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Abstract

We address the issue of judging the significance of
rare events as it typically arises in statistical natural-
language processing. We first define a general ap-
proach to the problem, and we empirically com-
pare results obtained using log-likelihood-ratios and
Fisher’s exact test, applied to measuring strength of
bilingual word associations.

1 Introduction

Since it was first introduced to the NLP commu-
nity by Dunning (1993), the G2 log-likelihood-ratio
statistic1 has been widely used in statistical NLP
as a measure of strength of association, particularly
lexical associations. Nevertheless, its use remains
controversial on the grounds that it may be unreli-
able when applied to rare events. For instance Ped-
ersen, et al. (1996) present data showing that signifi-
cance values for rare bigrams estimated with G2 can
differ substantially from the true values as computed
by Fisher’s exact test. Although Dunning argues
that G2 is superior to the chi-square statistic2 X2

for dealing with rare events, Agresti (1990, p. 246)
cites studies showing “X2 is valid with smaller sam-
ple sizes and more sparse tables than G2,” and either
X2 or G2 can be unreliable when expected frequen-
cies of less than 5 are involved, depending on cir-
cumstances.

The problem of rare events invariably arises
whenever we deal with individual words because
of the Zipfian phenomenon that, typically, no mat-
ter how large a corpus one has, most of the distinct
words in it will occur only a small number of times.
For example, in 500,000 English sentences sampled
from the Canadian Hansards data supplied for the

∗ From Proceedings of the 2004 Conference on Empirical
Methods in Natural Language Processing, Barcelona, Spain,
pp. 333–340.

1Dunning did not use the name G2, but this appears to be
its preferred name among statisticians (e.g., Agresti, 1990).

2Following Agresti, we use X2 to denote the test statistic
and χ2 to denote the distribution it approximates.

bilingual word alignment workshop held at HLT-
NAACL 2003 (Mihalcea and Pedersen, 2003), there
are 52,921 distinct word types, of which 60.5% oc-
cur five or fewer times, and 32.8% occur only once.

The G2 statistic has been most often used in NLP
as a measure of the strength of association between
words, but when we consider pairs of words, the
sparse data problem becomes even worse. If we
look at the 500,000 French sentences correspond-
ing to the English sentences described above, we
find 19,460,068 English-French word pairs that oc-
cur in aligned sentences more often than would be
expected by chance, given their monolingual fre-
quencies. Of these, 87.9% occur together five or
fewer times, and 62.4% occur together only once.
Moreover, if we look at the expected number of oc-
currences of these word pairs (which is the criteria
used for determining the applicability of the X2 or
G2 significance tests), we find that 93.2% would be
expected by chance to have fewer than five occur-
rences. Pedersen et al. (1996) report similar propor-
tions for monolingual bigrams in the ACL/DCI Wall
Street Journal corpus. Any statistical measure that
is unreliable for expected frequencies of less than 5
would be totally unusable with such data.

2 How to Estimate Significance for Rare
Events

A wide variety of statistics have been used to mea-
sure strength of word association. In one paper
alone (Inkpen and Hirst, 2002), pointwise mutual
information, the Dice coefficient, X2, G2, and
Fisher’s exact test statistic were all computed and
combined to aid in learning collocations. Despite
the fact that many of these statistics arise from
significance testing, the usual practice in applying
them in NLP is to choose a threshold heuristically
for the value of the statistic being used and discard
all the pairs below the threshold. Indeed, Inkpen
and Hirst say (p. 70) “there is no principled way of
choosing these thresholds.”

This may seem an odd statement about the mea-
sures that arise directly from significance testing,



but it is clear that if standard statistical tests are used
naively, the results make no sense in these applica-
tions. One might suppose that this is merely the re-
sult of the statistics in question not being applicable
to the rare events that predominate in NLP, but it is
easy to show this is not so.

2.1 When is Something Seen Only Once
Signficant?

Consider the case of two words that each occur only
once in a corpus, but happen to co-occur. Con-
ventional wisdom strongly advises suspicion of any
event that occurs only once, yet it is easy to see that
applying standard statistical methods to this case
will tend to suggest that it is highly significant, with-
out using any questionable approximations at all.

The question that significance tests for associa-
tion, such as X2, G2, and Fisher’s exact test, are
designed to answer is, given the sample size and
the marginal frequencies of the two items in ques-
tion, what is the probability (or p-value) of seeing by
chance as many or more joint occurrences as were
observed? In the case of a joint occurrence of two
words that each occur only once, this is trivial to cal-
culate. For instance, suppose an English word and a
French word each occur only once in our corpus of
500,000 aligned sentence pairs of Hansard data, but
they happen to occur together. What is the proba-
bility that this joint occurrence happened by chance
alone? We can suppose that the English word oc-
curs in an arbitrary sentence pair. The probability
that the French word, purely by chance, would oc-
cur in the same sentence pair is clearly 1 in 500,000
or 0.000002. Since it is impossible to have more
than one joint occurrence of two words that each
have only a single occurrence, 0.000002 is the exact
p-value for the question we have asked.

Clearly, however, one cannot assume that the as-
sociation of these two words is 0.999998 certain on
this basis alone. The problem is that there are so
many possible singleton-singleton pairs, it is very
likely that some of them will occur jointly, purely
by chance. This, too, is easy to calculate. In our
500,000 sentence pairs there are 17,379 English
singletons and 22,512 French singletons; so there
are 391,236,048 possible singleton-singleton pairs.
For each pair, the probability of having a joint oc-
currence by chance is 0.000002, so the expected
number of chance joint occurrences of singleton-
singleton pairs is 391, 236, 048 × 0.000002, or ap-
proximately 782.5.

The question of whether a singleton-singleton
pair is signficant or not then turns on how many
singleton-singleton pairs we observe. If we see only

about 800, then they are not signficant, because that
is just about the number we would expect to see by
chance. In our corpus, however, we see far more
than that: 19,312. Thus our best estimate of the
proportion of the singleton-singleton pairs that are
due to chance is 782.5/19312 = 0.0405, which we
can think of as the “expected noise” in the singleton-
singleton pairs. Looked at another way, we can es-
timate that at least 95.9% of the observed singleton-
singleton pairs are not due to chance, which we can
think of as “expected precision”.3 So, we conclude
that, for this data, seeing two singletons together is
significant at the 0.05 level, but this is more than five
orders of magnitude less significant than naive use
of standard p-values would suggest.

2.2 Generalizing the Method

In the previous section, we used the p-value for
the observed joint frequency given the marginal fre-
quencies and sample size as a our base statistical
measure. We used this in an indirect way, however,
that we could apply to any other measure of asso-
ciation. For example, for a joint occurrence of two
singletons in 500,000 samples, G2 is approximately
28.24. Therefore, if we wanted to use G2 as our
measure of association, we could compare the num-
ber of word pairs expected by chance to have a G2

score greater than or equal to 28.24 with the number
of word pairs observed to have a G2 score greater
than or equal to 28.24, and compute expected noise
and precision just as we did with p-values. In prin-
ciple, we can do the same for any measure of as-
sociation. The worst that can happen is that if the
measure of association is not a good one (i.e., if
it assigns values randomly), the expected precision
will not be very good no matter how high we set the
threshold.

This means that we can, if we wish, use two dif-
ferent statistics to estimate expected noise and pre-
cision, one as a measure of association and one
to estimate the number of word pairs expected by
chance to have a given level or higher of the asso-
ciation measure. In our experiments, we will use a
likelihood-ratio-based score as the measure of asso-
ciation, and contrast the results obtained using ei-
ther a likelihood-ratio-based test or Fisher’s exact

3Using the binomial distribution we can calculate that there
is a 0.99 probability that there are no more than 848 singleton-
singleton pairs by chance, and hence that there is a 0.99 prob-
ability that at least 95.6% of the observed singleton-singleton
pairs are not due to chance. Since this differs hardly at all from
the expected precision, and there is no a priori reason to think
overestimating precision is any worse than underestimating it,
we will use expected values of noise and precision as our pri-
mary metrics in the rest of the paper.



test to estimate expectations.
Computing the expected number of pairs with a

given association score or higher, for a large collec-
tion of word pairs having a wide range of marginal
frequencies, turns out to be somewhat tricky. We
must first compute the p-value for an association
score and then multiply the p-value by the appro-
priate number of word pairs. But if the association
score itself does not correlate exactly with p-value,
the relationship between association score and p-
value will vary with each combination of marginal
frequencies.4 Furthermore, even for a single com-
bination of marginal frequencies, there is in general
no way to go directly from an association score to
the corresponding p-value. Finally, until we have
computed all the expected frequencies and observed
frequencies of interest, we don’t know which as-
sociation score is going to correspond to a desired
level of expected precision.

These complications can be accomodated as fol-
lows: First compute the distinct marginal frequen-
cies of the words that occur in the corpus (sepa-
rately for English and French), and how many dis-
tinct words there are for each marginal frequency.
Next, choose a set of association score thresholds
that we would like to know the expected precisions
for.

Accumulate the expected pair counts for each
threshold by iterating through all possible combi-
nations of observed marginals. For each combina-
tion, compute the association score for each possi-
ble joint count (given the marginals and the sam-
ple size), starting from the smallest one greater than
the expected joint count C(x)C(y)/N (where C(x)
and C(y) are the marginals and N is the sample
size). Whenever the first association score greater
than or equal to one of the thresholds is encountered,
compute the associated p-value, multiply it by the
number of possible word pairs corresponding to the
combination of marginals (to obtain the expected
number of word pairs with the given marginals hav-
ing that association score or higher), and add the
result to the accumluators for all the thresholds that
have just been passed. Stop incrementing the pos-
sible joint frequency when either the smaller of the
two marginals is reached or the highest association
threshold is passed. (See Figure 1 for the details.)

At this point, we have computed the number of
word pairs that would be expected by chance alone

4We assume that for fixed marginals and sample size, and
joint frequencies higher than the expected joint frequency, the
association score will increase monotonically with the joint fre-
quency. It is hard to see how any function without this prop-
erty could be considered a measure of association (unless it
decreases monotonically as joint frequency increases).

for each observed C(x) {
for each observed C(y) {

possible pairs =
|values of x with frequency C(x)| ×
|values of y with frequency C(y)| ;

C0(x, y) = int(C(x)C(y)/N) + 1 ;
i = 1 ;
loop: for each C(x, y) such that

C0(x, y) ≤ C(x, y) ≤ min(C(x), C(y)) {
score = assoc(C(x, y), C(x), C(y), N ) ;
if (score ≥ threshold[i]) {

prob = p-value(C(x, y), C(x), C(y), N ) ;
expected pairs = prob × possible pairs ;
while (score ≥ threshold[i]) {

expected count[i] += expected pairs ;
if (i < number of thresholds) {

i++ ;
}
else {

exit loop ;
}

}
}

}
}

}

Figure 1: Algorithm for Expected Counts.

to have an association score equal to or greater than
each of our thresholds. Next we compute the num-
ber of word pairs observed to have an association
score equal to or greater than each of the thresh-
olds. The expected noise for each threshold is just
the ratio of the expected number of word pairs for
the threshold to the observed number of word pairs
for the threshold, and the expected precision is 1 mi-
nus the expected noise.

What hidden assumptions have we made that
could call these estimates into question? First, there
might not be enough data for the estimates of ex-
pected and observed frequencies to be reliable. This
should seldom be a problem in statistical NLP. For
our 500,000 sentence pair corpus, the cumulative
number of observed word pairs is in the tens of
thousands for for any association score for which
the estimated noise level approaches or exceeds 1%,
which yields confidence bounds that should be more
than adequate for most purposes (see footnote 3).

A more subtle issue is that our method may over-
estimate the expected pair counts, resulting in ex-
cessively conservative estimates of precision. Our
estimate of the number of pairs seen by chance for a
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Figure 2: Alternative Formulas for G2.

particular value of the association measure is based
on considering all possible pairs as nonassociated,
which is a valid approximation only if the number
of pairs having a significant positive or negative as-
sociation is very small compared to the total number
of possible pairs.

For the corpus used in this paper, this seems un-
likely to be a problem. The corpus contains 52,921
distinct English words and 66,406 distinct French
words, for a total of 3,514,271,926 possible word
pairs. Of these only 19,460,068 have more than the
expected number of joint occurrences. Since most
word pairs have no joint occurrences and far less
than 1 expected occurrence, it is difficult to get a
handle on how many of these unseen pairs might be
negatively associated. Since we are measuring asso-
ciation on the sentence level, however, it seems rea-
sonable to expect fewer word pairs to have a signifi-
cant negative association than a positive association,
so 40,000,000 seems likely to be a upper bound on
how many word pairs are significantly nonindepen-
dent. This, however, is only about 1% of the total
number of possible word pairs, so adjusting for the
pairs that might be significantly related would not
make an appreciable difference in our estimates of
expected noise. In applications where the signifi-
cantly nonindependent pairs do make up a substan-
tial proportion of the total possible pairs, an adjust-
ment should be made to avoid overly conservative
estimates of precision.

3 Understanding G2

Dunning (1993) gives the formula for the statistic
we are calling G2 in a form that is very compact,

but not necessarily the most illuminating:

2 [ log L(p1, k1, n1) + log L(p2, k2, n2) −
log L(p, k1, n1) − log L(p, k2, n2) ],

where
L(p, k, n) = pk(1 − p)n−k.

The interpretation of the statistic becomes clearer
if we re-express it in terms of frequencies and prob-
abilities as they naturally arise in association prob-
lems, as shown in a number of alternative formu-
lations in Figure 2. In these formulas, x and y
represent two words for which we wish to esti-
mate the strength of association. C(y) and C(¬y)
are the observed frequencies of y occurring or not
occurring in the corpus; C(x, y), . . . , C(¬x,¬y)
are the joint frequencies of the different possible
combinations of x and y occuring and not occur-
ing; and p(y), p(¬y), p(y|x), . . . , p(¬y|¬x) are the
maximum likelihood estimates of the corresponding
marginal and conditional probabilities.

Formula 1 expresses G2 as twice the logarithm
of a ratio of two estimates of the probability of a
sequence of observations of whether y occurs; one
estimate being conditioned on whether x occurs,
and the other not. The estimate in the numerator
is conditioned on whether x occurs, so the numera-
tor is a product of four factors, one for each possi-
ble combination of x occuring and y occuring. The
overall probability of the sequence is the product
of each conditional probability of the occurrence or
nonoccurrence of y conditioned on the occurrence
or nonoccurrence of x, to the power of the number
of times the corresponding combination occurs in
the sequence of observations. The denominator is



an estimate of the probability of the same sequence,
based only on the marginal probability of y. Hence
the denominator is simply the product of the prob-
abilty of y occuring, to the power of the number of
times y occurs, and the probabilty of y not occur-
ing, to the power of the number of times y fails to
occur.5

The rest of Figure 2 consists of a sequence of mi-
nor algebraic transformations that yield other equiv-
alent formulas. In Formula 2, we simply factor
the denominator into four factors corresponding to
the same combinations of occurrence and nonoc-
currence of x and y as in the numerator. Then,
by introducing x? and y? as variables ranging over
the events of x and y occurring or not occurring,
we can re-express the ratio as a doubly nested
product as shown in Formula 3. By distributing
the log operation over all the products and expo-
nentiations, we come to Formula 4. Noting that
C(x?, y?) = N · p(x?, y?) (where N is the sam-
ple size), and p(y?|x?)/p(y?) times p(x?)/p(x?) is
p(x?, y?)/p(x?)p(y?), we arrive at Formula 5. This
can be immediately recognized as 2N times the for-
mula for the (average) mutual information of two
random variables,6 using the maximum likelihood
estimates for the probabilities involved.

The near equivalence of G2 and mutual informa-
tion is important for at least two reasons. First, it
gives us motivation for using G2 as a measure of
word association that is independent of whether it
usable for determining significance. Mutual infor-
mation can be viewed as a measure of the informa-
tion gained about whether one word will occur by
knowing whether the other word occurs. A priori,
this is at least as plausible a measure of strength of
association as is the degree to which we should be
surprised by the joint frequency of the two words.

5The interpretation of G2 in terms of a likelihood ratio for
a particular sequence of observations omits the binomial co-
efficients that complicate the usual derivation in terms of all
possible sequences having the observed joint and marginal fre-
quencies. Since all such sequences have the same probability
for any given probability distributions, and the same number
of possible sequences are involved in both the numerator and
denominator, the binomial coefficients cancel out, yielding the
same likelihood ratio as for a single sequence.

6After discovering this derivation, we learned that it
is, in fact, an old result (Attneave, 1959), but it seems
to be almost unknown in statistical NLP. The only ref-
erence to it we have been able to find in the statisti-
cal NLP “literature” is a comment in Pederson’s publically
distributed Perl module for computing mutual information
(http://search.cpan.org/src/TPEDERSE/Text-NSP-0.69/ Mea-
sures/tmi.pm). It can also be seen as a special case of a more
general result presented by Cover and Thomas (1991, p. 307,
12.187–12.192), but otherwise we have not found it in any con-
temporary textbook.

Thus even if G2 turns out to be bad for estimating
significance, it does not follow that it is therefore a
bad measure of strength of association.

The second benefit of understanding the relation
between G2 and mutual information is that it an-
swers the question of how to compare G2 scores as
measures of strength of association, when they are
obtained from corpora of different sizes. Formula 5
makes it clear that G2 scores will increase linearly
with the size of the corpus, assuming the relevant
marginal and conditional probabilities remain the
same. The mutual information score is independent
of corpus size under the same conditions, and thus
offers a plausible measure to be used across corpora
of varying sizes.

4 Computing Fisher’s Exact Test
In Section 2 we developed a general method of es-
timating significance for virtually any measure of
association, given a way to estimate the expected
number of pairs of items having a specified degree
of association or better, conditioned on the marginal
frequencies of the items composing the pair and
the sample size. We noted that for some plausible
measures of association, the association metric it-
self can be used to estimate the p-values needed to
compute the expected counts. G2 is one such mea-
sure, but it is questionable whether it is usable for
computing p-values on the kind of data typical of
NLP applications. We will attempt to answer this
question empirically, at least with respect to bilin-
gual word association, by comparing p-values and
expected noise estimates derived from G2 to those
derived from a gold standard, Fisher’s exact test.

In this test, the hypergeometric probability distri-
bution is used to compute what the exact probability
of a particular joint frequency would be if there were
no association between the events in question, given
the marginal frequencies and the sample size. The
only assumption made is that all trials are indepen-
dent. The formula for this probability in our setting
is:

C(x)! C(¬x)! C(y)! C(¬y)!
N ! C(x, y)! C(¬x, y)! C(x,¬y)! C(¬x,¬y)!

The p-value for a given joint frequency is ob-
tained by summing the hypergeometric probability
for that joint frequency and every more extreme
joint frequency consistent with the marginal fre-
quencies. In our case “more extreme” means larger,
since we are only interested in positive degrees of
association.7 Because it involves computing fac-
torials of potentially large numbers and summing

7The null hypothesis that we wish to disprove is that a



over many possible joint frequencies, this test has
traditionally been considered feasible only for rela-
tively small sample sizes. However, a number op-
timizations enable efficient estimation of p-values
by Fisher’s exact test for sample sizes up to at least
1011 on current ordinary desktop computers, where
the limiting factor is the precision of 64-bit floating
point arithmetic rather than computation time.

Some keys to efficient computation of Fisher’s
exact test are:

• The logarithms of factorials of large numbers
can be efficiently computed by highly accurate
numerical approximations of the gamma func-
tion (Press et al., 1992, Chapter 6.1), based on
the identity n! = Γ(n + 1).

• The following well-known recurrence relation
for the hypergeometric distribution:

Pk =
Ck−1(¬x, y) Ck−1(x,¬y)

Ck(x, y) Ck(¬x,¬y)
Pk−1

makes it easy to calculate probabilities for a se-
quence of consecutive joint frequencies, once
the first one is obtained. (The subscript k indi-
cates parameters associated with the kth joint
frequency in the sequence.)

• The highest possible joint frequency will be the
smaller of the two marginal frequencies, so if
one of the marginals is small, few terms need
to be summed.

• If we iterate from less extreme joint frequen-
cies to more extreme joint frequencies, each
probability in the summation will be smaller
than the one before. If both the marginals
are large, the summation will often converge
to a constant value, given limited arithmetic
precision, long before the smaller marginal is
reached, at which point we can stop the sum-
mation.

By taking advantage of these observations, plus a
few other optimizations specific to our application,
we are able to estimate the necessary expected joint
frequencies for our 500,000 sentence pair corpus in
66.7 minutes using Fisher’s exact test, compared to
57.4 minutes using an approximate estimate based
on likelihood ratios, a time penalty of only 16% for
using the exact method.

pair of words is either negatively associated or not associated;
hence, a one-sided test is appropriate.

5 Estimating P-Values with
Log-Likelihood-Ratios

The usual way of estimating p-values from log-
likelihood-ratios is to rely on the fact that the p-
values for G2 asymtotically approach the well-
understood χ2 distribution, as the sample size in-
creases. This is subject to the various caveats and
conditions that we discussed in Section 1, however.
Since we have the ability to compute all of the ex-
act p-values for our corpus, we do not need to rely
on the χ2 approximation to test whether we can use
log-likelihood-ratios to estimate p-values. We can
empirically measure whether there is any consis-
tent relationship between log-likelihood-ratios and
p-values, and if so, use it empirically to estimate p-
values from log-likelihood-ratios without resorting
to the χ2 approximation. For all we know at this
point, it may be possible to empirically predict p-
values from G2 under conditions where the corre-
spondence with χ2 breaks down.

This means we can drop the heretofore mysteri-
ous factor of 2 that has appeared in all the formulas
for G2, since this factor seems to have been intro-
duced just to be able to read p-values directly from
standard tables for the χ2 distribution. To make it
clear what we are doing, from this point on we will
use a statistic we will call LLR which we define to
be G2/2.

To look for a relationship between LLR and p-
values as computed by Fisher’s exact test, we first
computed both statistics for a various combinations
of joint frequency, marginal frequencies, and sam-
ple sizes. Exploratory data analysis suggested a
near-linear relationship between LLR scores and
the negative of the natural logarithm of the p-values.
To make sure the apparent relationship held for a
real dataset, we computed the LLR scores and neg-
ative log p-values for all 19,460,068 English-French
word pairs in our corpus with more joint occur-
rences than expected by chance, and carried out a
least-squares linear regression, treating LLR score
as the independent variable and negative log p-value
as the dependent variable, to see how well we can
predict p-values from LLR scores. The results are
as follows:

slope: 1.00025
intercept: 1.15226
Pearson’s r2: 0.999986
standard deviation: 0.552225

With an r2 value that rounds off to five nines,
LLR score proves to be a very good predictor of
the negative log p-values over the range of values
considered. Moreover, with a slope of very close to



1, the LLR score and negative log p-values are not
merely correlated, they are virtually the same except
for the small delta represented by the intercept. In
other words,

p-value ≈ e−(LLR+1.15)

would seem to be not too bad an approximation.
The standard deviation of 0.55, however, is at

least slightly worrying. As a range of differences in
the logarithms of the predicted and actual p-values,
it corresponds to a range of ratios between the pre-
dicted and actual p-values from about 0.57 to 1.7.

6 Estimating Noise in Bilingual Word
Association

For our final experiment, we estimated the noise in
the bilingual word associations in our data by the
method of Section 2, using both Fisher’s exact test
and LLR scores via our regression equation to es-
timate expected pair counts. In both cases, we use
LLR scores as the measure of association. We com-
puted the cumulative expected noise for every inte-
gral value of the LLR score from 1 through 20.

To try to determine the best results we could get
by using LLR scores to estimate expected noise in
the region where we would be likely to set a cut-
off threshold, we recomputed the least-squares fit of
LLR and negative log p-value, using only data with
LLR scores between 5 and 15.8 We obtained the
following values for the parameters of the regres-
sion equation from the re-estimation:

slope: 1.04179
intercept: 0.793324

Note that the re-estimated value of the intercept
makes it closer to the theoretical value, which is
− log(0.5) ≈ 0.69, since independence corresponds
to an LLR score of 0 and a p-value of 0.5.

The results of these experiments are summarized
in Table 1. The first column shows the potential
LLR association score cut-offs, the second col-
umn is the expected noise for each cut-off esti-
mated by Fisher’s exact test, the third column gives
the noise estimates derived from p-values estimated
from LLR scores, and the fourth column shows the
ratio between the two noise estimates. If we look
at the noise estimates based on our gold standard,
Fisher’s exact test, we see that the noise level is be-
low 1% above an LLR score of 11, and rises rapidly

8This constitutes training on the test data for the sake of ob-
taining an upper bound on what could be achieved using LLR
scores. Should we conclude that LLR scores look promising
for this use, one would want to re-run the test training the re-
gression parameters on held-out data.

Fisher LLR
Cut-Off Noise Est Noise Est Ratio

1 0.624 0.792 1.27
2 0.516 0.653 1.27
3 0.423 0.384 0.91
4 0.337 0.274 0.81
5 0.256 0.183 0.71
6 0.181 0.114 0.63
7 0.119 0.0650 0.55
8 0.0713 0.0338 0.47
9 0.0394 0.0159 0.40

10 0.0205 0.00695 0.34
11 0.00946 0.00260 0.27
12 0.00432 0.000961 0.22
13 0.00136 0.000221 0.16
14 0.00137 0.000166 0.12
15 3.52e-005 2.00e-005 0.57
16 1.56e-005 8.02e-006 0.51
17 6.82e-006 3.19e-006 0.47
18 2.94e-006 1.24e-006 0.42
19 1.24e-006 4.65e-007 0.38
20 5.16e-007 1.72e-007 0.33

Table 1: Word Association Noise Estimates.

below that. This confirms previous annecdotal ex-
perience that an LLR score above 10 seems to be a
reliable indicator of a significant association.

The comparison between the two noise estimates
indicates that the LLR score underestimates the
amount of noise except at very high noise levels.
It is worst when the LLR score cut-off equals 14,
which happens to be just below the LLR score
(14.122) for singleton-singleton pairs. Since, for
a given sample size, singleton-singleton pairs have
the lowest possible expected joint count, this is
probably the effect of known problems with estimat-
ing p-values from likelihood ratios when expected
counts are very small.

7 Conclusions

When we use Fisher’s exact test to estimate p-
values, our new method for estimating noise for col-
lections of rare events seems to give results that
are quite consistent with our previous annecdotal
experience in using LLR scores as a measure of
word association. Using likelihood ratios to esti-
mate p-values introduces a substantial amount of er-
ror, but not the orders-of-magnitude error that Dun-
ning (1993) demonstrated for estimates that rely on
the assumption of a normal distribution. However,
since we have also shown that Fisher’s exact test can
be applied to this type of problem without a major



computational penalty, there seems to be no reason
to compromise in this regard.
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