipAs(opn, membership, LL!SentMessages)

Defn  QuorumPrepared(v, opn) = Jopv € CsOps : QuorumPreparedAs(v, opn, opv)

Defn  CommittedAs(c, opn, opv) =
Im € SentMessages N CommittedMsg :
A m.sender = ¢
A m.opn = opn
A m.opv = opv

Defn CommittedByAnyAs(opn, opv) = ¢ € Cohorts : CommittedAs(c, opn, opv)

Defn CommittedByAny(opn) =
Je € Cohorts, opv € CsOps : CommittedAs(c, opn, opv)

[I>

Defu  PrimaryDesignatedPrevPrep(view, opn, opv)
dm € SentMessages N PrimaryDesignatedMsg :
A m.view = view
A opn € DOMAIN m.prevPrepares
A m.prevPrepares[opn] = opv

The PlausibleElectionQuorum predicate is meaningful only when PrimaryDesignated(view). It
is true when quorum is a set of cohorts that could reasonably be an election quorum for
the view: they all VcAcked the view, and the primary designation reflects their input.

(Note that this predicate doesn’t actually verify the quorumness of the supplied cohort set
“quorum”. In fact, it doesn’t even know the opn.)

We fiddle with “Plausible” election quorums because we can’t actually tell by looking at
the message history which quorum the view-change initiator actually used. It may have
used a large quorum that includes cohorts whose votes didn’t actually matter. But then
the results are identical to the case where a smaller quorum was used, and the proof works
as well either way.

Defn  PlausibleElectionQuorum (view, quorum) =
A (Y cohort € quorum : VeAcked View(view, cohort))
A DesignationReflects Ve Acks(view, quorum)

A function f2 extends f1 if it simply defines values for new inputs, leaving all old ones as they
were.

Defn  FenErtends(f2, f1) =
A DOMAIN f1 C DOMAIN f2
A (V2 € DOMAIN f1: fl[z] = f2[z])

Defn  MazKnownOpn =
CHOOSE mazOpn € Opns :
A (Yopn € 1.. mazOpn : CommittedByAny(opn))
A (= CommittedByAny(maxOpn + 1))

Defn
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KnownOpv]
opn € 1.. MazKnownOpn] =
CHOOSE opuv € CsOps : CommittedByAnyAs(opn, opv)

Defn
KnownState|
opn € 0 .. MazKnownOpn)| =
IF opn = 0 THEN CsStatelnit ELSE CsTz[(KnownState[(opn — 1)]), (KnownOpv[opn])]

Defn Consonant (state) =
A state.numEzecuted € DOMAIN KnownState
A state = KnownState[state.numEzecuted]

Defn  KnownMembership(opn) = KnownState|(opn — Alpha)).membershipMap|opn]

Defn  ClientRequestIdentifier = [client : Clients, timestamp : Timestamp)]

i3

Defn  ClientRequestsSubmitted
{cri € ClientRequestIdentifier :
(Im € SentMessages N RequestMessage :
A m.client = cri.client
A m.timestamp = cri.timestamp)

}

Defn  EpochsOrdered(map) =
Y opnl € DOMAIN map, opn2 € DOMAIN map :
A opnl < opn2
A EpochOf (map[opnl]) < EpochOf (map[opn2])
A (EpochOf (maplopnl]) = EpochOf (map[opn2]) = map[opnl] = map[opn2])

Theorem SentMessagesMonotonic
SentMessages C (SentMessages')

Reasoning: Every action includes a SendMessageSet partial action; Definition U

Theorem PrimaryDesignatedMonotonic
Introduce view € Viewlds
Assume  PrimaryDesignated(view)
Prove  PrimaryDesignated(view)'

Reasoning: Ref:SentMessagesMonotonic ; existential witness carries forward

Theorem ProposedAsMonotonic
Introduce v € Viewlds
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Introduce ¢ € Cohorts

Introduce opn € Opns

Introduce opv € CsOps

Assume  ProposedAs(v, ¢, opn, opv)
Prove  ProposedAs(v, ¢, opn, opv)’

Reasoning: Ref:SentMessagesMonotonic ; existential witness carries forward

Theorem PreparedAsMonotonic

Introduce v € Viewlds

Introduce ¢ € Cohorts

Introduce opn € Opns

Introduce opv € CsOps

Assume  PreparedAs(v, ¢, opn, opv)
Prove  PreparedAs(v, ¢, opn, opv)'

Reasoning: Ref:SentMessagesMonotonic ; existential witness carries forward

Theorem VcAckedMonotonic

Introduce v € Viewlds

Introduce ¢ € Cohorts

Introduce preparedOps € PreparedOps Type
Assume  VeAcked (v, ¢, preparedOps)

Prove  VcAcked(v, ¢, preparedOps)’

Reasoning: Ref:SentMessagesMonotonic ; existential witness carries forward

Theorem VcAckedViewMonotonic
Introduce view € Viewlds
Introduce cohort € Cohorts
Assume  VeAcked View(view, cohort)
Prove  VcAckedView(view, cohort)’

Reasoning: Ref:VcAckedMonotonic ; existential witness carries forward

Theorem DesignationReflects VcAcksMonotonic
Introduce view € Viewlds
Introduce cohortSet € SUBSET Cohorts
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Assume  DesignationReflects VcAcks(view, cohortSet)

Prove  DesignationReflects VcAcks(view, cohortSet)'

Reasoning: Ref:PrimaryDesignatedMonotonic , Ref:VcAckedMonotonic ; existential witnesses
carry forward

Theorem MembershipDefinedMonotonic

Introduce opn € Opns

Assume  MembershipDefined (opn)

Prove  MembershipDefined (opn)'

Reasoning:  Ref:SentMessagesMonotonic ; existential witnesses to MembershipAs and
MembershipDefined carry forward

Invariant ProposedImpliesActiveMember
Introduce view € Viewlds
Introduce cohort € Cohorts
Introduce opn € Opns
Assume
A Proposed(view, cohort, opn)
A LL!Replica(cohort)! CurView = view
=
A LL!Replica(cohort)! ActiveMember
A opn € DOMAIN LL!Replica(cohort)! CsState.membershipMap
Assume
( A Proposed(view, cohort, opn)
A LL!Replica(cohort)! CurView = view)'
Prove
( A LL!Replica(cohort)! Active Member
A opn € DOMAIN LL!Replica(cohort)! CsState.membershipMap)'

Reasoning:

Theorem ProposedImpliesMembershipAs

Hypotheses of  ProposedImpliesMembershipDefined

Introduce view € Viewlds

Introduce cohort € Cohorts

Introduce opn € Opns

Assume  Proposed(view, cohort, opn)

Prove  MembershipAs(opn, Membership(opn), LL!SentMessages)
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Step 1. of 1
I membership € Memberships : MembershipAs(opn, membership, LL!SentMessages)
Reasoning (1.):Ref:ProposedImpliesMembershipDefined ; Defn MembershipDefined

Reasoning: Defn Membership; CHOOSE axiom

Theorem CommittedMonotonic

Introduce ¢ € Cohorts

Introduce opn € Opns

Introduce opv € CsOps

Assume  CommittedAs(c, opn, opv)
Prove  CommittedAs(c, opn, opv)'

Reasoning: Ref:SentMessagesMonotonic ; existential witness carries forward

Invariant PreparedImpliesProposed
Introduce view € Viewlds
Introduce ¢ € Cohorts
Introduce opn € Opns
Introduce opv € CsOps
Assume  PreparedAs(view, ¢, opn, opv) = ProposedByAnyAs(view, opn, opv)
Assume  PreparedAs(view, ¢, opn, opv)’
Prove  ProposedByAnyAs(view, opn, opv)'
Step 1. of 1
Prove  ProposedByAnyAs(view, opn, opv)
Case 1.1. of 2
LL!Replica(c)! PrepareAction(view, opn, opv)
Reasoning (1.1.): ReceiveMessage(m) provides witness for ProposedByAnyAs
Case 1.2. of 2
= LL!Replica(c)! PrepareAction(view, opn, opv)
Step 1.2.1. of 1
PreparedAs(view, ¢, opn, opv)
Reasoning (1.2.1.): No prepare sent on this step
Reasoning (1.2.): induction hypothesis
Reasoning (1.): Case analysis
Reasoning: Ref:ProposedAsMonotonic

Theorem QuorumPreparedAsMonotonic
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Introduce v € Viewlds

Introduce opn € Opns

Introduce opv € CsOps

Assume  QuorumPreparedAs(v, opn, opv)

Prove  QuorumPreparedAs(v, opn, opv)'

Reasoning: Apply Ref:PreparedAsMonotonic on each member of the quorum that witnesses to
the assumption

Theorem CurViewsMonotonic

Introduce cohort € Cohorts

Prove  LL!Replica(cohort)! CurView < (LL!Replica(cohort)! CurView")
Reasoning: Case analysis on actions; only VcAck changes, and its enabling condition is sufficient
to prove this theorem.

Invariant CurViewLaterThanAllPrepareds
Introduce view € Viewlds
Introduce cohort € Cohorts
Introduce opn € Opns
Assume  Prepared(view, cohort, opn) = LL!Replica(cohort)! CurView > view
Assume  Prepared(view, cohort, opn)’
Prove  (LL!Replica(cohort)!CurView > view)'
Summary: Only the Prepare action can cause trouble, but its preconditions provide the conclu-
sion.
Case 1. of 2
Im € ProposedMsg :
A m.view = view
A LL!Replica(cohort)! Prepare(m)
Defn m =
CHOOSE m € ProposedMsg :
A m.view = view
A LL!Replica(cohort)! Prepare(m)
Step 1.1. of 2
m.view = LL!Replica(cohort)! CurView
Reasoning (1.1.): Defn Prepare action
Step 1.2. of 2
(LL!Replica(cohort)! CurView") = LL!Replica(cohort)! CurView
Reasoning (1.2.): Defn Prepare action leaves CurView unchanged
Reasoning (1.): last two steps, case conjunct 1
Case 2. of 2
VY m € ProposedMsgq :
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(=

(A m.view = view
A LL!Replica(cohort)! Prepare(m)))
Step 2.1. of 3
(LL!'SentMessages') N PreparedMsg =
LL!SentMessages N PreparedMsg

Reasoning (2.1.): Only Prepare action sends PreparedMsg
Step 2.2. of 3
Prepared(view, cohort, opn)
Reasoning (2.2.): Definition Prepared relies only on variable LL!SentMessages

Step 2.3. of 3
LL!Replica(cohort)! CurView > view
Reasoning (2.3.): induction hypothesis
Reasoning (2.): Ref:CurViewsMonotonic
Reasoning: Case analysis.

Invariant CurViewLaterThanAllProposeds
Introduce view € Viewlds
Introduce cohort € Cohorts
Introduce opn € Opns

Introduce opv € CsOps

Assume
ProposedAs(view, cohort, opn, opv) = LL!Replica(cohort)! CurView > view
Assume ProposedAs(view, cohort, opn, opv)’

Prove  (LL!Replica(cohort)! CurView > view)'
Summary: Only the Propose and BecomePrimary actions can cause trouble, but their precon-
ditions provide the conclusion.
Case 1. of 3
LL!Replica(cohort)! ProposeAction(view, opn, opv)
Step 1.1. of 1
LL!Replica(cohort)! CurView = view
Reasoning (1.1.): Defn Propose action
Reasoning (1.): algebra
Case 2. of 3
A (Im € PrimaryDesignatedMsg : LL!Replica(cohort)!BecomePrimary(m))
A (= ProposedAs(view, cohort, opn, opv))
Step 2.1. of 1
(LL!Replica(cohort)! CurView') = view
Reasoning (2.1.): If ProposedAs became true on this action, it’s because BecomePrimary

added a new message to SentMessages; Defn BecomePrimary says that all new messages
have m.view = CurView.
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Reasoning (2.): algebra
DefaultCase 3. of 3
Step 3.1. of 2
UNCHANGED ProposedAs(view, cohort, opn, opv)
Reasoning (3.1.): Inspection of remaining actions: none add an appropriate ProposedMsg
to SentMessages.
Step 3.2. of 2
LL!'Replica(cohort)! CurView > view
Reasoning (3.2.): induction hypothesis
Reasoning (3.): Ref:CurViewsMonotonic
Reasoning: Case analysis.

Invariant CurViewLaterThanAllVcAckeds
Introduce view € Viewlds
Introduce cohort € Cohorts
Assume  VeAckedView(view, cohort) = LL!Replica(cohort)! CurView > view
Assume  VeAckedView(view, cohort)’
Prove  (LL!Replica(cohort)! CurView > view)'
Summary: Only the VecAck action can cause trouble, but its assignment of CurView provides
the conclusion.
Case 1. of 2
dpreparedOps € PreparedOpsType :
LL!Replica(cohort)! VeAckAction(view, preparedOps)
Step 1.1. of 1
(LL!Replica(cohort)! CurView'") = view
Reasoning (1.1.): Defn VcAck action
Reasoning (1.): algebra
DefaultCase 2. of 2
Step 2.1. of 2
UNCHANGED VeAcked View(view, cohort)
Reasoning (2.1.): Inspection of remaining actions: none add an appropriate ProposedMsg
to SentMessages.
Step 2.2. of 2
LL!'Replica(cohort)! CurView > view
Reasoning (2.2.): induction hypothesis
Reasoning (2.): Ref:CurViewsMonotonic
Reasoning: Case analysis.
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Invariant PrimaryDesignationSentBylnitiator
Introduce m € PrimaryDesignatedMsg N SentMessages
Assume m.sender = m.view.viewlnitiator
Prove  (m.sender = m.view.viewlnitiator)’
Case 1. of 2
dconfig € DesignationConfigurations :
A LL!Replica(m.sender)!Designate Primary(config)
Am ¢ SentMessages
Step 1.1. of 2
m.view = LL!Replica(m.sender)! CurView
Reasoning (1.1.): Defn DesignatePrimary; MakePrimaryDesignatedMsg
Step 1.2. of 2
LL'Replica(m.sender)! Cur View.viewInitiator = m.sender
Reasoning (1.2.): Defn DesignatePrimary
Reasoning (1.): substitution
DefaultCase 2. of 2
Reasoning (2.): No other action could send m

Reasoning: Proof by case analysis

Invariant CurViewOfInitiatorLater ThanAllPrimaryDesignateds
Introduce view € Viewlds
Assume
PrimaryDesignated (view) = LL!Replica(view.viewInitiator)!CurView > view
Assume  PrimaryDesignated (view)'
Prove  (LL!Replica(view.viewInitiator)! CurView > view)'
Summary: Only the DesignatePrimary action can cause trouble, but its preconditions provide
the conclusion.
Case 1. of 2
Jconfig € DesignationConfigurations :
A LL!Replica(config.designator)! DesignatePrimary(config)
A config.view = view
Defu config =
CHOOSE config € DesignationConfigurations :
A LL!Replica(config.designator)! DesignatePrimary( config)
A config.view = view
Step 1.1. of 1
config.designator = view.viewlnitiator
Reasoning (1.1.): Defn DesignatePrimary action
Reasoning (1.): Defn DesignatePrimary action
DefaultCase 2. of 2
Reasoning (2.): No other actions send PrimaryDesignatedMsg; apply induction hypothesis ;
apply Ref:CurViewsMonotonic .
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Reasoning: Case analysis.

Invariant ProposedImpliesPrimary
Hypotheses of CurViewLater ThanAllProposeds
Introduce view € Viewlds
Introduce cohort € Cohorts
Introduce opn € Opns
Introduce opv € CsOps
Assume
A LL'Replica(cohort)! CurView = view
A ProposedAs(view, cohort, opn, opv)
=
V LL!Replica(cohort)! IAmPrimary
V LL!Replica(cohort)!Stale View
Assume
( A LL!Replica(cohort)! CurView = view
A ProposedAs(view, cohort, opn, opuv))’
Prove
(V LL!Replica(cohort) IAmPrimary
V LL!Replica(cohort)!Stale View)'
Case 1. of 5
Im € PrimaryDesignatedMsg : LL!Replica(cohort)! BecomePrimary(m)
Step 1.1. of 1
LL!'Replica(cohort) IAmPrimary’
Reasoning (1.1.): Definition BecomePrimary
Reasoning (1.): algebra
Case 2. of 5
LL!Replica(cohort)! ProposeAction(view, opn, opv)
Reasoning (2.): Definition Propose
Case 3. of 5
dm € VelnittedMsg : LL!Replica(cohort)! VeAck(m)
Step 3.1. of 3
LL!Replica(cohort)! CurView < (LL!Replica(cohort)! CurView")
Reasoning (3.1.): Definition VcAck
Step 3.2. of 3
(LL!Replica(cohort)! CurView') = view
Reasoning (3.2.): Antecedent
Step 3.3. of 3
view < LL!Replica(cohort)! CurView
Reasoning (3.3.): Ref hypothesis: CurViewLater ThanAllProposeds
Reasoning (3.): Case eliminated by contradiction(algebra)
Case 4. of 5
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LL!'Replica(cohort)! Crash
Step 4.1. of 1
LL!Replica(cohort)!Stale View'
Reasoning (4.1.): Definition Crash
Reasoning (4.): algebra
DefaultCase 5. of 5
Step 5.1. of 1
A UNCHANGED LL!Replica(cohort) IAmPrimary
A UNCHANGED LL!Replica(cohort)!Stale View
Reasoning (5.1.): inspection of remaining actions
Reasoning (5.): induction hypothesis
Reasoning: Case analysis.

Invariant LastProposedTracksProposals
Hypotheses of  ProposedImpliesPrimary
Introduce view € Viewlds
Introduce cohort € Cohorts
Introduce opn € Opns
Introduce opv € CsOps
Assume
A LL!Replica(cohort)! CurView = view
A LL!Replica(cohort) IAmPrimary
A ProposedAs(view, cohort, opn, opv)
=
opn < LL!Replica(cohort)! LastProposed
Assume
( A LL!Replica(cohort)! CurView = view
A LL!Replica(cohort) IAmPrimary
A ProposedAs(view, cohort, opn, opv))’
Prove (opn < LL!Replica(cohort)! LastProposed)’
Case 1. of 5
Im € PrimaryDesignatedMsg :
A LL!Replica(cohort)! BecomePrimary(m)
A m.view = view
A m.opn = opn
A m.opv = opv
Step 1.1. of 2
—LL!Replica(cohort)! Stale View
Reasoning (1.1.): Definition BecomePrimary
Step 1.2. of 2
—ProposedAs(view, cohort, opn, opv)
Reasoning (1.2.): Ref hypothesis: ProposedImpliesPrimary
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Reasoning (1.): Case eliminated by contradiction
Case 2. of 5
LL!Replica(cohort)! ProposeAction(view, opn, opv)
Step 2.1. of 1
(LL!Replica(cohort)! LastProposed') = opn
Reasoning (2.1.): Definition Propose
Reasoning (2.): algebra
Case 3. of 5
Im € VelnittedMsg : LL!Replica(cohort)!' VeAck(m)
Reasoning (3.): Eliminate case by contradiction: Definition VeAck shows —
LL!Replica(cohort) IAmPrimary
Case 4. of 5
LL!'Replica(cohort)! Crash
Reasoning (4.): Eliminate case by contradiction: Definition Crash shows —
LL!Replica(cohort)! IAmPrimary
DefaultCase 5. of 5
Step 5.1. of 1
A UNCHANGED LL!Replica(cohort)! CurView
A UNCHANGED LL!Replica(cohort)! IAmPrimary
A UNCHANGED LL!Replica(cohort)! LastProposed
A UNCHANGED ProposedAs(view, cohort, opn, opv)
Reasoning (5.1.): inspection of remaining actions
Reasoning (5.): induction hypothesis
Reasoning: Proof by case analysis

Invariant PrimaryDesignatedPrecludesDesignationNeeded
Introduce  view € Viewlds
Assume
A PrimaryDesignated (view)
A LL!Replica(view.viewInitiator)! CurView = view
=
(=LL!Replica(view.viewInitiator)! DesignationNeeded)
Assume
( A PrimaryDesignated (view)
A LL!Replica(view.viewInitiator)! CurView = view)'
Prove (= LL!Replica(view.viewlInitiator)!DesignationNeeded)'

Reasoning: Basic action analysis; probably some monotonicity; induction hypothesis .

Invariant OneDesignationPerView
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Introduce cohort € Cohorts
Assume
PrimaryDesignated ( LL! Replica(cohort)! CurView) =
(=LL!Replica(cohort)! DesignationNeeded)
Assumd’rimaryDesignated (LL! Replica(cohort)! CurView)'
Prove (—LL! Replica(cohort)! DesignationNeeded)'
Case 1. of 3
Jconfig € DesignationConfigurations :
A LL!Replica(config.designator)! DesignatePrimary( config)
A config.designator = cohort
A config.view = LL!Replica(cohort)! CurView
Reasoning (1.): Defn DesignatePrimary action
Case 2. of 3
Im € VelnittedMsg : LL!Replica(cohort)! VeAck(m)
Defn m = CHOOSE m € VelnittedMsg : LL!Replica(cohort)! VeAck(m)
Case 2.1. of 2
cohort = m.view.viewInitiator
Step 2.1.1. of 4
LL!Replica(cohort)! CurView' .viewInitator = cohort
Step 2.1.1.1. of 1
(LL!Replica(cohort)! CurView') = m.view
Reasoning (2.1.1.1.): Defn VcAck
Reasoning (2.1.1.): substitution with Case assumption
Step 2.1.2. of 4
PrimaryDesignated ( LL! Replica(cohort)! CurView")
Reasoning (2.1.2.): VcAck doesn’t send a PrimaryDesignatedMsg
Step 2.1.3. of 4
(LL!Replica(cohort)! CurView') < LL!Replica(cohort)! CurView
Step 2.1.3.1. of 1
(LL!Replica(cohort)! CurView'") <
LL!Replica( LL! Replica(cohort)! Cur View' .viewInitiator)! CurView
Reasoning (2.1.3.1.): Ref: CurViewOfInitiatorLater Than AllPrimaryDesignateds
Reasoning (2.1.3.): substitution with Ref:Step 2.1.1.
Step 2.1.4. of 4
(LL!Replica(cohort)! CurView") = LL!Replica(cohort)! CurView
Reasoning (2.1.4.): Forced by Ref:CurViewsMonotonic
Reasoning (2.1.): Contradicts defn VcAck action,eliminating the case.
DefaultCase 2.2. of 2
Reasoning (2.2.): Defn VcAck sets DesignationNeeded' = FALSE, satisfying the goal.
Reasoning (2.): Proof by case analysis
DefaultCase 3. of 3

Reasoning (3.): No other action could have sent a message that would make
PrimaryDesignated true; hence it was true before. Apply induction hypothesis . No action
besides VcAck can set DesignationNeeded true, so DesignationNeeded' = FALSE.
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Reasoning: Proof by case analysis

Invariant UniquePrimaryDesignationMessage
Hypotheses of OneDesignationPer View
Introduce ml € PrimaryDesignatedMsg
Introduce m2 € PrimaryDesignatedMsg

Assume

A ml € SentMessages

A m2 € SentMessages

A ml.view = m2.view

=
ml = m2
Assume

(A ml € SentMessages
A m2 € SentMessages
A ml.view = m2.view)'
Prove (ml = m2)'
Step 1. of 1
Assume (1.A41.)  ml € SentMessages = m2 € SentMessages
Prove ml = m2
Case 1.1. of 2
ml ¢ SentMessages
Defn  config =
CHOOSE config € DesignationConfigurations :
A LL!Replica(ml.sender)! Designate Primary(config)
A config.view = ml.view
A config.newPrimary = ml.newPrimary
A MazTruncationPoint(config.msgs) = ml.mazTruncationPoint
A AggregatePreparedOps(config.msgs) = ml.preparedOps
Step 1.1.1. of 4
A LL!Replica(ml.sender)! Designate Primary(config)
A config.view = ml.view
A config.newPrimary = ml.newPrimary
A MazTruncationPoint(config.msgs) = ml.mazTruncationPoint
A AggregatePreparedOps(config.msgs) = ml.preparedOps
Reasoning (1.1.1.): m1 was sent in this step; this configuration must have done it.
Step 1.1.2. of 4
LL!'Replica(m1.sender)! DesignationNeeded

Reasoning (1.1.2.): Defn DesignatePrimary action
Step 1.1.3. of 4
= PrimaryDesignated (LL! Replica(m1.sender)! CurView)
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Reasoning (1.1.3.): Contrapositive of Ref hypothesis: OneDesignationPer View

Step 1.1.4. of 4
m2 ¢ SentMessages
Reasoning (1.1.4.): Defn PrimaryDesignated
Reasoning (1.1.): Message m2 was sent this step, and this action sent only one message
(m1). So they must be the same message.
DefaultCase 1.2. of 2
Step 1.2.1. of 2
ml € SentMessages
Reasoning (1.2.1.): No other action could send m1
Step 1.2.2. of 2
m2 € SentMessages
Reasoning (1.2.2.): Assumption Ref:Assumption 1.A1.
Reasoning (1.2.): induction hypothesis ;Ref:PrimaryDesignatedMonotonic
Reasoning (1.): Proof by case analysis

Reasoning: without loss of generality, we can apply the substep with m1 and m2 swapped.

Theorem UniquePrimaryDesignated

Hypotheses of UniquePrimaryDesignationMessage

Introduce view € Viewlds

Introduce cohortl € Cohorts

Introduce cohort2 € Cohorts

Assume  PrimaryDesignatedAs(view, cohortl)

Assume  PrimaryDesignatedAs(view, cohort2)

Prove  cohortl = cohort2

Summary: Easily falls out of Ref hypothesis: UniquePrimaryDesignationMessage .

Defn  ml =
CHOOSE m € SentMessages N PrimaryDesignatedMsg :
A m.view = view
A m.newPrimary = cohortl
Defn m2 =
CHOOSE m € SentMessages N PrimaryDesignatedMsg :
A m.view = view
A m.newPrimary = cohort2
Step 1. of 1
ml =m2
Reasoning (1.): Assumptions guarantee CHOOSEs succeed; Ref
hypothesis: Unique PrimaryDesignationMessage

Reasoning: cohortl = ml.newPrimary = m2.newPrimary = cohort2
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Invariant Prepared OpsPreparedImpliesPrepared
Introduce v2 € Viewlds
Introduce cohort € Cohorts
Introduce opn € Opns
Assume
opn € DOMAIN LL!Replica(cohort)! PreparedOps =
Prepared(LL! Replica(cohort)! PreparedOps|[opn].view, cohort, opn)
Assume  (opn € DOMAIN LL!Replica(cohort)! PreparedOps)’
Prove Prepared(LL! Replica(cohort)! PreparedOps|opn].view, cohort, opn)’
Case 1. of 3
dm € ProposedMsg : LL!Replica(cohort)! Prepare(m)
Defn m = CHOOSE m € ProposedMsg : LL!Replica(cohort)! Prepare(m)
Case 1.1. of 2
m.opn = opn
Step 1.1.1. of 2
Prepared(LL! Replica(cohort)! CurView, cohort, opn)'
Reasoning (1.1.1.): Defn Prepare action arguments to MakePreparedMsg
Step 1.1.2. of 2
(LL!Replica(cohort)! PreparedOps|opn].view') = LL!Replica(cohort)! CurView
Reasoning (1.1.2.): Defn Prepare action construction of PreparedOps’
Reasoning (1.1.): substitution satisfies the proof goal
DefaultCase 1.2. of 2
Step 1.2.1. of 1
opn € DOMAIN LL!Replica(cohort)! PreparedOps

Reasoning (1.2.1.): Defn Prepare defines DOMAIN PreparedOps’ with a union on old value

Reasoning (1.2.): Apply induction hypothesis
Reasoning (1.): Proof by case analysis
Case 2. of 3
dm € PrimaryDesignatedMsg :
A m.view = v2
A LL!Replica(cohort)! BecomePrimary(m)
Defn m 2
CHOOSE m € PrimaryDesignatedMsq :
A m.view = v2
A LL!Replica(cohort)! BecomePrimary(m)
Step 2.1. of 1
opn € DOMAIN m.prevPrepares
Reasoning (2.1.): Defn BecomePrimary sets PreparedOps’ = m.prevPrepares
Reasoning (2.): Defn BecomePrimary action sends the required message (argument to
SendMessageSet)
DefaultCase 3. of 3
Step 3.1. of 1
opn € DOMAIN LL!Replica(cohort)! PreparedOps
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Reasoning (3.1.): All other actions leave PreparedOps unchanged
Reasoning (3.): induction hypothesis ;Ref:PreparedAsMonotonic
Reasoning: Proof by case analysis

Invariant VcAckPreparedImpliesPrepared
Hypotheses of  PreparedOpsPreparedImpliesPrepared
Introduce v2 € Viewlds
Introduce cohort € Cohorts
Introduce opn € Opns
Introduce  preparedOpInfo € PreparedOplnfo
Assume
VeAckPreparedOpAs(v2, cohort, opn, preparedOplnfo) =
Prepared(prepared OpInfo.view, cohort, opn)
Assume VeAckPreparedOpAs(v2, cohort, opn, preparedOplnfo)’
Prove Prepared(preparedOpInfo.view, cohort, opn)’
Case 1. of 2
A (Im € SentMessagesMatching(cohort, VelnittedMsg) :
A LL!Replica(cohort)! VeAck(m)
A m.view = v2)
A (LL!Replica(cohort)! PreparedOps') = prepared OplInfo
Step 1.1. of 4
PreparedOpInfoFromPreparedOps(LL! Replica(cohort)! PreparedOps', opn) =
prepared OplInfo
Reasoning (1.1.): Defn VcAck action
Step 1.2. of 4
opn € DOMAIN (LL!Replica(cohort)! PreparedOps')
Step 1.2.1. of 1
preparedOplInfo # PreparedOpZero
Reasoning (1.2.1.): as defined when it was Introduced
Reasoning (1.2.): Definition PreparedOpInfoFromPreparedOps
Step 1.3. of 4
Prepared(LL! Replica(cohort)! PreparedOps|opn].view, cohort, opn)’

Reasoning  (1.3.): Ref hypothesis: Prepared OpsPreparedImpliesPrepared — supports
Ref : Prepared OpsPreparedImpliesPrepared
Step 1.4. of 4

(LL!Replica(cohort)! PreparedOps')[opn].view = prepared OpInfo.view
Step 1.4.1. of 1
(LL!Replica(cohort)! PreparedOps' ) opn] = preparedOplInfo
Reasoning (1.4.1.): Last conjunct of Case condition; Defn VcAck
Reasoning (1.4.): Substitution
Reasoning (1.): Substitution
DefaultCase 2. of 2
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Step 2.1. of 2
VeAckPreparedOpAs(v2, cohort, opn, preparedOplnfo)
Reasoning (2.1.): No actions in this case send a message that could make the statement
transition to true.
Step 2.2. of 2
Prepared(preparedOplInfo.view, cohort, opn)
Reasoning (2.2.): induction hypothesis
Reasoning (2.): Ref:PreparedAsMonotonic

Reasoning: Case analysis on actions

Invariant IAmPrimarylmpliesPrimaryDesignated
Introduce view € Viewlds
Introduce cohort € Cohorts
Assume
A LL'Replica(cohort)! CurView = view
A LL!Replica(cohort)! IAmPrimary
=
PrimaryDesignatedAs(view, cohort)
Assume
( A LL!Replica(cohort)! CurView = view
A LL!Replica(cohort)! IAmPrimary)’
Prove  PrimaryDesignatedAs(view, cohort)’
Step 1. of 1
PrimaryDesignatedAs(view, cohort)
Case 1.1. of 2
dm € PrimaryDesignatedMsg :
A m.view = view
A LL!Replica(cohort)!BecomePrimary(m)
Reasoning (1.1.): Message m is a witness to PrimaryDesignatedAs. Defn BecomePrimary;
Defn ReceiveMessage; Defn PrimaryDesignatedAs
DefaultCase 1.2. of 2
Step 1.2.1. of 3
LL!Replica(cohort) IAmPrimary
Reasoning (1.2.1.): No actions on cohort other than BecomePrimary make IAmPrimary
transition to
TRUE
Step 1.2.2. of 3
Introduce m € VelnittedMsg
Prove 1 LL!Replica(cohort)! VcAck(m)
Reasoning (1.2.2.): VcAck sets IAmPrimary’ = FALSE, which contradicts antecedent

conjunct “IAmPrimary”
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Step 1.2.3. of 3
LL!'Replica(cohort)! CurView = view
Summary: No other actions on cohort change CurView
Step 1.2.3.1. of 1
UNCHANGED LL!Replica(cohort)! CurView
Reasoning (1.2.3.1.): No other actions on cohort change CurView
Reasoning (1.2.3.): Antecedent conjunct CurView = view
Reasoning (1.2.): induction hypothesis
Reasoning (1.): Case analysis.
Reasoning: Ref:PrimaryDesignatedMonotonic

Invariant ProposedImpliesPrimaryDesignated
Hypotheses of  IAmPrimaryImpliesPrimaryDesignated
Introduce view € Viewlds
Introduce cohort € Cohorts
Introduce opn € Opns
Introduce opv € CsOps
Assume  ProposedAs(view, cohort, opn, opv) = PrimaryDesignatedAs(view, cohort)
Assume  ProposedAs(view, cohort, opn, opv)’
Prove  PrimaryDesignatedAs(view, cohort)’
Step 1. of 1
PrimaryDesignatedAs(view, cohort)
Case 1.1. of 3
LL!Replica(cohort)! ProposeAction(view, opn, opv)
Step 1.1.1. of 2
LL!'Replica(cohort) IAmPrimary
Reasoning (1.1.1.): Definition of ProposeAction
Step 1.1.2. of 2
LL!'Replica(cohort)! CurView = view
Reasoning (1.1.2.): Definition of ProposeAction
Reasoning (1.1.): Ref hypothesis:IAmPrimaryImpliesPrimaryDesignated
Defn rec 2
CHOOSE rec € [cohort : Cohorts, m : PrimaryDesignatedMsg| :
LL!Replica(rec.cohort)! BecomePrimary(rec.m)
Case 1.2. of 3
LL!'Replica(rec.cohort)! BecomePrimary(rec.m)
Reasoning (1.2.): rec.m is the witness to PrimaryDesignatedAs(view, cohort)
DefaultCase 1.3. of 3
Step 1.3.1. of 1
ProposedAs(view, cohort, opn, opv)
Reasoning (1.3.1.): No other step emits a ProposedMsg for opn, which is needed for
ProposedAs to transition from false to true.
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Reasoning (1.3.): induction hypothesis
Reasoning (1.): Proof by case analysis
Reasoning: Ref:PrimaryDesignatedMonotonic

Invariant ProposedsinSame ViewDoNotConflict
Hypotheses of  ProposedImpliesPrimaryDesignated
Hypotheses of  LastProposedTracksProposals
Hypotheses of UniquePrimaryDesignationMessage
Hypotheses of  ProposedImpliesActiveMember
Hypotheses of UniquePrimaryDesignated
Introduce view € Viewlds

Introduce cohortl € Cohorts

Introduce cohort2 € Cohorts

Introduce opn € Opns

Introduce opvl € CsOps

Introduce opv2 € CsOps

Assume

A ProposedAs(view, cohortl, opn, opul)

A ProposedAs(view, cohort2, opn, opv2)

=

opvl = opv2

Assume

( A ProposedAs(view, cohortl, opn, opvl)

A ProposedAs(view, cohort2, opn, opv2))’
Prove (opvl = opv2)’

Step 1. of 4
cohortl = cohort2
Step 1.1. of 2

PrimaryDesignatedAs(view, cohortl)’
Reasoning (1.1.): Antecedent conjunct 1;Ref:ProposedImpliesPrimaryDesignated
Step 1.2. of 2
PrimaryDesignatedAs(view, cohort2)’
Reasoning (1.2.): Antecedent conjunct 2;Ref:ProposedImpliesPrimaryDesignated
Reasoning (1.): Ref:UniquePrimaryDesignated
Case 2. of 4
Jopv € CsOps : LL!Replica(cohortl)! ProposeAction(view, opn, opv)
Step 2.1. of 3
LL!Replica(cohortl)!LastProposed = opn — 1
Reasoning (2.1.): Defn ProposeAction
Step 2.2. of 3
A LL!Replica(cohortl)! CurView = view
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A LL'Replica(cohort1)! IAmPrimary
Reasoning (2.2.): Defn ProposeAction
Step 2.3. of 3
= Proposed (view, cohortl, opn)
Reasoning (2.3.): Ref hypothesis: LastProposed TracksProposals
Reasoning (2.): No proposals for opn in previous state, and action only proposes a single
opv, so the same proposal message must make both ProposedAs’ statements true; hence
opvl = opv = opv2.
Case 3. of 4
Im € PrimaryDesignatedMsg :
A LL'Replica(cohortl)! BecomePrimary(m)
A m.view = view
A opn € NotPrevPrepared(m)
Summary: If cohortl is just now becoming the primary, then it had proposed nothing (in this
view) before this step. Therefore, whatever messages support the ProposedAs() assumptions
must have been sent as a part of the BecomePrimary action.
Step 3.1. of 1
Introduce opv € CsOps
Prove  —ProposedAs(view, cohortl, opn, opv)
Step 3.1.1. of 2
LL!Replica(cohortl)! CurView = view
Reasoning (3.1.1.): Defn BecomePrimary
Step 3.1.2. of 2
—LL!Replica(cohort1)! ActiveMember
Reasoning (3.1.2.): Defn BecomePrimary
Reasoning (3.1.): Contrapositive of Ref hypothesis: ProposedImpliesActiveMember

Reasoning (3.): For each opn, either BecomePrimary sends no proposal for it, or it sends a
NoOp, or it sends some opv from m.prevPrepares; but in any case, a single message. That
message is the only one that can witness to the two assumptions, so they must have the equal
values for opv.

DefaultCase 4. of 4
Reasoning (4.): No new proposals in this view for opn sent; apply induction hypothesis and
Ref: Proposed A sMonotonic

Reasoning: Proof by case analysis

Theorem PreparedsInSame ViewDoNotConflict

Hypotheses of  PreparedImpliesProposed

Hypotheses of  ProposedsInSame ViewDoNotConflict
Introduce v € Viewlds

Introduce ¢ € Cohorts

Introduce opn € Opns

Introduce opvl € CsOps
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Introduce opv2 € CsOps
Assume  PreparedAs(v, ¢, opn, opvl)’
Assume  PreparedAs(v, ¢, opn, opv2)’
Prove  opuvl = opv2
Step 1. of 2
ProposedAs(v, ¢, opn, opvl)’
Reasoning (1.): Ref:PreparedImpliesProposed
Step 2. of 2
ProposedAs(v, ¢, opn, opv2)’
Reasoning (2.): Ref:PreparedImpliesProposed
Reasoning: Ref:ProposedsInSameViewDoNotConflict

Invariant Prepared OpsReflect ViewRecentPrepare
Hypotheses of CurViewLater ThanAllPrepareds
Hypotheses of  PreparedsInSameViewDoNotConflict
Introduce vl € Viewlds
Introduce ¢ € Cohorts
Introduce opn € Opns
Introduce opv € CsOps
Assume
A PreparedAs(vl, ¢, opn, opv)
A (Yvi € Viewlds :
Aol < i
A wvi < LL!Replica(c)! CurView
=
(= Prepared(vi, ¢, opn)))
=
LL!Replica(c)! PreparedOps[opn] = [view — vl, opv — opv]
Assume
( A\ PreparedAs(vl, ¢, opn, opv)
A (Vvi € Viewlds :
Aol < i
A vi < LL'Replica(c)! CurView
=
(= Prepared(vi, c, opn))))’
Prove (LL!Replica(c)!PreparedOps|opn] = [view — vl, opv — opv])’
Case 1. of 2
3dm € ProposedMsg :
A LL!Replica(c¢)! Prepare(m)
A m.opn = opn
Defn m =
CHOOSE m € ProposedMsg :
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A LL!Replica(c)! Prepare(m)
A m.opn = opn
Step 1.1. of 1
LL!Replica(c)! PreparedOps[opn] = [view — vl, opv — opv]
Case 1.1.1. of 3
LL'Replica(c)! CurView < vl
Reasoning (1.1.1.): Ref hypothesis: CurViewLater ThanAllPrepareds eliminates case by
contradiction
Case 1.1.2. of 3
vl < LL!'Replica(c)! CurView
Reasoning (1.1.2.): Counsider witness wi =  LL!Replica(c)!CurView where

Prepared(vi, ¢, opn)’ (because Prepare sends that message): it shows the second an-
tecedent conjunct to be false. Case eliminated by contradiction.

Case 1.1.3. of 3
vl = LL!'Replica(c)! CurView
Step 1.1.3.1. of 3
PreparedAs(vl, ¢, opn, opv)’
Reasoning (1.1.3.1.): Ref:PreparedAsMonotonic
Step 1.1.3.2. of 3
PreparedAs(vl, ¢, opn, m.opv)’
Reasoning (1.1.3.2.): Defn ProposedMsg sends a message that is witness to
PreparedAs
Step 1.1.3.3. of 3
m.opv = opv
Reasoning (1.1.3.3.):Ref: PreparedsInSame ViewDoNotConflict
Reasoning (1.1.3.): Conclusion follows from assignment to
LL!Replica(c)! PreparedOps|opn] in action defn
Reasoning (1.1.): Proof by case analysis

Reasoning (1.): Last step satisfies this obligation (it was down a level so it could use the Case
pattern.)

DefaultCase 2. of 2
Step 2.1. of 3
PreparedAs(vl, ¢, opn, opv)
Reasoning (2.1.): No other action can send PreparedMsg, so UNCHANGED PreparedAs
Step 2.2. of 3
Introduce vi € Viewlds
Assume vl < vi
Assume (2.2.A41.)
vi < (LL!Replica(c)!CurView'") = (—(Prepared(vi, ¢, opn)"))
Prove i < LL!Replica(c)!CurView = (—Prepared(vi, ¢, opn))
Step 2.2.1. of 1
vi < LL!Replica(c)! CurView = (—(Prepared(vi, ¢, opn)'))
Reasoning (2.2.1.): Ref:Assumption 2.2.A1. ,Ref: CurViewsMonotonic
Reasoning (2.2.): Ref:PreparedAsMonotonic
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Step 2.3. of 3
LL!Replica(c)! PreparedOps[opn] = [view — v1, opv — opv]
Reasoning (2.3.): induction hypothesis
Reasoning (2.): In this case (not a Prepare of opn), PreparedOps[opn| cannot change (Note:
Truncate action could change PreparedOps, but current spec explicitly ignores log truncation.)

Reasoning: Proof by case analysis

Invariant VcAckPreparedsReflect ViewRecentPrepare
Hypotheses of  PreparedOpsReflect ViewRecentPrepare
Hypotheses of CurViewLater ThanAllVcAckeds
Introduce vl € Viewlds
Introduce v2 € Viewlds
Introduce ¢ € Cohorts
Introduce opn € Opns
Introduce opv € CsOps
Assume
Avl <02
A PreparedAs(vl, ¢, opn, opv)
A (Yvi € Viewlds :
Aol < i
ANvi < v2
=
(= Prepared(vi, ¢, opn)))
A VeAckedView(v2, c)
=
VeAckPreparedOpAs(v2, ¢, opn, [opv — opv, view — vl])
Assume
(Avl < w2
A PreparedAs(vl, c, opn, opv)
A (Yvi € Viewlds :
Aol < i
ANvi < v2
=
(= Prepared(vi, ¢, opn)))
A VeAckedView(v2, ¢))'
Prove VcAckPreparedOpAs(v2, ¢, opn, [opv — opv, view — vl])’
Case 1. of 3
I preparedOps € PreparedOpsType : LL! Replica(c)! VeAckAction(v2, preparedOps)
Step 1.1. of 4
(LL!Replica(c)! CurView') = v2
Reasoning (1.1.): Defn VcAck action
Step 1.2. of 4
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A (Vvi € Viewlds :
Avl <
A (vi < (LL!Replica(c)! CurView') = (—(Prepared(vi, ¢, opn)'))))
Reasoning (1.2.): algebra applied to antecedent third conjunct
Step 1.3. of 4
(LL!Replica(c)! PreparedOps')[opn] = [opv — opv, view — vl]
Reasoning (1.3.): Ref: Prepared OpsReflect ViewRecentPrepare
Step 1.4. of 4
VcAcked(v2, ¢, (LL!Replica(c)!PreparedOps')[opn])’
Reasoning (1.4.): VecAck action puts a message into SentMessages that serves as a witness
to VcAcked().
Reasoning (1.): Definition of VcAckPreparedOpAs
Case 2. of 3
dm € ProposedMsg :
A m.view = vl
A m.opn = opn
A LL'Replica(c)! Prepare(m)
Step 2.1. of 2
- VeAckedView(v2, ¢)
Step 2.1.1. of 2
LL!Replica(c)! CurView = vl
Reasoning (2.1.1.): Defn Prepare
Step 2.1.2. of 2
LL'Replica(c)! CurView < v2
Reasoning (2.1.2.): algebra
Reasoning (2.1.): Contrapositive of Ref hypothesis: CurViewLater ThanAllVecAckeds

Step 2.2. of 2
—(VeAckedView(v2, ¢)')
Reasoning (2.2.): This action doesn’t send a VcAckedMsg
Reasoning (2.): case eliminated by contradiction
DefaultCase 3. of 3
Step 3.1. of 6
UNCHANGED SentMessagesMatching(c, VcAckedMsg)
Reasoning (3.1.): No other action sends a VcAckedMsg
Step 3.2. of 6
VeAckedView(v2, ¢)
Reasoning (3.2.): VcAckedView only varies in
SentMessagesMatching(c, VecAckedMsg)
Step 3.3. of 6
UNCHANGED SentMessagesMatching(c, PreparedMsg)
Reasoning (3.3.): No other action sends a PreparedMsg
Step 3.4. of 6
PreparedAs(vl, ¢, opn, opv)
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Reasoning (3.4.): PreparedAs only varies in
SentMessagesMatching(c, PreparedMsg)
Step 3.5. of 6
A (Vvi € Viewlds :
Avl <
A (vi < v2 = (= Prepared(vi, ¢, opn))))
Reasoning (3.5.): Contrapositive of Ref:PreparedAsMonotonic
Step 3.6. of 6
VeAckPreparedOpAs(v2, ¢, opn, [opv — opv, view — v1])
Reasoning (3.6.): induction hypothesis
Reasoning (3.): Ref:VcAckedMonotonic
Reasoning: Proof by case analysis

Theorem PlausibleElection QuorumMonotonic
Introduce view € Viewlds
Introduce quorum € SUBSET Cohorts
Assume  PlausibleElectionQuorum(view, quorum)
Prove  PlausibleElectionQuorum (view, quorum)’
Step 1. of 2
Y cohort € quorum : (VcAckedView(view, cohort)")
Reasoning (1.): Ref:VcAckedViewMonotonic
Step 2. of 2
DesignationReflects Ve Acks(view, quorum)’

Reasoning (2.): Ref:SentMessagesMonotonic ; existential witnesses carry forward

Reasoning: Both conjuncts of Defn PlausibleElectionQuorum’ are satisfied

Invariant MembershipMapDomain
Introduce cohort € Cohorts
Assume
(=LL!Replica(cohort)! Crash) =
DOMAIN LL!Replica(cohort)! CsState.membershipMap =
(1 .. (LL'Replica(cohort)!CsState.numEzecuted + Alpha))
Assume (= LL!Replica(cohort)!Crash)’
Prove
(DOMAIN LL!Replica(cohort)! CsState.membershipMap =
(1 .. (LL'Replica(cohort)!CsState.numEzecuted + Alpha)))’
Case 1. of 2
dm € CommittedMsg : LL!Replica(cohort)! Execute(m)
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Defn m = CHOOSE m € CommittedMsg : LL!Replica(cohort)! Execute(m)
Step 1.1. of 1
(LL!Replica(cohort)! CsState') = CsTx[LL! Replica(cohort)! CsState, m.opv]
Reasoning (1.1.): Defn Ezecute action
Reasoning (1.): Defn newMembershipMap in Defn CsTxz
DefaultCase 2. of 2
Reasoning (2.): Since we’ve ruled out Crash in the assumption, no other action updates

CsState. Thus induction hypothesis carries forward into primed state.

Reasoning: Proof by case analysis

Invariant MembershipMapChangesByFEztension
Hypotheses of MembershipMapDomain
Introduce  cohort € Cohorts
Assume
(=LL!Replica(cohort)! Crash) =
FenExtends(
LL!Replica(cohort)! CsState.membershipMap',
LL!'Replica(cohort)! CsState.membershipMap)
Assume (= LL!Replica(cohort)! Crash)’
Prove
FenExtends(
LL!Replica(cohort)! CsState.membershipMap'
LL!'Replica(cohort)! CsState.membershipMap)'
Case 1. of 2
Im € CommittedMsg : LL!Replica(cohort)! Exvecute(m)
Defn m = CHOOSE m € CommittedMsg : LL!Replica(cohort)! Execute(m)
Step 1.1. of 3
(LL!Replica(cohort)! CsState') = CsTx[LL!Replica(cohort)! CsState, m.opv]
Reasoning (1.1.): Defn Ezecute action
Step 1.2. of 3
DOMAIN LL!Replica(cohort)! CsState.membershipMap C
DOMAIN (LL!Replica(cohort)! CsState.membershipMap')
Step 1.2.1. of 2
DOMAIN LL!Replica(cohort)! CsState.membershipMap =
(1.. (LL'Replica(cohort)! CsState.numExecuted + Alpha))
Reasoning (1.2.1.): Ref hypothesis: MembershipMapDomain
Step 1.2.2. of 2
DOMAIN (LL!Replica(cohort)!CsState. membershipMap') =
(1 .. ((LL'Replica(cohort)! CsState.numEzecuted + Alpha) + 1))
Reasoning (1.2.2.): Defn CsTz
Reasoning (1.2.): Defn ..
Step 1.3. of 3
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Introduce = € DOMAIN LL!Replica(cohort)!CsState.membershipMap

(LL!Replica(cohort)! CsState.membershipMap' )[z] =

LL!Replica(cohort)! CsState.membership Map|z]

Reasoning (1.3.): Defn CsTx
Reasoning (1.): We have satisfied Defn FcnEztends
DefaultCase 2. of 2

Reasoning (2.): Since we’ve ruled out Crash in the assumption, no other action updates
CsState. Thus the reflexive FenErtends is easily satisfied.

Reasoning: Proof by case analysis

Theorem VolatileMembershipMapFExztendsPersistentMembershipMap
Hypotheses of Membership Map ChangesByFExtension
Introduce cohort € Cohorts

Assume
FenExtends(
LL!Replica(cohort)! CsState.membershipMap,
LL!Replica(cohort)! CsStateSnapshot.membershipMap)
Prove
FenExtends(
LL!Replica(cohort)! CsState.membershipMap,
LL!Replica(cohort)! CsStateSnapshot.membershipMap)'

Reasoning: Since we’re not doing log truncation, this theorem is really bor-
ing: CsStateSnapshot.membershipMap never changes. When CsState does, Ref
hypothesis: MembershipMap ChangesByExtension is sufficient to show the theorem. If we had
truncation, the Persist action is the only interesting case, and it’s not very interesting: it makes
both states equal, so FenFEzxtends follows because it is a reflexive relation.

Theorem MembershipAsMonotonic
Introduce opn € Opns
Introduce membership € Memberships
Assume  MembershipAs(opn, membership, LL!SentMessages)
Prove  MembershipAs(opn, membership, LL\SentMessages')

Reasoning:

Invariant Membership ChangesAreBroadcast
Hypotheses of Membership Map ChangesByFExtension
Introduce opn € Opns
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Introduce cohort € Cohorts
Introduce membership € Memberships
Assume
A opn € DOMAIN LL!Replica(cohort)! CsState.membershipMap
A membership = LL!Replica(cohort)!CsState.membershipMap[opn)]
=
MembershipAs(opn, membership, LL!SentMessages)
Assume
(A opn € DOMAIN LL!Replica(cohort)! CsState.membershipMap
A membership = LL!Replica(cohort)!CsState.membershipMap[opn])’
Prove MembershipAs(opn, membership, LL!SentMessages)'
Defn state = LL!Replica(cohort)!CsState
Defn  snapshot = LL!Replica(cohort)! CsStateSnapshot
Case 1. of 3
Im € CommittedMsg : LL!Replica(cohort)! Exvecute(m)
Defn m = CHOOSE m € CommittedMsg : LL!Replica(cohort)! Execute(m)
Case 1.1. of 2
opn = m.opn + Alpha
Step 1.1.1. of 2
state’ .membershipMap[(m.opn + Alpha)] = membership
Step 1.1.1.1. of 1
state'.membershipMap[opn] = membership
Reasoning (1.1.1.1.): Antecedent
Reasoning (1.1.1.): substitution
Defn  sentMessage 2 MakeMembershipMsg(cohort, opn, membership)
Step 1.1.2. of 2
sentMessage € (SentMessages')
Reasoning (1.1.2.): Defn Ezecute sends a message
Reasoning (1.1.): Defn MembershipAs
DefaultCase 1.2. of 2
Step 1.2.1. of 3
opn € DOMAIN LL!Replica(cohort)! CsState.membershipMap
Reasoning (1.2.1.): Ref hypothesis: MembershipMapChangesByFEztension ; Defn
FenFEzxtends
Step 1.2.2. of 3
membership = state.membershipMap[opn]
Reasoning (1.2.2.): IF — ELSE in CsTz leaves unchanged any opn # m.opn + Alpha
Step 1.2.3. of 3
MembershipAs(opn, membership, LLSentMessages)
Reasoning (1.2.3.): induction hypothesis
Reasoning (1.2.): Ref:MembershipAsMonotonic
Reasoning (1.): Proof by case analysis
Case 2. of 3
LL!Replica(cohort)! Crash
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Step 2.1. of 4
A opn € DOMAIN snapshot'.membershipMap[opn)]
A cohort € snapshot'.membershipMap[opn]
Reasoning (2.1.): Defn Crash equates CsState’ = CsStateSnapshot’
Step 2.2. of 4
A opn € DOMAIN snapshot.membershipMap[opn)]
A cohort € snapshot.membershipMap[opn]
Reasoning (2.2.): Defn Crash leaves UNCHANGED CsStateSnapshot
Step 2.3. of 4
A opn € DOMAIN state.membershipMap[opn)]
A cohort € state.membershipMap[opn]
Reasoning (2.3.): Ref: VolatileMembershipMapEztendsPersistentMembershipMap ; Defn
FenEztends
Step 2.4. of 4
MembershipAs(opn, LLReplica(cohort)!Membership, LL!SentMessages)
Reasoning (2.4.): induction hypothesis
Reasoning (2.): Ref:MembershipAsMonotonic
DefaultCase 3. of 3
Reasoning (3.): No other actions update state (CsState) (this proof ignores the Transfer
action); so we use the induction hypothesis and Ref: MembershipAsMonotonic .

Reasoning: Proof by case analysis

Theorem MazKnownOpnGrows
MazKnownOpn < (MazKnownOpn')

Reasoning: Ref:CommittedMonotonic : Anything committed before will still be committed after
any legal action.

Theorem MembershipsAreUnique
Hypotheses of BroadcastMembershipsReflectKnownState
Introduce opn € Opns
Introduce membershipl € Memberships
Introduce membership2 € Memberships
Assume  MembershipAs(opn, membershipl, LLSentMessages)
Assume  MembershipAs(opn, membership2, LLSentMessages)
Prove  membershipl = membership2
Case 1. of 2
Alpha < opn
Step 1.1. of 2
KnownState[(opn — Alpha)].membershipMap[opn] = membershipl
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Reasoning (1.1.): Ref hypothesis: BroadcastMembershipsReflectKnownState
Step 1.2. of 2
KnownState[(opn — Alpha)].membershipMap[opn] = membership2
Reasoning (1.2.): Ref hypothesis: BroadcastMembershipsReflectKnownState
Reasoning (1.): Substitution
Case 2. of 2
opn < Alpha
Step 2.1. of 2
MembershipAs(opn, membershipl, LLSentMessages) = MakeMembership(InitialHosts, 1)
Reasoning (2.1.): Defn MembershipAs
Step 2.2. of 2
MembershipAs(opn, membership2, LL!SentMessages) = MakeMembership(InitialHosts, 1)
Reasoning (2.2.): Defn MembershipAs
Reasoning (2.): Substitution
Reasoning: Proof by case analysis

NB Unlike most, this theorem states properties about the primed state.

Theorem MembershipAsDeterminesMembership
Hypotheses of MembershipsAreUnique
Introduce opn € Opns
Introduce membership € Memberships
Assume  MembershipAs(opn, membership, LL!SentMessages')
Prove  (Membership(opn)") = membership
Defn  choices = {m € Memberships : MembershipAs(opn, m, LLSentMessages')}
Step 1. of 2
membership € choices
Reasoning (1.): Defn choices
Step 2. of 2
Cardinality(choices) = 1
Reasoning (2.): Ref:MembershipsAreUnique (to get primed statement)
Reasoning: CHOOSE in Defn Membership(opn)' is fully constrained

Theorem CsTzIncrementsEpochs
Introduce state € CsStates
Introduce opv € CsOps
Prove
V CsTx[state, opv].membershipMap|((state.numEzecuted + Alpha) + 1)] =
state.membershipMap|[(state.numEzecuted + Alpha)]
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V EpochOf (CsTx[state, opv].membershipMap[((state.numEzecuted + Alpha) + 1)]) =
EpochOf (state.membershipMap|(state.numEzecuted + Alpha)]) + 1

Reasoning: By construction of CsTz

Invariant NumEzecutedTicks

Introduce opn € DOMAIN KnownState

Assume  KnownState[opn].numEzecuted = opn
Prove  (KnownState[opn].numEzecuted = opn)’

Reasoning: Really boring induction induction hypothesis ; Cs7'z shows the inductive step.

Invariant LocalMembershipEpochOrdering
Introduce  cohort € Cohorts
Assume
A EpochsOrdered(LL! Replica(cohort)! CsState.membershipMap)
A EpochsOrdered(LL! Replica(cohort)! CsStateSnapshot.membershipMap)
Prove
( A EpochsOrdered(LL! Replica(cohort)! CsState. membershipMap)
A EpochsOrdered(LL! Replica(cohort)! CsStateSnapshot.membershipMap))'
Case 1. of 3
LL!Replica(cohort)! Crash

Reasoning (1.): CsState’ = CsStateSnapshot’ = CsStateSnapshot; apply induction hypothesis

Case 2. of 3
Im € CommittedMsg : LL!Replica(cohort)! Execute(m)
Summary: Only CsState changes, and it changes by extension by a single spot; we can apply
CsTxz there to show that the invariant holds.
Defn  m = CHOOSE m € CommittedMsg : LL!Replica(cohort)! Execute(m)
Defn  map = LL!Replica(cohort)!CsState.membershipMap
Step 2.1. of 2

Introduce opnl € DOMAIN map

Introduce opn2 € DOMAIN map

A EpochOf (map[opnl]) < EpochOf (map[opn2])

A (EpochOf (map[opnl]) = EpochOf (map[opn2]) = maplopnl] = map[opn2])
Summary: If opn2 (and hence opnl) concern slots before the one being executed presently,
then the induction hypothesis takes care of the proof. Otherwise, we use CsTz.

Case 2.1.1. of 2
opn2 = m.opn
Step 2.1.1.1. of 2
V (map')[(opn2 — 1)] = (map')[opn2]
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V EpochOf ((map")[(opn2 — 1)]) < EpochOf ((map")[opn2])
Step 2.1.1.1.1. of 1
(LL!Replica(cohort)! CsState') = CsTx[LL!Replica(cohort)! CsState, m.opv]
Reasoning (2.1.1.1.1.): Defn Ezecute
Reasoning (2.1.1.1.): Consider Defn CsTz, paying attention to the LET —IN  variable
newMembership
Step 2.1.1.2. of 2
V (map)[(opn2 — 1)] = (map’)[opn1]
V EpochOf ((map')[opnl]) < EpochOf ((map")[(opn2 — 1)])
Reasoning (2.1.1.2.): Ref:MembershipMapChangesByEztension ; induction hypothe-
sis
Reasoning (2.1.1.): algebra relates opn2 to opnl via opn2 — 1
DefaultCase 2.1.2. of 2
Reasoning (2.1.2.): Apply Ref:MembershipMapChangesByExtension and induction hy-
pothesis .
Reasoning (2.1.): Proof by case analysis.
Step 2.2. of 2
EpochsOrdered(LL! Replica( cohort)! CsStateSnapshot.membershipMap)

Reasoning (2.2.): Defn Ezecute implies UNCHANGED CsStateSnapshot; induction hypothesis

Reasoning (2.): First step proves Defn EpochsOrdered in first conjunct of proof goal; Second
step proves second conjunct.
DefaultCase 3. of 3
Step 3.1. of 1
A UNCHANGED LL!Replica(cohort)! CsState
A UNCHANGED LL!Replica(cohort)! CsStateSnapshot

Reasoning (3.1.): No other actions change CsState and CsStateSnapshot (besides Persist,
but this proof is ignoring persistence and log truncation, and anyway, Persist is easy like
Crash.)
Reasoning (3.): apply induction hypothesis
Reasoning: Proof by case analysis.

Theorem MembershipEpochOrdering
Hypotheses of  NumFzecuted Ticks
Introduce opnl € Opns
Introduce opn2 € Opns
Assume  Alpha < opnl
Assume opnl < opn2
Assume  opn2 < MaxzKnownOpn + Alpha
Prove
A EpochOf (KnownMembership(opnl)) < EpochOf (KnownMembership(opn2))
A (EpochOf (KnownMembership(opnl)) = EpochOf (KnownMembership(opn2)) =
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KnownMembership(opnl) = KnownMembership(opn2))
Step 1. of 2
Assume opn2 = opnl + 1
Prove
A EpochOf (KnownMembership(opnl)) < EpochOf (KnownMembership(opn2))
A (EpochOf (KnownMembership(opnl)) = EpochOf (KnownMembership(opn2)) =
KnownMembership(opnl) = KnownMembership(opn2))
Reasoning (1.): Follows by algebra from Ref:CsTzIncrementsEpochs
Step 2. of 2
Assume (2.A1.)
A EpochOf (KnownMembership(opnl)) < EpochOf (KnownMembership(opn2))
A (EpochOf (KnownMembership(opnl)) = EpochOf (KnownMembership(opn2)) =
KnownMembership(opnl) = KnownMembership(opn2))
Prove
A EpochOf (KnownMembership(opnl)) < EpochOf (KnownMembership(opn2 + 1))
A (EpochOf (KnownMembership(opnl)) = EpochOf (KnownMembership(opn2 + 1)) =
KnownMembership(opnl) = KnownMembership(opn2 + 1))
Defn state = KnownState[(opn2 — Alpha)]
Step 2.1. of 5
KnownMembership(opn2) = state.membershipMap[(state.numEzecuted + Alpha)]
Reasoning (2.1.): Defn KnownMembership; Defn state
Defn  opv = KnownOpv[(opn2 — Alpha + 1)]
Step 2.2. of 5
KnownState[(opn2 — Alpha + 1)] = CsTz[state, opv]
Step 2.2.1. of 1
KnownState[(opn2 — Alpha + 1)] =
CsTx[(KnownState[(opn2 — Alpha +1 —1)]), (KnownOpv[(opn2 — Alpha + 1)])]
Reasoning (2.2.1.): Defn KnownState
Reasoning (2.2.): algebra
Step 2.3. of 5
KnownMembership(opn2 + 1) =
CsTx[state, opv].membershipMap[((state.numExecuted + Alpha) + 1)]
Summary: Basically a boring bunch of algebra
Step 2.3.1. of 3
KnownMembership(opn2 + 1) = KnownState[(opn2 + 1 — Alpha)].membershipMap[(opn2 + 1)]
Reasoning (2.3.1.): Defn KnownMembership
Step 2.3.2. of 3
KnownState[(opn2 + 1 — Alpha)].membershipMap[(opn2 + 1)] =
CsTx[state, opv].membershipMap[(opn2 + 1)]
Reasoning (2.3.2.): Defn KnownState; Defn state;Defn opv
Step 2.3.3. of 3
CsTx[state, opv].membershipMap[(opn2 + 1)] =
CsTx[state, opv].membershipMap[((state.numExecuted + Alpha) + 1)]
Step 2.3.3.1. of 1
opn2 + 1 = (state.numEzxecuted + Alpha) + 1
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Step 2.3.3.1.1. of 1
state.numBExecuted = opn2 — Alpha
Reasoning (2.3.3.1.1.): Defn state; Ref hypothesis: NumEzecuted Ticks
Reasoning (2.3.3.1.): algebra
Reasoning (2.3.3.): algebra
Reasoning (2.3.): transitivity
Case 2.4. of 5
CsTx[state, opv].membershipMap][((state.numBEzecuted + Alpha) + 1)] =
state.membershipMap[(state.numEzecuted + Alpha)]
Step 2.4.1. of 1
KnownMembership(opn2 + 1) = KnownMembership(opn2)
Step 2.4.1.1. of 4
KnownMembership(opn2 + 1) =
KnownState[(opn2 — Alpha)].membershipMap

[

(KnownsState[(opn2 — Alpha)].numEzecuted + Alpha)

]
Reasoning (2.4.1.1.): Case condition, with substitutions from Ref:Step 2.3. and Defn
state

Step 2.4.1.2. of 4

KnownState[(opn2 — Alpha)].membershipMap

[

(KnownsState[(opn2 — Alpha)].numEzecuted + Alpha)
]

KnownState[(opn2 — Alpha)].membershipMap[(opn2 — Alpha + Alpha))
Reasoning (2.4.1.2.): Ref hypothesis: NumEzecuted Ticks

Step 2.4.1.3. of 4

KnownState[(opn2 — Alpha)].membershipMap[(opn2 — Alpha + Alpha)] =

KnownState[(opn2 — Alpha)].membershipMap[opn2]
Reasoning (2.4.1.3.): algebra

Step 2.4.1.4. of 4

KnownState[(opn2 — Alpha)].membershipMap[opn2] = KnownMembership(opn2)
Reasoning (2.4.1.4.): Defn KnownMembership

Reasoning (2.4.1.): transitivity
Reasoning (2.4.): We can substitute into Ref:Assumption 2.A1. to produce the proof goal.

Case 2.5. of 5
EpochOf (CsTx[state, opv].membershipMap[((state.numEzecuted + Alpha) + 1)]) =
EpochOf (state.membershipMap|(state.numEzecuted + Alpha)]) + 1

Step 2.5.1. of 2

EpochOf (KnownMembership(opn2 + 1)) = EpochOf (KnownMembership(opn2)) + 1

Reasoning (2.5.1.): Ref:Step 2.1. ; Ref:Step 2.3.
Step 2.5.2. of 2
EpochOf (KnownMembership(opnl)) < EpochOf (KnownMembership(opn2 + 1))
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Reasoning (2.5.2.): Ref:Step 2.5.1. ; inductive hypothesis
Reasoning (2.5.): The first conjunct of the goal is clearly satisfied by the previous step, and
the antecedent of the second conjunct of the goal is denied by the previous step.
Reasoning (2.): Case analysis; complete by Ref:CsTzIncrementsEpochs .
Reasoning: By induction over opn2

Theorem Nonconflicting ViewMemberships
Hypotheses of MembershipsAre Unique
Hypotheses of MembershipEpochOrdering
Hypotheses of BroadcastMembershipsReflectKnownState
Introduce view € Viewlds
Introduce membership € Memberships
Introduce opn € Opns
Assume  view.viewIniator.epoch = EpochOf (membership)
Assume  MembershipAs(opn, membership, LL!SentMessages)
Prove  ViewMembership(view) = membership
Defu  satisfyingMemberships =
{potentialMembership € Memberships :
(A (Fopn2 € Opns : MembershipAs(opn2, potentialMembership, LL!SentMessages))
A EpochOf (potentialMembership) = view.viewlInitiator.epoch)
}
Step 1. of 2
membership € satisfyingMemberships
Reasoning (1.): Follows from assumptions and Defn Membership
Step 2. of 2
Introduce m2 € satisfyingMemberships
Assume M2 # membership
Prove FALSE
Defu  opn2 = CHOOSE opn2 € Opns : MembershipAs(opn2, m2, LL!SentMessages)
Step 2.1. of 6
MembershipAs(opn2, m2, LL!SentMessages)
Reasoning (2.1.): Defn satisfyingMemberships
Step 2.2. of 6
opn # opn?2
Reasoning (2.2.): Ref:MembershipsAreUnique
Step 2.3. of 6
KnownState[(opn2 — Alpha)].membershipMap[opn2] = membership
Reasoning (2.3.): Ref hypothesis: BroadcastMembershipsReflectKnownState
Step 2.4. of 6
KnownMembership(opn2) = membership
Reasoning (2.4.): Defn KnownMembership
Step 2.5. of 6

93



EpochOf (m2) # EpochOf (membership)
Reasoning (2.5.): Algebra on Ref:MembershipEpochOrdering
Step 2.6. of 6
EpochOf (m2) # view.viewInitiator.epoch
Reasoning (2.6.): That distinction is already claimed by membership
Reasoning (2.): We have arrived at a contradiction.
Reasoning: CHOOSE in ViewMembership is fully constrained

Theorem Nonconflicting ViewMembershipsPrimed

Hypotheses of MembershipsAre Unique

Hypotheses of MembershipEpochOrdering

Hypotheses of BroadcastMembershipsReflectKnownState
Introduce view € Viewlds

Introduce membership € Memberships

Introduce opn € Opns

Assume  view.viewIniator.epoch = EpochOf (membership)
Assume  MembershipAs(opn, membership, LL!SentMessages')
Prove  (ViewMembership(view)") = membership

Reasoning: Track each hypothesis back to the underlying invariants, use the invariants to push
the statements into the primed state, apply Ref:NonconflictingViewMemberships to get the
conclusion.

Invariant PrimaryDesignatedImpliesElectingQuorum
Hypotheses of ~ Membership ChangesAreBroadcast
Hypotheses of CsState Typelnvariant
Hypotheses of  Nonconflicting ViewMembershipsPrimed
Hypotheses of MembershipAsDeterminesMembership
Introduce view € Viewlds
Introduce  primary € Cohorts
Assume
PrimaryDesignatedAs(view, primary) =
(3 quorum € QuoraOfMembership( ViewMembership(view)) :
PlausibleElectionQuorum (view, quorum))
Assume PrimaryDesignatedAs(view, primary)’
Prove
(3 quorum € QuoraOfMembership( ViewMembership(view)) :
PlausibleElectionQuorum (view, quorum))’

Summary: The interesting action is DesignatePrimary; all other actions fall out by monotonicity.

94



Case 1. of 2
dconfig € DesignationConfigurations :
A config.view = view
A LL!Replica(config.designator)! DesignatePrimary(config)
Summary: If a primary was designated in this step, then we identify the VcAcks used to make
that decision. The cohorts that sent those VcAcks (the electing quorum) must have formed a
PlausibleElection Quorum, so we prove the conjuncts of that definition.
Defu  config =
CHOOSE config € DesignationConfigurations :
A config.view = view
A LL!Replica(config.designator)! DesignatePrimary( config)
Step 1.1. of 7
A config.view = view
A LL!Replica(config.designator)! DesignatePrimary( config)
Reasoning (1.1.): CHOOSE Axiom
Step 1.2. of 7
LL!Replica(config.designator)! CurView = view
Summary: The configuration was chosen specifically to enforce this equality

Defn  witnessMsg = CHOOSE m € config.msgs : TRUE
Step 1.2.1. of 3
witnessMsg € config.msgs
Reasoning (1.2.1.): Defn DesignationConfigurations explicitly disallows empty .msgs
fields.
Step 1.2.2. of 3
witnessMsg.view = LL!Replica(config.designator)! CurView
Reasoning (1.2.2.): universal quantifier in Defn DesignatePrimaryAction
Step 1.2.3. of 3
witnessMsg.view = view
Reasoning (1.2.3.): Defn DesignationConfigurations; Ref:Step 1.1.
Reasoning (1.2.): substitution
Step 1.3. of 7
config.designator = view.viewlnitiator
Step 1.3.1. of 2
config.designator = LL!Replica(config.designator)! ThisCohort
Reasoning (1.3.1.): Defn DesignatePrimary
Step 1.3.2. of 2
LL!Replica(config.designator)! ThisCohort =
LL!Replica(config.designator)! CurView.viewInitiator
Reasoning (1.3.2.): Defn DesignatePrimaryAction
Reasoning (1.3.): Substitution, including Ref:Step 1.2.
Step 1.4. of 7
Y cohort € config.quorum : (VeAckedView(view, cohort)")
Step 1.4.1. of 1
Introduce cohort € config.quorum
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Prove  VcAckedView(view, cohort)’
Summary: config.msgs provides the collection of VcAck messages.
Defn  vcAckMsg = CHOOSE vcAckMsg € config.msgs : veAckMsg.sender = cohort
Step 1.4.1.1. of 3
vcAckMsg.sender = cohort
Reasoning (1.4.1.1.): Defn DesignatePrimaryAction; Defn
FEachCohortSentAMessage; CHOOSE axiom
Step 1.4.1.2. of 3
VeAcked(view, cohort, veAckMsg.preparedOps)
Step 1.4.1.2.1. of 2
vcAckMsg € SentMessages
Reasoning (1.4.1.2.1.): Defn ReceiveMessageSet(config.msgs)
Step 1.4.1.2.2. of 2
vcAckMsg.view = view
Reasoning (1.4.1.2.2.): Defn DesignationConfigurations
Reasoning (1.4.1.2.): Defn vcAckMsg; Defn VecAcked
Step 1.4.1.3. of 3
VeAckedView(view, cohort)
Reasoning (1.4.1.3.): wvcAckMsg.preparedOps is witness to the existential in Defn
VcAckedView
Reasoning (1.4.1.): Ref:VcAckedMonotonic

Reasoning (1.4.): expand universal quantifier

Step 1.5. of 7
DesignationReflects VeAcks(view, config.quorum)’
Summary: This step follows by the construction of the message sent in

DesignatePrimaryAction.
Step 1.5.1. of 5
Y vcAckMsg € config.msgs : vcAckMsg.sender € config.quorum
Reasoning (1.5.1.): Defn EachCohortSentAMessage
Step 1.5.2. of 5
Y vcAckMsg € config.msgs : vcAckMsg.view = view
Reasoning (1.5.2.): Defn DesignatePrimaryAction;
Defn DesignationConfigurations
Defu  designationMsg =
MakePrimaryDesignatedMsg(
view,
view.viewlInitiator,
primary,
MazTruncationPoint(config.msgs),
AggregatePreparedOps(config.msgs))
Step 1.5.3. of 5
designationMsg.view = view
Reasoning (1.5.3.): Defn designationMsg; Defn MakePrimaryDesignatedMsg
Step 1.5.4. of 5
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designationMsg.prevPrepares = AggregatePreparedOps(config.msgs)
Reasoning (1.5.4.): Defn designationMsg; Defn MakePrimaryDesignatedMsg
Step 1.5.5. of 5
DesignationReflects Ve Acks(view, config.quorum)’
Reasoning (1.5.5.): With existential witnesses designationMsg \is designationMsg
and wvcAckMsgSet \is config.msgs, we have satisfied each conjunct of
DesignationReflects VcAcks(view, config.quorum).
Reasoning (1.5.): Ref:DesignationReflects VeAcksMonotonic
Step 1.6. of 7
PlausibleElectionQuorum(view, config.quorum)’
Reasoning (1.6.): Prior two steps satisfy Defn PlausibleElection Quorum’
Step 1.7. of 7
config.quorum € QuoraOfMembership( ViewMembership(view)")
Defn  membershipOpn =
CHOOSE membershipOpn € Opns :
view.viewlnitiator €
LL!Replica(view.viewlInitiator)! CsState' .membershipMap[membership Opn]
Defn membership =
LL!Replica(view.viewInitiator)! CsState’ .membership Map[membership Opn]
Step 1.7.1. of 1
(ViewMembership(view)') = membership
Summary: Sketch: ActiveMember = LL!Membership is defined. = it’s been recorded
in the message history = LL!Membership is in the set of globally-known memberships
(recorded in message history) (an invariant; not sure how many steps) = it’s the only
one (a different invariant, coinductive with nonconflicting-commits) = it’s the one
chosen by Defn ViewMembership
Step 1.7.1.1. of 3
view.viewInitiator € membership
Reasoning (1.7.1.1.): Defn ActiveMember'; CHOOSE axiom
Step 1.7.1.2. of 3
MembershipAs(membershipOpn, membership, LL!SentMessages')
Reasoning (1.7.1.2.): Ref hypothesis:Membership ChangesAreBroadcast ( opn =
membershipOpn, cohort = view.viewInitiator, membership = membership)
Step 1.7.1.3. of 3
view .viewIniator.epoch = EpochOf (membership)
Step 1.7.1.3.1. of 2
(Membership(membershipOpn)') = membership
Reasoning (1.7.1.3.1.): Ref : MembershipAsDeterminesMembership
Step 1.7.1.3.2. of 2
membership € Memberships
Reasoning (1.7.1.3.2.): Ref:CsState Typelnvariant
Reasoning (1.7.1.3.): Defn EpochOf; Defn Memberships

Reasoning (1.7.1.): We have satisfied the antecedent of
Ref: Nonconflicting ViewMembershipsPrimed ( view = view, membership = membership,

opn = membershipOpn)
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Reasoning  (1.7.): Defn  DesignatePrimaryAction provides config.quorum =
LL!Replica(view.viewInitiator)! Membership; expand
Defn Quora

Reasoning (1.): We have exhibited a witness config.quorum to existential variable quorum

DefaultCase 2. of 2
Summary: When no “interesting” action has occurred, the relevant predicates are monotonic.
Step 2.1. of 3
PrimaryDesignatedAs(view, primary)
Reasoning (2.1.): No other actions send PrimaryDesignated messages for this view, so
PrimaryDesignatedAs() cannot have changed.
Step 2.2. of 3
3 quorum € QuoraOfMembership( ViewMembership(view)) :
PlausibleElectionQuorum (view, quorum)
Reasoning (2.2.): induction hypothesis

Defn  quorum =
CHOOSE quorum € QuoraOfMembership( ViewMembership(view)) :

PlausibleElectionQuorum (view, quorum)
Step 2.3. of 3

PlausibleElectionQuorum (view, quorum)’
Reasoning (2.3.): CHOOSE axiom;Ref:PlausibleElection QuorumMonotonic

Reasoning (2.): We have exhibited a witness variable quorum

Reasoning: Case analysis

Invariant IAmPrimaryImpliesElecting Quorum
Hypotheses of  PrimaryDesignatedImpliesElectingQuorum
Introduce view € Viewlds
Introduce  primary € Cohorts
Assume
A LL!Replica(primary)! CurView = view
A LL!Replica(primary)! IAmPrimary
=
(3 quorum € QuoraOfMembership( ViewMembership(view)) :
PlausibleElectionQuorum (view, quorum))
Assume
( A LL!Replica(primary)! CurView = view
A LL!Replica(primary)! IAmPrimary)’'
Prove
(3 quorum € QuoraOfMembership( ViewMembership(view)) :
PlausibleElectionQuorum (view, quorum))’
Case 1. of 2
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Im € PrimaryDesignatedMsg : LL!Replica(primary)! BecomePrimary(m)
Step 1.1. of 1
PrimaryDesignatedAs(view, primary)
Reasoning (1.1.):  Defn BecomePrimary shows that m is a witness to Defn
PrimaryDesignatedAs.
Reasoning (1.): Ref hypothesis: PrimaryDesignatedImpliesElecting Quorum
DefaultCase 2. of 2
Step 2.1. of 3
A LL!Replica(primary)! CurView = view
A LL!Replica(primary) IAmPrimary
Reasoning (2.1.): No actions on cohort other than BecomePrimary make IAmPrimary
transition to TRUE. (VecAck changes CurView, but it also assigns IAmPrimary’ = FALSE,
which we have assumed isn’t the case.)
Defn quorum =
CHOOSE quorum € QuoraOfMembership( ViewMembership(view)) :
PlausibleElectionQuorum(view, quorum)
Step 2.2. of 3
PlausibleElectionQuorum(view, quorum)
Reasoning (2.2.): induction hypothesis
Step 2.3. of 3
PlausibleElectionQuorum (view, quorum)’
Reasoning (2.3.): Ref : PlausibleElection QuorumMonotonic
Reasoning (2.): We have exhibited a witness variable quorum
Reasoning: Case analysis

Invariant ProposedImpliesElecting Quorum
which also incorporates the hypotheses of ProposedImpliesElecting Quorum
Hypotheses of  IAmPrimaryImpliesElectingQuorum
Hypotheses of  PrimaryDesignatedImpliesElectingQuorum
Introduce view € Viewlds
Introduce opn € Opns
Assume
ProposedByAny(view, opn) =
(3 quorum € QuoraOfMembership( ViewMembership(view)) :
PlausibleElectionQuorum (view, quorum))
Assume ProposedByAny(view, opn)’
Prove
(3 quorum € QuoraOfMembership( ViewMembership(view)) :
PlausibleElectionQuorum (view, quorum))’
Defn primary = CHOOSE primary € Cohorts : (Proposed(view, primary, opn)')
Step 1. of 4
Proposed(view, primary, opn)’

99



Reasoning (1.): Defn ProposedByAny; CHOOSE axiom
Case 2. of 4
Jopv € CsOps : LL!Replica(primary)! ProposeAction(view, opn, opv)
Step 2.1. of 1
A LL!Replica(primary)! CurView = view
A LL!Replica(primary)! IAmPrimary
Reasoning (2.1.): Defn ProposeAction
Reasoning (2.): Ref hypothesis:IAmPrimaryImpliesElecting Quorum
Case 3. of 4
Im € PrimaryDesignatedMsg : LL! Replica(primary)! BecomePrimary(m)
Step 3.1. of 1
PrimaryDesignatedAs(view, primary)
Reasoning (3.1.):  Defn BecomePrimary shows that m is a witness to Defn
PrimaryDesignatedAs.
Reasoning (3.): Ref hypothesis: PrimaryDesignatedImpliesElecting Quorum
DefaultCase 4. of 4
Step 4.1. of 3
Proposed(view, primary, opn)
Reasoning (4.1.): No other actions change proposals
Defn  quorum =
CHOOSE quorum € QuoraOfMembership( ViewMembership(view)) :
PlausibleElectionQuorum(view, quorum)
Step 4.2. of 3
PlausibleElectionQuorum (view, quorum)
Reasoning (4.2.): Ref hypothesis: ProposedImpliesElecting Quorum
Step 4.3. of 3
PlausibleElectionQuorum (view, quorum)’
Reasoning (4.3.): Ref: PlausibleElection QuorumMonotonic
Reasoning (4.): We have exhibited a witness variable quorum

Reasoning: Case analysis

Invariant CsState Typelnvariant

Introduce cohort € Cohorts
Assume

A LL!Replica(cohort)!CsState € CsStates

A LL!'Replica(cohort)!CsStateSnapshot € CsStates
Prove

( A LL!Replica(cohort)! CsState € CsStates
A LL!Replica(cohort)! CsStateSnapshot € CsStates)'

Reasoning:
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Theorem OpnInMembershipMapImpliesMembershipDefined
Hypotheses of  Membership ChangesAreBroadcast
Hypotheses of CsState Typelnvariant
Introduce opn € Opns
Introduce cohort € Cohorts
Assume opn € DOMAIN LL!Replica(cohort)!CsState.membershipMap
Prove  MembershipDefined(opn)
Defn  membership = LL!Replica(cohort)! CsState.membershipMap[opn]
Step 1. of 2
MembershipAs(opn, membership, LLSentMessages)
Reasoning (1.): Ref hypothesis: Membership ChangesAreBroadcast
Step 2. of 2
membership € Memberships
Reasoning (2.): Ref hypothesis: CsState Typelnvariant
Reasoning: membership is witness to Defn MembershipDefined

Invariant ProposedImpliesMembershipDefined
Hypotheses of OpnInMembership MapImpliesMembershipDefined
Introduce view € Viewlds
Introduce cohort € Cohorts
Introduce opn € Opns
Assume  Proposed(view, cohort, opn) = MembershipDefined(opn)
Assume  Proposed(view, cohort, opn)’
Prove  MembershipDefined (opn)'
Step 1. of 1
MembershipDefined (opn)
Case 1.1. of 2
Jopv € CsOps : LL!Replica(cohort)! ProposeAction(view, opn, opv)
Step 1.1.1. of 1
opn € DOMAIN LL!Replica(cohort)! CsState.membershipMap
Reasoning (1.1.1.): Def ActiveMember
Reasoning (1.1.): Ref : OpnInMembershipMapImpliesMembershipDefined
DefaultCase 1.2. of 2
Step 1.2.1. of 1
Proposed(view, cohort, opn)
Reasoning (1.2.1.): No other action changes Proposed
Reasoning (1.2.): induction hypothesis
Reasoning (1.): Case analysis
Reasoning: Ref:MembershipDefinedMonotonic
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Invariant LastProposedReflectsPrevPreps
Hypotheses of UniquePrimaryDesignationMessage
Hypotheses of  PrimaryDesignatedPrecludesDesignationNeeded
Hypotheses of  IAmPrimaryImpliesPrimaryDesignated
Introduce view € Viewlds
Introduce  primary € Cohorts
Introduce opn € Opns
Introduce opv € CsOps
Assume
A PrimaryDesignatedPrevPrep(view, opn, opv)
A LL!Replica(primary)! CurView = view
A LL!Replica(primary)! IAmPrimary
=
opn < LL!Replica(primary)! LastProposed
Assume
( A PrimaryDesignatedPrevPrep(view, opn, opv)
A LL!Replica(primary)! CurView = view
A LL!Replica(primary)! IAmPrimary)’'
Prove (opn < LL!Replica(primary)!LastProposed)’
Case 1. of 5
Im € PrimaryDesignatedMsg : LL! Replica(primary)! BecomePrimary(m)
Summary: Action assigns LastProposed suitably.
Defn  ml =
CHOOSE ml € SentMessages N PrimaryDesignatedMsg :
A ml.view = view
A opn € DOMAIN ml.prevPrepares
A ml.prevPrepares[opn] = opv
Defn m2 =
CHOOSE m2 € PrimaryDesignatedMsg : LL!Replica(primary)!BecomePrimary(m2)
Step 1.1. of 2
ml = m2
Reasoning (1.1.): Antecedent makes first CHOOSE succeed; Case condition makes second
CHOOSE succeed; Ref hypothesis: UniquePrimaryDesignationMessage
Step 1.2. of 2
opn < MazPreparedOpn(m1)
Reasoning (1.2.): Defn MazPreparedOpn
Reasoning (1.): substitution
Case 2. of 5
Jopn2 € Opns, opv2 € CsOps :
LL!Replica(primary)! ProposeAction(view, opn2, opv2)
Summary: induction hypothesis holds in unprimed state, and action increments LastProposed,
so things only get better.
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Step 2.1. of 3
A PrimaryDesignated PrevPrep(view, opn, opv)
A LL!Replica(primary)! CurView = view
A LL!Replica(primary) IAmPrimary
Reasoning (2.1.): Propose doesn’t send a PrimaryDesignatedMsg, and leaves CurView and
IAmPrimary UNCHANGED
Step 2.2. of 3
opn < LL!Replica(primary)! LastProposed
Reasoning (2.2.): induction hypothesis
Step 2.3. of 3
LL!Replica(primary)! LastProposed < (LL!Replica(primary)!LastProposed’)
Reasoning (2.3.): Defn Propose
Reasoning (2.): transitivity
Case 3. of 5
Jconfig € DesignationConfigurations :
A config.view = view
A LL!Replica(config.designator)! DesignatePrimary(config)

Summary: If the cohort is already operating as a primary, we won’t see
a(nother)DesignatePrimary action on this view.
Step 3.1. of 3

A LL!Replica(view.viewInitiator)!DesignationNeeded
A LL!Replica(view.viewInitiator)! CurView = view
Reasoning (3.1.): Defn DesignatePrimary;substitution
Step 3.2. of 3
—PrimaryDesignated (view)
Reasoning (3.2.): Ref hypothesis: PrimaryDesignatedPrecludesDesignationNeeded ; algebra

Step 3.3. of 3
PrimaryDesignatedAs(view, primary)
Reasoning (3.3.): Ref hypothesis:IAmPrimaryImpliesPrimaryDesignated
Reasoning (3.): Case eliminated by contradiction
Case 4. of 5
LL!Replica(primary)! Crash
Summary: This action cannot have happened if IAmPrimary’ is TRUE.
Step 4.1. of 1
—(LL!Replica(primary) IAmPrimary")
Reasoning (4.1.): Defn Crash action
Reasoning (4.): Case eliminated by contradiction
DefaultCase 5. of 5
Step 5.1. of 5
PrimaryDesignatedPrevPrep(view, opn, opv)
Reasoning (5.1.): No action other than DesignatePrimary sends a PrimaryDesignatedMsg

Step 5.2. of 5
LL!Replica(primary)! CurView = view
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Reasoning (5.2.): Only VcAck action updates CurView, and it requires ~IAmPrimary’, so
it cannot have happened.

Step 5.3. of

LL!Replica(primary) IAmPrimary

Reasoning (5.3.): No action other than BecomePrimary changes IAmPrimary to TRUE

Step 5.4. of
opn < LL!Replica(primary)! LastProposed
Reasoning (5.4.): induction hypothesis
Step 5.5. of 5
opn < (LL!Replica(primary)! LastProposed”)
Reasoning (5.5.): No action other than Propose, Crash, and BecomePrimary changes
LastProposed.
Reasoning (5.): Done.
Reasoning: case analysis

Invariant ProposalsRespectPrevPrepares
Hypotheses of  ProposedImpliesPrimaryDesignated
Hypotheses of  PrimaryDesignatedPrecludesDesignationNeeded
Hypotheses of  IAmPrimaryImpliesPrimaryDesignated
Hypotheses of UniquePrimaryDesignated
Hypotheses of  LastProposedReflectsPrevPreps
Introduce view € Viewlds
Introduce opn € Opns
Introduce opvl € CsOps
Introduce opv2 € CsOps
Assume
A PrimaryDesignatedPrevPrep(view, opn, opul)
A ProposedByAnyAs(view, opn, opv2)
=
opvl = opv2
Assume
( A PrimaryDesignatedPrevPrep(view, opn, opvl)
A ProposedByAnyAs(view, opn, opv2))’
Prove (opul = opv2)’
Summary: Three actions are interesting: We show designation cannot occur (again) if a proposal

has already been made. A Propose action cannot occur, because LastProposed will prevent it.
A BecomePrimary action will respect PrevPrepares.

Defu  primary = CHOOSE primary € Cohorts : PrimaryDesignatedAs(view, primary)
Step 1. of 5
PrimaryDesignatedAs(view, primary)
Reasoning (1.): Ref hypothesis: ProposedImpliesPrimaryDesignated and some expansion of
quantifiers
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Case 2. of 5
dconfig € DesignationConfigurations :
LL!Replica(config.designator)! Designate Primary(config)

Summary: Since there has already been a proposal in the view, this action cannot be enabled.

Defn  config =
CHOOSE config € DesignationConfigurations :
LL!Replica(config.designator)! Designate Primary(config)
Step 2.1. of 1
—LL!Replica(config.designator)! DesignationNeeded

Reasoning (2.1.): A bunch of substitutions on Defn DesignatePrimary; then apply Ref
hypothesis: PrimaryDesignatedPrecludesDesignationNeeded

Reasoning (2.): Case eliminated by contradiction with Defn DesignatePrimary

Case 3. of 5
I cohort € Cohorts : LL!Replica(cohort)! ProposeAction(view, opn, opv2)

Summary: A Propose action cannot occur, because LastProposed will prevent it.

Defn  cohort =
CHOOSE cohort € Cohorts : LL!Replica(cohort)! ProposeAction(view, opn, opv2)
Step 3.1. of 2
LL!Replica(primary)! ProposeAction(view, opn, opv2)
Step 3.1.1. of 3
LL!Replica(cohort) IAmPrimary
Reasoning (3.1.1.): Defn Propose
Step 3.1.2. of 3
PrimaryDesignatedAs(view, cohort)
Reasoning (3.1.2.): Ref hypothesis:IAmPrimaryImpliesPrimaryDesignated
Step 3.1.3. of 3
cohort = primary
Reasoning (3.1.3.): Ref:UniquePrimaryDesignated
Reasoning (3.1.): Substitution into case condition
Step 3.2. of 2
opn < LL!Replica(cohort)! LastProposed
Reasoning (3.2.): Ref : LastProposedReflectsPrevPreps
Reasoning (3.): Case eliminated by contradiction with Defn ProposeAction (opn =
LastProposed + 1)
Case 4. of 5
Im € PrimaryDesignatedMsg :
A LL!Replica(m.newPrimary)! BecorePrimary(m)
A m.view = view
A opn € DOMAIN m.prevPrepares
Defn m =
CHOOSE m € PrimaryDesignatedMsq :
A LL!Replica(m.newPrimary)! BecorePrimary(m)
A m.view = view
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A opn € DOMAIN m.prevPrepares
Step 4.1. of 1
ProposedAs(view, m.newPrimary, opn, m.prevPrepares[opn])’
Reasoning (4.1.): Defn BecomePrimary sends proposal message
Reasoning (4.): Ref : ProposedsInSame ViewDoNotConflict
DefaultCase 5. of 5
Step 5.1. of 2
PrimaryDesignatedPrevPrep(view, opn, opvl)
Reasoning (5.1.): PrimaryDesignatedPrevPrep cannot change without a DesignatePrimary
action
Step 5.2. of 2
ProposedByAnyAs(view, opn, opv2)
Reasoning (5.2.): ProposedByAnyAs(view, opn, opv2) cannot change without a suitable
Propose or BecomePrimary action

Reasoning (5.): induction hypothesis ; conclusion is a constant expression

Reasoning: case analysis

Invariant ViewlInitiatorElectsPrimarylInSameEpoch
Hypotheses of CsState Typelnvariant
Introduce view € Viewlds
Introduce  primary € Cohorts
Assume
PrimaryDesignatedAs(view, primary) = view.viewlInitiator.epoch = primary.epoch
Assume  PrimaryDesignatedAs(view, primary)’
Prove (view.viewInitiator.epoch = primary.epoch)’
Case 1. of 2
Jconfig € DesignationConfigurations :
A config.view = view
A config.newPrimary = primary
A LL!Replica(config.designator)! DesignatePrimary(config)
Defn  config =
CHOOSE config € DesignationConfigurations :
A config.view = view
A config.newPrimary = primary
A LL!Replica(config.designator)! DesignatePrimary( config)
Step 1.1. of 3
view.viewInitiator € LL!Replica(config.designator)! Membership
Step 1.1.1. of 2
config.designator € LL!Replica(config.designator)! Membership
Reasoning (1.1.1.): Defn DesignatePrimary; Defn ActiveMember
Step 1.1.2. of 2
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config.designator = view.viewlInitiator
Reasoning (1.1.2.): Defn DesignatePrimary
Reasoning (1.1.): substitution
Step 1.2. of 3
primary € LL!Replica(config.designator)! Membership
Step 1.2.1. of 5
config.quorum € LL!Replica(config.designator)! Quora
Reasoning (1.2.1.): Defn DesignatePrimary
Step 1.2.2. of 5
config.quorum € QuoraOfMembership(LL! Replica(config.designator)! Membership)
Reasoning (1.2.2.): Defn Quora
Step 1.2.3. of 5
config.quorum C LL!Replica(config.designator)! Membership
Reasoning (1.2.3.): Defn QuoraOfMembership
Step 1.2.4. of 5
config.newPrimary € config.quorum
Reasoning (1.2.4.): Defn DesignationConfigurations
Step 1.2.5. of 5
config.newPrimary € LL!Replica(config.designator)! Membership
Reasoning (1.2.5.): Substitution
Reasoning (1.2.): Substitution
Step 1.3. of 3
LL!Replica(config.designator)! Membership € Memberships
Step 1.3.1. of 1
Range(LL!Replica(config.designator)! CsState.membershipMap) = Memberships
Reasoning (1.3.1.): Ref hypothesis: CsState Typelnvariant
Reasoning (1.3.): Defn Membership

Reasoning (1.): Defn Memberships requires all members to share a common epoch.

DefaultCase 2. of 2
Step 2.1. of 1
PrimaryDesignatedAs(view, primary)
Reasoning (2.1.): No other action could have sent a witness PrimaryDesignatedMsg, so it
must already have been in SentMessages
Reasoning (2.): induction hypothesis
Reasoning: Proof by case analysis

Invariant PrimaryAndViewlInitiatorInSameEpoch
Hypotheses of ViewInitiatorElectsPrimaryInSameEpoch
Introduce  primary € Cohorts

Assume

LL!Replica(primary) IAmPrimary =
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LL!Replica(primary)! CurView.viewInitiator.epoch = primary.epoch
Assume LL!Replica(primary)! IAmPrimary’
Prove (LL!Replica(primary)! CurView.viewInitiator.epoch = primary.epoch)’
Case 1. of 2
Im € PrimaryDesignatedMsg : LL!Replica(primary)! BecomePrimary(m)
Defn m =
CHOOSE m € PrimaryDesignatedMsg : LL!Replica(primary)! BecomePrimary(m)
Step 1.1. of 1
PrimaryDesignatedAs(LL Replica(primary)! CurView, primary)
Reasoning (1.1.): Defn BecomePrimary constraints CurView
Reasoning (1.): Ref hypothesis: ViewInitiatorElectsPrimarylInSameEpoch
DefaultCase 2. of 2
Step 2.1. of 4
LL!Replica(primary) IAmPrimary
Reasoning (2.1.): No actions besides BecomePrimary change IAmPrimary to TRUE, so it
must have stayed TRUE.
Step 2.2. of 4
LL!Replica(primary)! CurView.viewInitiator.epoch = primary.epoch
Reasoning (2.2.): induction hypothesis
Step 2.3. of 4
—(3m € VelnittedMsg : LL! Replica(primary)! VeAck(m))
Reasoning (2.3.): VcAck action requires
LL!Replica(primary ) IAmPrimary’ = FALSE
Step 2.4. of 4
UNCHANGED LL!Replica(primary)! CurView
Reasoning (2.4.): inspection of remaining actions
Reasoning (2.): substitution
Reasoning: Proof by case analysis

Invariant ProposedConstrainsViewMembership

Hypotheses of Membership ChangesAreBroadcast
Hypotheses of  PrimaryAndViewInitiatorInSameFEpoch
Hypotheses of MembershipAsDeterminesMembership
Hypotheses of  ProposedImpliesMembershipAs
Hypotheses of  Nonconflicting ViewMembershipsPrimed
Introduce view € Viewlds

Introduce opn € Opns

Assume  ProposedByAny(view, opn) = ViewMembership(view) = Membership(opn)
Assume  ProposedByAny(view, opn)'

Prove  (ViewMembership(view) = Membership(opn))’
Defn rec 2
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CHOOSE rec € [cohort : Cohorts, opv : CsOps] :
LL!Replica(rec.cohort)! ProposeAction(view, opn, rec.opv)
Case 1. of 2
LL!Replica(rec.cohort)! ProposeAction(view, opn, rec.opv)
Step 1.1. of 8
A opn € DOMAIN LL!Replica(rec.cohort)!CsState.membershipMap

A rec.cohort € LL!Replica(rec.cohort)! CsState.membershipMap[opn]

Reasoning (1.1.): Defn Propose
Step 1.2. of 8
I membership € Memberships :

A opn € DOMAIN LL!Replica(rec.cohort)!CsState.membershipMap

A membership = LL!Replica(rec.cohort)! CsState.membershipMap|opn|

A rec.cohort € membership
Reasoning (1.2.): logical rewrite
Step 1.3. of 8
I membership € Memberships :
A MembershipAs(opn, membership, LL!SentMessages)
A rec.cohort € membership
Reasoning (1.3.): Replace first two conjuncts using
hypothesis: Membership ChangesAre Broadcast
Defu  membership =
CHOOSE membership € Memberships :
A MembershipAs(opn, membership, LL!SentMessages)
A rec.cohort € membership
Step 1.4. of 8
EpochOf (membership) = view.viewInitiator.epoch
Step 1.4.1. of 1
EpochOf (membership) = rec.cohort.epoch
Reasoning (1.4.1.): Defn Memberships; Defn EpochOf
Reasoning (1.4.): Defn Propose action gives IAmPrimary;
hypothesis: PrimaryAnd ViewInitiatorInSameEpoch
Step 1.5. of 8
ViewMembership(view) = membership
Reasoning (1.5.): Defn ViewMembership
Step 1.6. of 8
MembershipAs(opn, membership, LL!SentMessages')
Reasoning (1.6.): Ref:MembershipAsMonotonic
Step 1.7. of 8
(Membership(opn)") = membership
Reasoning (1.7.): Ref :MembershipAsDeterminesMembership
Step 1.8. of 8
(ViewMembership(view)') = membership
Reasoning (1.8.): Ref :Nonconflicting ViewMembershipsPrimed
Reasoning (1.): transitivity
DefaultCase 2. of 2
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Step 2.1. of 5
ProposedByAny(view, opn)
Step 2.1.1. of 1
UNCHANGED ProposedByAny(view, opn)
Reasoning (2.1.1.): Case condition
Reasoning (2.1.): antecedent
Step 2.2. of 5
ViewMembership(view) = Membership(opn)
Reasoning (2.2.): induction hypothesis
Step 2.3. of 5
MembershipAs(opn, Membership(opn), LL!SentMessages')
Step 2.3.1. of 1
MembershipAs(opn, Membership(opn), LL!SentMessages)
Reasoning (2.3.1.): Ref: ProposedImpliesMembershipAs

Reasoning (2.3.): Ref:MembershipAsMonotonic

Step 2

4. of 5

(Membership(opn)") = Membership(opn)
Reasoning (2.4.): Ref:MembershipAsDeterminesMembership

Step 2

5. of b

(ViewMembership(view)') = Membership(opn)
Reasoning (2.5.): Ref : Nonconflicting ViewMembershipsPrimed

Reasoning (2.): transitivity

Reasoning: case analysis

Theorem QuorumPreparationPreventsConflictingProposal

Hypotheses of
Hypotheses of
Hypotheses of
Hypotheses of
Hypotheses of
Hypotheses of
Hypotheses of
Introduce
Introduce
Introduce
Introduce
Introduce
Assume (Al.)
Assume vl
Assume (A2.)

VeAckPreparedsReflect ViewRecent Prepare
ProposedsInSameViewDoNotConflict
VeAckPreparedImpliesPrepared
ProposalsRespectPrevPrepares
ProposedImpliesElectingQuorum
ProposedConstrains ViewMembership
PreparedImpliesProposed

vl € Viewlds

v2 € Viewlds

opn € Opns

opvl € CsOps

opv2 € CsOps
QuorumPreparedAs(vl, opn, opvl)

<2

opv2 # opvl

Prove  —ProposedByAnyAs(v2, opn, opv2)
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Summary: The proof of this theorem is the core of the Pazos proof. We proceed by contradiction:
We are given one witness view vl in which a quorum prepares opn as opvl, and a later view v2
in which a primary manages to propose opn as opv2. Once we have those witnesses, we know
that there is some earliest view with such a conflicting proposal (which view this proof calls vm).
The quorum that elected the primary of vm must have allowed the conflicting proposal, and the
quorum that prepared opvl in vl should not have. We identify a spoiler cohort that belongs to
both quorums (that’s the point of a quorum), show that he must have quorum prepared in vl
before electing in vm, and show that he must have maintained and relayed to the primary of vm
preparedOps info that would have precluded the conflicting proposal.
Step 1. of 1
Assume (1.A1.)  ProposedByAnyAs(v2, opn, opu2)
Prove FALSE
Defn  InconsistentProposal View(vi) =
Jopv3d € CsOps :
ANvl < i
A ProposedByAnyAs(vi, opn, opv3)
A opv3 # opul
Defn vm = Minimum({v € Viewlds : InconsistentProposal View(v)})
Step 1.1. of 10
InconsistentProposal View(vm)
Reasoning (1.1.): True when vm = v2; maybe for some earlier view
Defn  PreparingQuorum = {c¢ € Cohorts : PreparedAs(vl, ¢, opn, opvl)}
Step 1.2. of 10
PreparingQuorum € Quora(opn)
Reasoning (1.2.): Ref:Assumption Al. ; def QuorumPreparedAs
Defu  ElectionQuorum =
CHOOSE quorum € Quora(opn) : PlausibleElectionQuorum(vm, quorum)
Step 1.3. of 10
PlausibleElectionQuorum(vm, ElectionQuorum)
Step 1.3.1. of 3
ProposedByAny(vm, opn)
Reasoning (1.3.1.): Ref:Step 1.1. ; Defn InconsistentProposalView
Step 1.3.2. of 3
3 quorum € QuoraOfMembership( ViewMembership(vm)) :
PlausibleElectionQuorum(vm, quorum)
Reasoning (1.3.2.): Ref hypothesis: ProposedImpliesElecting Quorum
Step 1.3.3. of 3
QuoraOfMembership( ViewMembership(vm)) = Quora(opn)
Step 1.3.3.1. of 1
ViewMembership(vm) = Membership(opn)
Reasoning (1.3.3.1.): Ref hypothesis: ProposedConstrains ViewMembership
Reasoning (1.3.3.): Defn Quora
Reasoning (1.3.): CHOOSE axiom
Defn  spoiler = CHOOSE ¢ € PreparingQuorum N ElectionQuorum : TRUE
Step 1.4. of 10
spoiler € PreparingQuorum N ElectionQuorum
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Summary: The definition of QuoraOfMembership and the pigeon-hole principle ensure that
the two quora overlap.
Step 1.4.1. of 1
Assume  PreparingQuorum N ElectionQuorum = {}
Prove FALSE
Defn  bothQuora = PreparingQuorum U ElectionQuorum
Step 1.4.1.1. of 2
bothQuora C Membership(opn)
Reasoning (1.4.1.1.):  Defn PreparingQuorum; Defn ElectionQuorum; Defn
Quora(opn); Defn QuoraOfMembership; Defn SUBSET ; property of U
Step 1.4.1.2. of 2
Cardinality(bothQuora) > Cardinality( Membership(opn))

Reasoning (1.4.1.2.): Since bothQuora is composed of a union of disjoint sets, its size is
the sum of the sizes of the operands of the union. Defn QuoraOfMembership provides
a minimum on the size of each operand.

Reasoning (1.4.1.): Strangely, the size of the set is bigger than the size of its superset.

Reasoning (1.4.): Proof by contradiction
Step 1.5. of 10
VeAckedView(vm, spoiler)
Reasoning (1.5.): defn ElectionQuorum,PlausibleElectionQuorum
Step 1.6. of 10
PreparedAs(vl, spoiler, opn, opvl)
Reasoning (1.6.): defn PreparingQuorum;QuorumPrepared
Step 1.7. of 10
VeAckPreparedOpAs(vm, spoiler, opn, [view — vl, opv — opvl])
Defn  ViewPreparesOpn(va) =
Jopvd € Opns : va < vm A PreparedAs(va, spoiler, opn, opv4)
Defn  lastViewPreparingOpnBeforeConflict =
Mazimum({v € Viewlds : ViewPreparesOpn(v)})
Step 1.7.1. of 6
ViewPreparesOpn(last ViewPreparingOpnBeforeConflict)
Step 1.7.1.1. of 1
Jv € Viewlds : ViewPreparesOpn(v)
Reasoning (1.7.1.1.): assumption 1 provides a witness ViewPreparesOpn(vl)
Reasoning (1.7.1.): CHOOSE axiom
Step 1.7.2. of 6
vl < lastViewPreparingOpnBeforeConflict
Reasoning (1.7.2.): vl satisfies ViewPreparesOpn, and hence provides a lower bound for
Mazimum()
Defn  lastOpvPreparedBeforeConflict =
CHOOSE opv4 : PreparedAs(lastViewPreparingOpnBeforeConflict, spoiler, opn, opv4)
Step 1.7.3. of 6
PreparedAs(
last ViewPreparingOpnBeforeConflict, spoiler, opn, lastOpvPreparedBefore Conflict)
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Reasoning (1.7.3.): CHOOSE axiom
Step 1.7.4. of 6
VeAckPreparedOpAs(
um,
spoiler,
opm,
[
opv — lastOpvPreparedBefore Conflict,
view +— lastViewPreparingOpnBeforeConflict
)
Reasoning (1.7.4.): Ref hypothesis: VcAckPreparedsReflect ViewRecentPrepare ( vl =
last ViewPreparingOpnBeforeConflict, v2 = vm, opv = lastOpvPreparedBefore Conflict)
Step 1.7.5. of 6
vl < lastViewPreparingOpnBeforeConflict
Reasoning (1.7.5.): assumption provides a witness to a max value of
last ViewPreparing OpnBefore Conflict

Step 1.7.6. of 6
lastOpvPreparedBefore Conflict = opvl
Case 1.7.6.1. of 2
vl < last ViewPreparingOpnBefore Conflict
Reasoning (1.7.6.1.): Defn wvm requires lastViewPreparingOpnBeforeConflict to
prepare opvl. (By contradiction: if it prepares something else, then Ref
hypothesis: PreparedImpliesProposed requires it to be proposed there, which contra-
dicts the definition of vm as the minimum view in which an opv other than opvl was
proposed.)
Case 1.7.6.2. of 2
vl = last ViewPreparingOpnBeforeConflict
Step 1.7.6.2.1. of 2
ProposedByAnyAs(vl, opn, lastOpvPreparedBefore Conflict)
Reasoning (1.7.6.2.1.): Ref hypothesis: PreparedImpliesProposed
Step 1.7.6.2.2. of 2
ProposedByAnyAs(vl, opn, opvl)
Step 1.7.6.2.2.1. of 1
J¢ € Cohorts : PreparedAs(vl, ¢, opn, opvl)
Reasoning (1.7.6.2.2.1.): Ref:Assumption Al. ;defn QuorumPreparedAs
Reasoning (1.7.6.2.2.): Ref hypothesis: PreparedImpliesProposed
Reasoning (1.7.6.2.): Ref hypothesis: ProposedsInSame ViewDoNotConflict
Reasoning (1.7.6.): Proof by cases
Reasoning (1.7.): Ref:Step 1.7.4. ; Ref:Step 1.7.6.
Step 1.8. of 10
Introduce ¢ € Cohorts
Assume  VeAckedView(vm, c)
Prove
V ChooseVcAckPreparedOplInfo(vm, ¢, opn).opv = opuvl
V ChooseVcAckPreparedOplInfo(vm, ¢, opn).view < vl
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Defn latestPreparedView = Choose VeAckPreparedOplInfo(vm, ¢, opn).view
Case 1.8.1. of 2
latestPrepared View < vl
Reasoning (1.8.1.): satisfies second disjunct of prove goal
Case 1.8.2. of 2
vl < latestPrepared View
Step 1.8.2.1. of 5
Prepared(latestPrepared View, ¢, opn)
Reasoning (1.8.2.1.): Ref hypothesis: VcAckPreparedImpliesPrepared
Step 1.8.2.2. of 5
Vi € Viewlds : vl < vi A vi < v2 = (=Prepared(vi, ¢, opn))
Reasoning (1.8.2.2.): Contrapositive of Ref hypothesis: VcAckPreparedsReflect ViewRecent Prepare

Step 1.8.2.3. of 5
Introduce opv3 € Viewlds
Assume  0pu3 # opul
Prove  —PreparedAs(latestPreparedView, c, opn, opv3)
Step 1.8.2.3.1. of 1
Assume  PreparedAs(latestPreparedView, ¢, opn, opv3)
Prove FALSE
Step 1.8.2.3.1.1. of 2
ProposedByAnyAs(latestPrepared View, opn, opv3)
Reasoning (1.8.2.3.1.1.): Ref hypothesis: PreparedImpliesProposed
Step 1.8.2.3.1.2. of 2
InconsistentProposal View (latestPrepared View)
Reasoning (1.8.2.3.1.2.): Defn InconsistentProposalView
Reasoning (1.8.2.3.1.): latestPreparedView is a witness to the non-minimality of
vm
Reasoning (1.8.2.3.): By contradiction
Step 1.8.2.4. of 5
PreparedAs(latestPreparedView, ¢, opn, opvl)
Reasoning (1.8.2.4.): Defn Prepared gives witness opv; only opvl satisfies previous
step
Step 1.8.2.5. of 5
ChooseVcAckPreparedOplInfo(vm, ¢, opn).opv = opvl
Reasoning (1.8.2.5.): Ref hypothesis: VcAckPreparedsReflect ViewRecentPrepare

Reasoning (1.8.2.): satisfies first disjunct of prove goal
Reasoning (1.8.): Proof by case analysis

Step 1.9. of 10

PrimaryDesignatedPrevPrep(vm, opn, opul)
Reasoning (1.9.): No conflicting VecAckPrevPreps have views later than vl, so any conflict
is dominated by VcAckPreparedOp(vm, spoiler, opn)

Step 1.10. of 10

opvl = opv2
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Reasoning (1.10.):  Ref:Assumption 1.A1. and Ref:Step 1.9.
hypothesis: Proposals Respect PrevPrepares

Reasoning (1.): We have arrived at a contradiction with Ref:Assumption A2.

Reasoning: Proof by contradiction.

Theorem QuorumPreparedImpliesProposed
Hypotheses of  PreparedImpliesProposed
Introduce v € Viewlds
Introduce opn € Opns
Introduce opv € CsOps
Assume  QuorumPreparedAs(v, opn, opv)
Prove  ProposedByAnyAs(v, opn, opv)
Step 1. of 1
Jc¢ € Cohorts : PreparedAs(v, ¢, opn, opv)
Reasoning (1.): Defn QuorumPreparedAs
Reasoning: Ref hypothesis: PreparedImpliesProposed

Theorem NoConflictingQuorumPreparationInOrdered Views
Hypotheses of QuorumPreparedImplies Proposed
Hypotheses of QuorumPreparationPreventsConflictingProposal
Hypotheses of  ProposedImpliesElectingQuorum
Hypotheses of  ProposedConstrains ViewMembership
Introduce vl € Viewlds
Introduce v2 € Viewlds
Introduce opn € Opns
Introduce opvl € CsOps
Introduce opv2 € CsOps
Assume vl < v2
Assume  QuorumPreparedAs(vl, opn, opvl)
Assume  QuorumPreparedAs(v2, opn, opv2)
Prove  opvl = opv2

Step 1. of 1

ProposedByAnyAs(v2, opn, opv2)

Reasoning (1.): Ref:QuorumPreparedImpliesProposed

Reasoning: Ref : QuorumPreparationPreventsConflictingProposal and some algebra
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Theorem NoConflictingQuorumPreparation

Hypotheses of QuorumPreparedImplies Proposed
Hypotheses of ProposedsInSame ViewDoNotConflict
Hypotheses of  NoConflictingQuorumPreparationInOrderedViews
Introduce vl € Viewlds

Introduce v2 € Viewlds

Introduce opn € Opns

Introduce opvl € CsOps

Introduce opv2 € CsOps

Assume  QuorumPreparedAs(vl, opn, opvl)

Assume  QuorumPreparedAs(v2, opn, opv2)

Prove  opvl = opv2

Case 1. of 3
vl < v2
Reasoning (1.):Ref:NoConflicting QuorumPreparationInOrdered Views(vl = vl, v2 = v2)
Case 2. of 3
vl = v2
Step 2.1. of 2

ProposedByAnyAs(vl, opn, opvl)
Reasoning (2.1.): Ref : QuorumPreparedImpliesProposed
Step 2.2. of 2
ProposedByAnyAs(v2, opn, opv2)
Reasoning (2.2.): Ref : QuorumPreparedImpliesProposed
Reasoning (2.): Ref hypothesis: ProposedsInSame ViewDoNotConflict
Case 3. of 3
vl > v2
Reasoning (3.):Ref:NoConflicting QuorumPreparationInOrdered Views(vl = v2, v2 = vl)

Reasoning: Proof by case analysis

Invariant CommuttedImplies QuorumPrepared
Hypotheses of  LocalMembershipEpochOrdering
Introduce opn € Opns
Introduce opv € CsOps
Assume
CommittedByAnyAs(opn, opv) = (v € Viewlds : QuorumPreparedAs(v, opn, opv))
Assume  CommittedByAnyAs(opn, opv)'
Prove (v € Viewlds : QuorumPreparedAs(v, opn, opv))’
Defn rec 2
CHOOSE rec € [cohort : Cohorts, preparedMsgProto : PreparedMsg) :
A rec.preparedMsgProto.opn = opn
A LL!Replica(rec.cohort)! Commit(rec.preparedMsgProto)
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Case 1. of 2
A rec.preparedMsgProto.opn = opn
A LL!Replica(rec.cohort)! Commit(rec.preparedMsgProto)
Defn rec2 =
CHOOSE
rec2 € [mSet : SUBSET ConsensusMessage, quorum : LL!Replica(rec.cohort)! Quora)

A LL!Replica(rec.cohort)! ReceiveMessageSet (rec2.mSet)
A LL!Replica(rec.cohort)! MessagesMatchPrototype(rec2.mSet, rec.preparedMsgProto)
A LL!Replica(rec.cohort)! EachCohortSentA Message(rec2.quorum, rec2.mSet)
Step 1.1. of 3
A LL!Replica(rec.cohort)! ReceiveMessageSet(rec2.mSet)
A LL!Replica(rec.cohort)! MessagesMatchPrototype(rec2.mSet, rec.preparedMsgProto)
A LL!Replica(rec.cohort)! EachCohortSentA Message(rec2.quorum, rec2.mSet)
Reasoning (1.1.): Defn Commit; Defn ReceiveFromQuorum
Step 1.2. of 3
Quora(opn) = LL!Replica(rec.cohort)!Quora
Step 1.2.1. of 1
Membership(opn) = LL!Replica(rec.cohort)! Membership
Step 1.2.1.1. of 4
opn € DOMAIN LL!Replica(rec.cohort)! CsState.membershipMap
Reasoning (1.2.1.1.): Defn Commit implies Active Member
Step 1.2.1.2. of 4
MembershipAs(
opn, LL!Replica(rec.cohort)!CsState.membershipMap[opn], LL!SentMessages)
Reasoning (1.2.1.2.): Ref hypothesis: Membership ChangesAreBroadcast
Step 1.2.1.3. of 4
Membership(opn) = LL!Replica(rec.cohort)! CsState.membershipMap[opn]
Reasoning (1.2.1.3.): UNPRIMED version of Ref: MembershipAsDeterminesMembership

Step 1.2.1.4. of 4
LL!Replica(rec.cohort)! CsState.membershipMap[opn] =
LL!'Replica(rec.cohort)! Membership
Step 1.2.1.4.1. of 2
rec.cohort € LL!Replica(rec.cohort)! CsState.membershipMap[opn)]
Reasoning (1.2.1.4.1.): ActiveMember
Step 1.2.1.4.2. of 2
Y opn2 € DOMAIN LL!Replica(rec.cohort)! CsState.membershipMap :
rec.cohort € LL!Replica(rec.cohort)! CsState.membershipMap =
LL'Replica(rec.cohort)! CsState.membershipMaplopn2] =
LL!Replica(rec.cohort)! CsState.membershipMap|opn]

Reasoning (1.2.1.4.2.): Any two memberships both containing rec.cohort must have
the same epoch; with Ref hypothesis: LocalMembershipEpochOrdering , they must
be the same membership.
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Reasoning (1.2.1.4.): cHOOSE in Defn LL!Replica(rec.cohort)!Membership is fully-
constrained
Reasoning (1.2.1.): substitution
Reasoning (1.2.): Defn Quora; Defn LL!Replica(rec.cohort)!Quora
Step 1.3. of 3
Introduce member € rec2.quorum
Prove  PreparedAs(rec.preparedMsgProto.view, member, opn, opv)
Defn  memberMessage = CHOOSE m € rec2.mSet : m.sender = member
Step 1.3.1. of 3
memberMessage.sender = member
Reasoning (1.3.1.): Defn EachCohortSentAMessage;CHOOSE axiom
Step 1.3.2. of 3
A memberMessage.view = rec.preparedMsgProto.view
A memberMessage.opn = opn
A memberMessage.opv = opv
Reasoning (1.3.2.): Defn MessagesMatchPrototype
Step 1.3.3. of 3
memberMessage € SentMessages
Reasoning (1.3.3.): Defn ReceiveMessageSet
Reasoning (1.3.): Defn PreparedAs
Reasoning (1.): rec2.quorum is witness to  QuorumPreparedAs.quorum,  and
rec.preparedMsgProto.view is witness to v in proof obligation.
DefaultCase 2. of 2
Step 2.1. of 2
CommittedByAnyAs(opn, opv)
Step 2.1.1. of 1
UNCHANGED CommittedByAnyAs(opn, opv)
Reasoning (2.1.1.): CommittedByAnyAs only changes when a CommittedMsg is sent;
Inspection of actions shows that only happens in Case I.
Reasoning (2.1.): Assumption; Defn UNCHANGED
Step 2.2. of 2
Jv € Viewlds : QuorumPreparedAs(v, opn, opv)
Reasoning (2.2.): induction hypothesis
Reasoning (2.): Ref:QuorumPreparedAsMonotonic
Reasoning: Proof by case analysis

Theorem NoConflictingCommits

Hypotheses of CommittedImplies QuorumPrepared
Hypotheses of  NoConflictingQuorumPreparation
Introduce opn € Opns

Introduce opvl € CsOps
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Introduce opv2 € CsOps

Assume  CommittedByAnyAs(opn, opvl)

Assume  CommittedByAnyAs(opn, opv2)

Prove  opuvl = opv2

Summary: We push the problem back from when the operations were Committed to when they

were QuorumPrepared, and invoke NoConflicting QuorumPreparation.

Defn  QuorumPrepared Views(opv) = {v € Viewlds : QuorumPreparedAs(v, opn, opv)}

Defn vl = CHOOSE vl: vl € QuorumPreparedViews(opvl)
Defn  ©2 = CHOOSE v2: v2 € QuorumPreparedViews(opv2)
Step 1. of 2

vl € QuorumPreparedViews(opvl)
Reasoning (1.): Ref hypothesis: CommittedImplies QuorumPrepared
Step 2. of 2
v2 € QuorumPreparedViews(opv2)
Reasoning (2.): Ref hypothesis: CommittedImplies QuorumPrepared
Reasoning: Apply Ref:NoConflicting QuorumPreparation

Theorem KnownOpvFcnEztended
Hypotheses of  NoConflictingCommits
FenExtends(KnownOpv', KnownOpv)
Step 1. of 2
DOMAIN KnownOpv C DOMAIN (KnownOpv')
Reasoning (1.): Ref:MazKnownOpnGrows
Step 2. of 2
Introduce opn € DOMAIN KnownOpuv
KnownOpuv[opn] = (KnownOpv')[opn]
Summary: If an operation was known in the previous step, we’ll commit no conflicting opera-
tions in this step, so we can be sure that KnownOpv’ makes the same operation assignment.

Step 2.1. of 3

CommittedByAnyAs(opn, KnownOpv|opn])
Reasoning (2.1.): Defn KnownOpuv; Defn MazKnownOpn

Step 2.2. of 3

CommittedByAnyAs(opn, KnownOpv[opn])’
Reasoning (2.2.): Ref:CommittedMonotonic

Step 2.3. of 3

Y opv € CsOps : (CommittedByAnyAs(opn, opv)') = opv = KnownOpv[opn)|
Reasoning (2.3.): Ref:NoConflictingCommits

Reasoning (2.): Defn KnownOpv; CHOOSE constrained to singleton set
Reasoning: Defn FcnExtends

119



Theorem KnownStateFcnEztended
Hypotheses of  KnownOpuvFcnFExtended
Prove  FenExtends(KnownState', KnownState)
Step 1. of 2
DOMAIN KnownState C DOMAIN (KnownState')
Reasoning (1.): Ref:MazKnownOpnGrows
Step 2. of 2
Introduce opn € DOMAIN KnownState
Prove  KnownState[opn] = (KnownState')[opn]
Step 2.1. of 2
Prove  KnownState[0] = (KnownState')[0]
Reasoning (2.1.): CsInit = CsInit
Step 2.2. of 2
Assume 0 < opn
Assume  KnownState[(opn — 1)] = (KnownState')[(opn — 1)]
Prove  KnownState[opn] = (KnownState')[opn]
Step 2.2.1. of 1
KnownOpuv[opn] = (KnownOpv')[opn]
Step 2.2.1.1. of 1
opn € DOMAIN KnownOpuv
Reasoning (2.2.1.1.): Defn KnownOpv
Reasoning (2.2.1.): Ref:KnownOpvFcnEztended

Reasoning (2.2.): Substitution of equal terms in ELSE clause of Defn KnownState.

Reasoning (2.): Proof by induction on opn
Reasoning: Defn FcnExtends

Invariant LocalStateConsonant WithKnownState
Hypotheses of  NoConflictingCommits
Introduce cohort € Cohorts
Defn  state = LL!Replica(cohort)!CsState
Defn  snapshot = LL!Replica(cohort)! CsStateSnapshot
Assume
A Consonant(state)
A Consonant(snapshot)
Prove
( A Consonant(state)
A Consonant(snapshot))’

Summary: We first establish lemmas showing that if either state or snapshot doesn’t change,
the corresponding variable holds its consonance. With those lemmas, we can charge through a
case analysis of the three actions that touch state or snapshot.
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Step 1. of 6
Assume UNCHANGED state
Prove  Consonant(state)’
Step 1.1. of 1
A (state’) € Range(KnownState)
A (state’) = KnowndState[state' . numEzecuted]
Reasoning (1.1.): UNCHANGED assumption; induction hypothesis
Reasoning (1.): Ref:KnownStateFenEztended ; Defn Consonant
Step 2. of 6
Assume UNCHANGED snapshot
Prove  Consonant(snapshot)’
Step 2.1. of 1
A (snapshot') € Range(KnownState)
A (snapshot') = KnownState[snapshot'.numEzecuted)
Reasoning (2.1.): UNCHANGED assumption; induction hypothesis
Reasoning (2.): Ref:KnownStateFcnEztended ; Defn Consonant
Case 3. of 6
LL!'Replica(cohort)! Persist
Summary: The state is UNCHANGED by Persist; the snapshot part relies on the consonance
of state in the prior state.
Step 3.1. of 2
Consonant(state)’
Step 3.1.1. of 1
UNCHANGED state
Reasoning (3.1.1.): Defn Crash action
Reasoning (3.1.): Ref:Step 1.
Step 3.2. of 2
Consonant(snapshot)’
Step 3.2.1. of 2
(snapshot') = state
Reasoning (3.2.1.): Defn Persist action
Step 3.2.2. of 2
A (snapshot') € Range(KnownState)
A (snapshot’) = KnownState[snapshot' .numEzecuted)
Reasoning (3.2.2.): UNCHANGED assumption;induction hypothesis
Reasoning (3.2.): Ref:KnownStateFcnExtended ; Defn Consonant
Reasoning (3.): We’ve shown both conjuncts of the proof goal
Case 4. of 6
LL!'Replica(cohort)! Crash
Summary: This case is the mirror of the previous. The snapshot is UNCHANGED by a Crash;
the state part relies on the consonance of snapshot in the prior state.
Step 4.1. of 2
Consonant(snapshot)’
Step 4.1.1. of 1
UNCHANGED snapshot
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Reasoning (4.1.1.): Defn Crash action
Reasoning (4.1.): Ref:Step 2.
Step 4.2. of 2
Consonant(state)’
Step 4.2.1. of 2
(state') = snapshot
Reasoning (4.2.1.): Defn Crash action
Step 4.2.2. of 2
A (state') € Range(KnownState)
A (state') = KnownState[state'.numEzecuted]
Reasoning (4.2.2.): induction hypothesis
Reasoning (4.2.): Ref:KnownStateFcnEztended ; Defn Consonant
Reasoning (4.): We’ve shown both conjuncts of the proof goal
Case 5. of 6
Im € CommittedMsg : LL!Replica(cohort)! Exvecute(m)
Defn m = CHOOSE m € CommittedMsg : LL!Replica(cohort)! Execute(m)
Step 5.1. of 2
Consonant(snapshot)’
Step 5.1.1. of 1
UNCHANGED snapshot
Reasoning (5.1.1.): Defn Crash action
Reasoning (5.1.): Ref:Step 2.
Step 5.2. of 2
Consonant(state)’
Step 5.2.1. of 2
state' .numEzecuted € DOMAIN KnownState
Step 5.2.1.1. of 2
state.numFEzecuted + 1 < MaxKnownOpn
Step 5.2.1.1.1. of 2
Yopn € 1 .. state.numExecuted : CommittedByAny(opn)
Step 5.2.1.1.1.1. of 1
state.numFEzecuted < MaxKnownOpn
Step 5.2.1.1.1.1.1. of 1
state.numFEzecuted € DOMAIN KnownState
Reasoning (5.2.1.1.1.1.1.): induction hypothesis ;Defn Consonant
Reasoning (5.2.1.1.1.1.): Defn KnownState
Reasoning (5.2.1.1.1.): Defn MazKnownOpn
Step 5.2.1.1.2. of 2
CommittedByAny(state.numEzecuted + 1)
Step 5.2.1.1.2.1. of 1
CommittedByAnyAs(m.opn, m.opv)
Reasoning (5.2.1.1.2.1.): According to Defn Commit, Message m is a witness

Reasoning (5.2.1.1.2.): Defn Ezecute action
Reasoning (5.2.1.1.): Defn MazKnownOpn
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Step 5.2.1.2. of 2
state.numFEzxecuted + 1 € DOMAIN KnownState
Reasoning (5.2.1.2.): Defn KnownState
Reasoning (5.2.1.): Defn CsTx
Step 5.2.2. of 2
(state’) = KnownState[state' .numEzecuted)
Step 5.2.2.1. of 4
KnownState[(state’. numFEzecuted — 1)] = state
Step 5.2.2.1.1. of 2
state = KnownState[state.numEzecuted)
Reasoning (5.2.2.1.1.): induction hypothesis ;Defn Consonant
Step 5.2.2.1.2. of 2
state.numBEzecuted = state’.numEzecuted — 1
Reasoning (5.2.2.1.2.): Defn Ezecute; Defn CsTx
Reasoning (5.2.2.1.): Substitution
Step 5.2.2.2. of 4
KnownOpv|[state' .numExecuted] = m.opv
Step 5.2.2.2.1. of 2
CommittedByAnyAs(m.opn, m.opv)
Reasoning (5.2.2.2.1.): m is a witness
Step 5.2.2.2.2. of 2
Y opv € CsOps : CommittedByAnyAs(m.opn, opv) = opv = m.opv
Reasoning (5.2.2.2.2.): Ref:NoConflictingCommits
Reasoning (5.2.2.2.): CHOOSE in Defn KnownOpu is fully constrained.
Step 5.2.2.3. of 4
KnownState[state'.numFEzecuted] = CsTx[state, m.opv)
Reasoning (5.2.2.3.): Defn KnownState; Ref:Step 5.2.2.1. ; Ref:Step 5.2.2.2.

Step 5.2.2.4. of 4
(state’) = CsTz[state, m.opv]
Reasoning (5.2.2.4.): Defn Ezecute action
Reasoning (5.2.2.): Substitution
Reasoning (5.2.): Defn Consonant
Reasoning (5.): We’ve shown both conjuncts of the proof goal
DefaultCase 6. of 6
Step 6.1. of 1
A\ UNCHANGED state
A UNCHANGED snapshot
Reasoning (6.1.): All other actions leave UNCHANGED CsState and CsStateSnapshot.
Reasoning (6.): Ref:Step 1. ; Ref:Step 2.
Reasoning: Proof by case analysis
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Invariant BroadcastMembershipsReflectKnownState
Hypotheses of  LocalState Consonant WithKnownState
Introduce opn € Opns
Introduce membership € Memberships
Assume
A Alpha < opn
A MembershipAs(opn, membership, LL!SentMessages)
=
A opn — Alpha € DOMAIN KnownState
A opn € DOMAIN KnownState[(opn — Alpha)].membershipMap
A KnownState[(opn — Alpha)].membershipMap[opn] = membership
Assume
(A Alpha < opn
A MembershipAs(opn, membership, LL!SentMessages))'
Prove
(A opn — Alpha € DOMAIN KnownState
A opn € DOMAIN KnownState[(opn — Alpha)].membershipMap
A KnownState[(opn — Alpha)].membershipMaplopn] = membership)'
Case 1. of 2
ImembershipMsg € MembershipMsg :
A membershipMsg.opn = opn
A membershipMsg.membership = membership
N membershipMsg ¢ SentMessages
A membershipMsg € (SentMessages')
Defn rec =
CHOOSE rec € [cohort : Cohorts, commitMsg : CommittedMsg] :
A LL!Replica(rec.cohort)! Ezecute(rec.commitMsg)
A rec.commitMsg.opn = opn — Alpha
Step 1.1. of 6
A LL!Replica(rec.cohort)! Execute(rec.commitMsg)
A rec.commitMsg.opn = opn — Alpha
Reasoning (1.1.): Only such an Ezecute action sends a MembershipMessage matching the
Case condition.
Step 1.2. of 6
A rec.commitMsg.opn € DOMAIN KnownState
A (LL!Replica(rec.cohort)! CsState') = KnownState[rec.commitMsg.opn]
Step 1.2.1. of 3
rec.commitMsg.opn = LL!Replica(rec.cohort)! CsState' .numExecuted
Reasoning (1.2.1.): Defn Ezecute; Defn CsTx
Step 1.2.2. of 3
A LL!Replica(rec.cohort)! CsState’ .numEzecuted € DOMAIN (KnownState')
A (LL'Replica(rec.cohort)! CsState’) =
(KnownState')[LL! Replica(rec.cohort)! CsState’ .numEzecuted]
Reasoning (1.2.2.):Ref: LocalState Consonant WithKnownState ; Defn Consonant
Step 1.2.3. of 3
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UNCHANGED KnownState
Reasoning (1.2.3.): Ezecute action sends no CommittedMsgs; KnownState only varies
over SentMessages N CommittedMsgs.
Reasoning (1.2.): substitution
Step 1.3. of 6
opn € DOMAIN LL!Replica(rec.cohort)!CsState' .membershipMap
Reasoning (1.3.): Defn Ezecute; Defn CsTx
Step 1.4. of 6
LL!Replica(rec.cohort)! CsState' .membershipMap|opn] = membership
Reasoning (1.4.): This action was responsible for sending membershipMsg (Defn
SendMessage), and Defn Execute constrains what message we send to match the mem-
bership in CsState’.
Step 1.5. of 6
opn € DOMAIN KnownState[(opn — Alpha)].membershipMap
Reasoning (1.5.): Substitute into Ref:Step 1.3. second conjunct of Ref:Step 1.2. ; substi-
tute in opn-Alpha from second conjunct of Ref:Step 1.1. .
Step 1.6. of 6
KnownState[(opn — Alpha)].membershipMap[opn] = membership
Step 1.6.1. of 2
KnownState[rec.commitMsg.opn].membershipMap[opn] =
LL!'Replica(rec.cohort)!CsState’ .membershipMap[opn)
Reasoning (1.6.1.): Ref:Step 1.2.
Step 1.6.2. of 2
KnownState[rec.commitMsg.opn].membershipMap[opn] = membership
Reasoning (1.6.2.): Ref:Step 1.4.
Reasoning (1.6.): substitute in opn-Alpha from second conjunct of Ref:Step 1.1. .

Reasoning (1.): We’ve satisfied each required conjunct.
DefaultCase 2. of 2
Step 2.1. of 1
UNCHANGED MembershipAs(opn, membership, LL!SentMessages)
Reasoning (2.1.): Case condition
Reasoning (2.): induction hypothesis ;Ref: KnownStateFcnEztended

Reasoning: Proof by case analysis

125



