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Abstract

We introduce a new model of genetic diversity which summarizes a large
input dataset into an epitome, a short sequence or a small set of short
sequences of probability distributions capturing many overlapping sub-
sequences from the dataset. The epitome as a representation has already
been used in modeling real-valued signals, such as images and audio. The
discrete sequence model we introduce in this paper targets applications
in genetics, from multiple alignment to recombination and mutation in-
ference. In our experiments, we concentrate on modeling the diversity of
HIV where the epitome emerges as a natural model for producing rela-
tively small vaccines covering a large number of immune system targets
known as epitopes. Our experiments show that the epitome includes more
epitopes than other vaccine designs of similar length, including cocktails
of consensus strains, phylogenetic tree centers, and observed strains. We
also discuss epitome designs that take into account uncertainty about T-
cell cross reactivity and epitope presentation. In our experiments, we find
that vaccine optimization is fairly robust to these uncertainties.

1 Introduction

Within and across instances of a certain class of a natural signal, such as a facial image, a bird
song recording, or a certain type of a gene, we find many repeating fragments. The repeating
fragments can vary slightly and can have arbitrary (and usually unknown) sizes. For instance,
in cropped images of human faces, a small patch capturing an eye appears in an image twice
(with a symmetry transformation applied), and across different facial images many times, as
humans have a limited number of eye types. Another repeating structure across facial images
is the nose, which occupies a larger patch. In mammalian DNA sequences, we find repeating
regulatory elements within a single sequence, and repeating larger structures (genes, or gene
fragments) across species. Instead of defining size, variability and typical relative locations
of repeating fragments manually, in an application-driven way, the ‘epitomic analysis’ [5]
is an unsupervised approach to estimating repeating fragment models, and simultaneously
aligning the data to them. This is achieved by considering data in terms of randomly selected
overlapping fragments, or patches, of various sizes and mapping them onto an ‘epitome,’
a learned structure which is considerably larger than any of the fragments, and yet much
smaller than the total size of the dataset.

We first introduced this model for image analysis [5], and it has since been used for video
and audio analysis [2, 6], as well. This paper introduces a new form of the epitome as
a sequence of multinomial distributions (Fig. 1), and describe its applications to HIV
diversity modeling and rational vaccine design. We show that the vaccines optimized using
our algorithms are likely to have broader predicted coverage of immune targets in HIV than
the previous rational designs.
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Figure 1: The epitome (e) learned from data synthesized from the generating profile sequence (Section
5). A color coding in the epitome and data sequences is used to show the mapping between epitome
and data positions. A white color indicates that the letter was likely generated from the garbage
component of the epitome. The distribution p(T ) shows which 9mers from the epitome were more
likely to generate patches of the data.

2 Sequence epitome
The central part of Fig. 1 illustrates a small set of amino acid sequences X = {xij} of size
MN (with i indexing a sequence, and j indexing a letter within a sequence, and M = max i,
N = max j). The sequences share patterns (although sometimes with discrepancies in
isolated amino-acids) but one sequence may be similar to other sequences in different
regions. The sequences are generated synthetically by combining the pieces of the profile
sequence given in the first line of the figure, with occasional insertions of random sequence
fragments, as discussed in Section 5. Sequence variability in this synthetic example is
slightly higher than that found in the NEF protein of the human immunodeficiency virus
(HIV) [7], while the envelope proteins of the same virus exhibit more variability. Examples
of high genetic diversity can also be found in higher-level organisms, for example in the
regions coding for immune system’s pattern recognition molecules.

The last row in the figure illustrates an epitome optimized to represent the variability in the
sequences above. In general, the epitome is a smaller array E = {emn} of size Me ×Ne,
where MeNe � MN . In the figure, Me = 1. An epitome can be parameterized in
different ways, but in the figure, each epitome element emn is a multinomial distribution
with the probability of each letter represented by its height. The epitome’s summarization
quality is defined by a simple generative model which considers the data X in terms of
shorter subsequences, XS . A subsequence XS is defined as an ordered subset of letters
from X taken from positions listed in the ordered index set S. For instance, the set S =
{(4, 8), (4, 9), (4, 10), (4, 11)} points to a contiguous patch of letters in the fourth sequence
XS = RQKK. Similarly, set S = {(6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} points to the patch
XS = LDRQK in the sixth sequence. A number of such patches1 of various lengths can
be taken randomly (and with overlap). The quality of the epitome is then defined as the total
likelihood of these patches under the generative model which generates each patch from a
set of distributions ET , where T is an ordered set of indices into the epitome (In the figure,
the epitome is defined on a circle, so that the index progression continues from Ne to 1.
(This reduces local minima problems in the EM algorithm for epitome learning as discussed
in Sections 4 and 5). For each data patch, the mapping T is considered a hidden variable,

1In principal, noncontiguous patches can be taken as well, if the application so requires.



and the generative process is assumed to consist of the following two steps

• Sample a patch ET from E according to p(T ). To illustrate p(T ) in Fig. 1,
we consider only the set of of all 9-long contiguous patches. For such patches,
which are sometimes called nine-mers, we can index different sets T by their first
elements and plot p(T ) as a curve with the domain {1, ..., Ne − 8}.

• Generate a patch XS from ET according to p(XS |ET ) =
∏|T |

k=1 eT (k)(XS(k)),
with T (k) and S(k) denoting the k-th element in the epitome and data patches.

Each execution of these two steps can, in principle, generate any pattern. The probability
(likelihood) of generating a particular pattern indicated by S is

p(XS) =
∑

T
p(XS |ET )p(T ). (1)

Given the epitome, we can perform inference in this model and compute the posterior
distribution over mappings T for a particular model. For instance, for XS = RQKK,
the most probable mapping is T = {(1, 4), (1, 5), (1, 6), (1, 7)}. In Section 4, we discuss
algorithms for estimating the epitome distributions.

Our illustration points to possible applications of epitomes to multiple sequence alignment,
and therefore requires a short discussion on similarity to other biological sequence models
[3]. While the epitome is a fully probabilistic model and thus defines a precise cost function
for optimization, as was the case with HMM-based models, or dynamic programming
solutions to sequence alignment, the main novelty in our approach is the consideration
of both the data and the model parameters in terms of overlapping patches. This leads to
the alignment of different parts of the sequences to the joint representation without explicit
constraints on contiguity of the mappings or temporal models used in HMMs. Also, as we
discuss in the next section, our goal is diversity modeling, and not multiple alignment. The
epitome’s robustness to the length, position and variability of repeating sequence fragments
allows us to bypass both the task of optimal global alignment, and the problem of defining
the notion of global alignment. In addition, consideration of overlapping patches in a
biological sequence can be viewed as modeling independent binding processes, making the
patch independence assumption of our generative model biologically relevant. We illustrate
these properties of the epitome on the problem of HIV diversity modeling and rational
vaccine design.

3 HIV evolution and rational vaccine design
Recent work on the rational design of HIV vaccines has turned to cocktail approaches
with the intention of protecting a person against many possible variants of the HIV virus.
One of the potential difficulties with cocktail design is vaccine size. Vaccines with a large
number of nucleotides or amino acids are expensive to manufacture and more difficult to
deliver. In this section, we will show that epitome modeling can overcome this limitation
by providing a means for generating smaller vaccines representing a wide diversity of HIV
in an immunologically relevant way. We focus on the problem of constructing an optimal
cellular vaccine in terms of its coverage of MHC-I epitopes, short contiguous patterns of
8-11 aminoacids in HIV proteins [8].

Major histocompatibility complex (MHC) molecules are responsible for presentation of
short segments of internal proteins, called “epitopes,” on the surface of a cell. These
peptides (protein segments) can then be observed from outside the cell by killer T-cells,
which normally react only to foreign peptides, instructing the cell to self-distruct. The killer
cells and their offspring have the opportunity to bind to multiple infected cells, and so their
first binding to a particular foreign epitope is used to accelerate an immune reaction to other
infected cells exposing the same epitope. Such responses are called memory responses
and can persist for a long time after the infection has been cleared, providing longer-term
immunity to the disease. The goal of vaccine design is to create artifical means to produce
such immunological memory of a particular virus without the danger of developing the
disease.



In the case of a less variable virus, the vaccination may be possible by delivering a foreign
protein similar to the viral protein into a patient’s cells, triggering the immune response.
However, HIV is capable of assuming many different forms, and immunization against a
single strain is largely expected to be insufficient. In fact, without appropriate optimization,
the number of different proteins needed to cover the viral diversity would be too large for
the known vaccine delivery mechanisms. It is well known that epitopes within and across
the strains in a population overlap [7]. The epitome model naturally exploits this overlap to
construct a vaccine that can prime the immune system to attack as many potential epitopes
as possible. For instance, if the sequences in Fig 1 were HIV fragments from different
strains of the virus, then the epitome would contain many potential epitopes of lengths 8-11
from these sequences. Furthermore, the context of the captured epitopes in the epitome is
similar to the context in the epitomized sequences, which increases the chances of equivalent
presentation of the epitome and data epitopes.

MHC molecules are encoded within the most diverse region of the human genome. This
gives our species a diversity advantage in numerous clashes with viruses. Each individual
has a slightly different set of MHC molecules which bind to different motifs in the proteins
expressed and cleaved in the cell. Due to the limitation in MHC binding, each person’s
cells are capable of presenting only a small number of epitopes from the invading virus, but
an entire human population attacks a diverse set of epitopes. The MHC molecule selects
the protein fragments for presentation through a binding process which is loosely motif-
specific. There are several other processes that precede or follow the MHC binding, and
the combination of all of these processes can be characterized either by the concentration
of presented epitopes, or by the combination of the binding energies involved in these
processes2. Some of these processes can be influenced by a context of the epitope (short
amino acid fragments in the regions on either side of the epitope).

Another issue to be considered in HIV evolution and vaccine design is the T-cell cross
reactivity: The killer cells primed with one epitope may be capable of binding to other related
epitopes, and therefore a small set of priming epitopes may induce a broader immunity. As
in the case of MHC binding, the likelihood of priming a T-cell, as well as cross-reaction
with a different epitope, can be linked to the binding energies.

The epitome model maps directly to these immunity variables. If the epitome content is to
be delivered to a cell in the vaccination phase, then each patch ET indexed by data index set
T corresponds either to an epitope or to a longer contiguous patch (e.g. 12 amino acids or
more) containing both an epitope and its context that influences presentation. The prior p(T )
reflects the probability of presentation of the epitome fragments, and should reflect processes
invloved in presentation, including MHC binding. The presented epitome fragments ET in
different patients’cells may primeT-cells capable of cross-reacting with some of the epitopes
XS presented by the infected cells infected by one of the known strains in the dataset
X. The cross-reaction distribution corresponds to the epitome distribution p(XS |ET ).
Vaccination is successful if the vaccine primes the immune system to attack targets found in
the known circulating strains. A natural criterion to optimize is the similarity between the
distribution over the epitopes learned by the immune systems of patients vaccinated with
the epitome (taking into account the cross-reactivity) and the distribution over the epitopes
from circulating strains. Therefore, the vaccine quality directly depends on the likelihood of
the designated epitopes p(XS) under the epitome. To see this, consider directly optimizing
the KL divergence between the distribution pd(Xs) over epitopes found in the data and the
distribution over the targets for which the T-cells are primed according to p(Xs). This KL
distance differs from the log likelihood of all the data patches weighted by pd(Xs),

log p({XS}d) =
∑

S
pd(XS) log

∑

T
p(XS |ET )p(T ), (2)

only by a constant (the entropy of pd(Xs)). The distribution pd(Xs) can serve as the
indicator of epitopes and be equal to either zero or a constant for all patches, and then
the above weighted likelihood is equivalent to the total likelihood of selected patches. This

2The probabilities of physical events are often modeled as having an exponential relationship with
the energy changes.



distribution can also reflect the probability of presentation of epitopes XS , or the uncertainty
of the experiment or the prediction algorithm used to predict which parts of the circulating
strains correspond to MHC epitopes.

While the epitome can serve as a diversity model and be used to construct evolutionary
models and peptides for experimental epitope discovery, it can also serve as as an actual
immungen (the pattern containing the immunologically important message to the cell) in
vaccine. The most general version of epitome as a sequence of mutlinomial distributions
could be relevant for sequence classification, recombination modeling, and design of pep-
tides for binding essays. In some of these applications, the distribution p(XS |ET ) may
have a semantics different than cross-reactivity, and could for instance represent mutations
dependent on the immune type of the host, or the subtype of the virus. On the other hand,
when the epitome is used for immunogen design, then cross-reactivity p(XS |ET ) can be
conveniently captured by constraining each distribution emn to have probabilities for the
twenty aminoacids from the set { ε

19 , 1− ε}. The mode of the epitome can then be used as a
deterministic vaccine immunogen3, and the probability of cross-reaction will then directly
depend on the number of letters in XS that are different from the mode of ET .

While the epitome model components are mapped here to the elements of the interaction
between HIV and the immune system of the host, other applications in biology would
probably be based on a different semantics for the epitome components. We would expect
that the epitome would map to biological sequence analysis problems more naturally than to
image and audio modeling tasks, where the issue of the partition function arises. Epitome as
a generative model over-generates - generated patches overlap, and so each data element is
generated multiple times. In the image applications, we have avoided this problem through
constraints on the posterior distributions, while the traditional approach would be to deal
with the partition function (perhaps through sampling). However, the strains of a virus
are observed by the immune system through overlapping patches, independently sampled
from the viral proteins by biological processes. This fits epitome as a vaccination model.
More generally, epitome is compatible with the evolutionary forces that act independently
on overlapping patches of a biological sequence.

4 Epitome learning
Since epitomes can have multiple applications, we provide a general discussion of optimiza-
tion of all parameters of the epitome, although in some applications, some of the parameters
may be known a priori. As a unified optimization criterion we use the free energy [9] of the
model (2),

F ({XS}d|E) =
∑

S

pd(XS)
∑

T
q(T |S) log

q(T |S)
p(XS |ET ) p(T )

, (3)

where q(T |S) is an variational distribution, where

− log p({XS}d|E) = arg min
q

F ({XS}d|E). (4)

The model can be learned by iteratively reducing F , varying in each iteration either q or the
model parameters. When modeling biological sequences, the free energy may be associated
with real physical events, such as molecular binding processes, where log probabilities
correspond to molecular binding energies.

Setting to zero the derivatives of F with respect to the q distributions, the distribution p(T ),
and the distributions em(�) for all positions m, we obtain the EM algorithm [5]:

• For each XS , compute the posterior distribution over patches q(T |S):

q(T |S)← p(XS |ET ) p(T )∑
T p(XS |ET ) p(T )

. (5)

3To our knowledge, there is no effective way of delivering epitome as a distribution over proteins
or fragments into the cell



• Using these q distributions, update the profile sequence:

em(�)←
∑

S pd(XS)
∑

k

∑
T |T (k)=m q(T |S)[XS(k) = �]

∑
S pd(XS)

∑
k

∑
T |T (k)=m q(T |S)

, (6)

where [·] is the indicator function ([true] = 1; [false] = 0). If desired, also update
p(T ):

p(T )←
∑

S pd(XS) q(T |S)∑
S pd(XS)

. (7)

The E step assigns a responsibility for S to each possible epitome patch. The M step re-
estimates the epitome multinomials using these responsibilities. As mentioned, this step
can re-estimate the usage probabilities of patches in the epitome, or this distribution can be
kept constant. It is often useful to construct the index sets T such that they wrap around
from one end to another. Such circular topologies can deter the EM algorithm from settling
in a poor local maximum of log likelihood. It is also sometimes useful to include a garbage
component (a component that generates patches containing random letters) in the model.

In general, the EM algorithm is prone to problems of local maxima. For example, if we
allowed the epitome to be longer, then some of the sites with two equally likely letters
could be split into two separate regions of the epitome (and in some applications, such
as vaccine optimization, this is preferred, as the epitomes need to become determinis-
tic). Epitomes situated at different local maxima, however, often define similar probability
distributions p({XS}|E), and can be used for various inference tasks such as sequence
recognition/classification, noise removal, and context-dependent mutation prediction.

Of course, there are optimization algorithms other than EM that can learn a profile sequence
by minimizing the free energy, E = arg minE minq F ({XS}d|E). In some situations,
such as vaccine design, it is desirable to produce deterministic epitomes (containing point-
mass probability distributions). Such profile sequences can be obtained by annealing the
parameter ε that controls the amount of probability allowed to be distributed to the letter
different from the most likely letter �̂m = arg max� em(�):

E = lim
ε→0

arg min
E

min
q

F ({XS}d|E). (8)

Finally, in cases when the probability mass is uniformly spread over the letters other than
the modes of the epitome distributions, i.e.,emn(�) ∈ { ε

19 , 1− ε}, the myopic optimization
is a faster way of creating epitomes of high fragment (epitope) coverage than the EM with
multiple initializations. The myopic optimization consists of iteratively increasing the length
of the epitome by appending a patch (possibly with overlap) from the data which maximally
reduces the free energy. The process stops once the desired length is achieved (rather than
when the entire set of patches is included as in the superstring problem).

5 Experiments
To illustrate the EM algorithm for epitome learning, we created the synthetic data shown (in
part) in Figure 1. The data, eighty sequences in all, were synthesized from the generating
profile sequence of length fifty shown on the top line of the figure. In particular, each data
sequence was created by extracting one to four (mean two) patches from the generating
sequence of length three to thirty (mean sixteen), sampling from these patches to produce
corresponding patches of amino acids in the data sequence, and then filling in the gaps in the
data sequence with amino acids sampled from a uniform distribution over amino acids. In
addition, five percent of the sites in the each data sequence were subsequently replaced with
an amino acid sampled from a uniform distribution. The resulting data sequences ranged
in length from 38 to 43; and on average 80% of aminoacids in each sequence come from
the generating sequence. Thus, the synthesized data roughly simulates genetic diversity
resulting from a combination of mutation, insertion, deletion, and recombination.

We learned an epitome model using the EM algorithm applied to all 9mer patches from
the data, equally weighted. We used a two-component epitome mixture, where the first
component is an (initially unknown) sequence of probability distributions, and the sec-
ond component is a garbage component, useful for representing the random insertions and



mutations. Each site in the first component was initialized to a distribution slightly (and
randomly) perturbed from uniform. The length of this component was set to be slightly
longer than the original generating sequence. In previous experiments, we have found that
a longer length helps to prevent the EM algorithm from settling in a poor local maximum
of log likelihood, and it is subsequently possible to cut out unnecessary parts which can
be detected in the learned prior p(T ). Also, we used an epitome with a circular topology.
The first (non-garbage) component of the epitome learned after sixty iterations, shown in
Figure 1, closely resembels the generating sequence even though it never saw this generat-
ing sequence during learning. (Roughly, the generating sequence starts near the end of the
epitome with the patch “LIC” coded in red, and wraps around to the patch “EHQ” coded
in yellow. The portion of the epitome between yellow and red is not responsible for many
patches, as reflected in the distribution p(T ).) The sixty iterations of EM are illustrated in
the video available at www.research.microsoft.com/∼jojic/pEpitome.mpg. For each itera-
tion, we show the first (non-garbage) component of the epitome E, the distribution p(T ),
and the first ten sequences in the dataset, color-coded according to the mode of q(T |S), as
in Figure 1. The video illustrates how the EM algorithm simultaneously learns the epitome
model and aligns the data sequences.

When used for vaccine optimization, some epitome parameters can be preset based on
biological knowledge. In particular, in the experiments we report on 176 gag HIV proteins
from the WA cohort [8], we assume no cross reactivity (i.e., we set ε = 0) and we consider
two different possibilities for the patch data distribution pd(XS). The first parameter setting
we consider is that pd(XS) is uniform for all ten amino-acid blocks found in the sequence
data. The advantage of the uniform data distribution is that we only need sequence data for
vaccine optimization, and not the epitope identities. The free energy criterion can be easily
shown to be proportional (with a negative constant) to the coverage - the percentage of all
10mers from the data covered by the epitome, where the 10mer is considered covered if it can
be found as a contiguous patch in the epitome’s mode. Another advantage of this approach
is that it can not miss epitopes due to errors in prediction algorithms or experimental epitope
discovery, as long as sufficient coverage can be guaranteed for the given vaccine length.

The second setting of the parameters pd(XS) we consider is based the SYFPEITHI database
[10] of known epitopes. We trained pd(XS) on this data using a decision tree model
to represent the probability that an observed 10mer contains a presentable epitope. The
advantage of this approach is that we can potentially focus our modeling power only to
immunologically important variability, as long as the known epitope dataset is sufficient to
capture properly the epitope distribution for at least the most frequent MHC-I molecules.
Thus, for a given epitome length, we may obtain more potent vaccines than using the first
parameter setting. Since ε = 0, the resulting optimization reduces to optimizing expected
epitope coverage, i.e., the sum of all probabilities

For both epitome settings, we epitomized the 176 gag proteins in the dataset, using the
myopic algorithm, and compared the expected epitope coverage of our vaccine candidates
with those of other designs, including cocktails of tree centers, consensus, and actual strains
(Fig. 2). Phylogenies were constructed using neighbor joining, as is used in Phylip [4].
Clusters were generated using a mixture model of independent multinomials [1]. Observed
sequences in the sequence cocktails were chosen at random. Both epitome models yield
better coverage and the expected epitope coverage than other designs for any fixed length.
Results are similar for the pol, nef, and env proteins. An interesting finding to note is that the
epitome optimized for coverage (using uniform distribution pd(XS)) provides essentially
equally good expected coverage as the epitome directly optimized for the expected coverage.
This is less surprising than it may seem - both true and predicted epitopes overlap in the
sequence data, and so epitomizing all 10mers leads to similar epitomes as optimizing for
coverage of the select few, but frequently overlapping epitopes. This is a direct consequence
of the epitome representation, which was found appealing in previous applications for the
same robustness to the number and sizes of the overlapping patches. It also indicates the
possibility that an effective vaccine can be optimized without precise knowledge of all HIV
epitopes.
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Figure 2: Expected coverage for 176 Perth gag proteins using candidate sequences of length ten. For
comparison, we show expected coverage for the epitome optimized to cover all 10mers.

6 Conclusions
We have introduced the epitome as a new model of genetic diversity, especially well suited
to highly variable biological sequences. We show that our model can be used to opti-
mize HIV vaccines with larger predicted coverage of MHC-I epitopes than other con-
structs of similar lengths and so epitome can be used to create vaccines that cover a large
fraction of HIV diversity. We also show that epitome optimization leads to good vac-
cines even when all subsequence of length 10 are considered epitopes. This suggests
that the vaccines could be optimized directly from sequence data, which are technolog-
ically much easier to obtain than epitope data. Our analysis of cross-reactivity which
provided similar empirical evidence of epitome robustness to cross-reactivity assumptions
(see www.research.microsoft.com/∼jojic/HIVepitome.html for the full set of results).
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