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ABSTRACT 
HIPs, or Human Interactive Proofs, are challenges meant 
to be easily solved by humans, while remaining too hard 
to be economically solved by computers. HIPs are 
increasingly used to protect services against automatic 
script attacks. To be effective, a HIP must be difficult 
enough to discourage script attacks by raising the 
computation and/or development cost of breaking the HIP 
to an unprofitable level. At the same time, the HIP must 
be easy enough to solve in order to not discourage 
humans from using the service. Early HIP designs have 
successfully met these criteria [1]. However, the growing 
sophistication of attackers and correspondingly increasing 
profit incentives have rendered most of the currently 
deployed HIPs vulnerable to attack [2,7,12]. Yet, most 
companies have been reluctant to increase the difficulty of 
their HIPs for fear of making them too complex or 
unappealing to humans.  The purpose of this study is to 
find the visual distortions that are most effective at foiling 
computer attacks without hindering humans. The 
contribution of this research is that we discovered that 1) 
automatically generating HIPs by varying particular 
distortion parameters renders HIPs that are too easy for 
computer hackers to break, yet humans still have 
difficulty recognizing them, and 2) it is possible to build 
segmentation-based HIPs that are extremely difficult and 
expensive for computers to solve, while remaining 
relatively easy for humans. 

Author Keywords 
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Human Interaction Proofs (HIPs), Completely Automated 
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INTRODUCTION 
HIPs, or Human Interactive Proofs, are challenges meant 
to be easily solved by humans while remaining too hard to 
be solved economically by computers (see Figure 1). For 
instance, a HIP challenge (or HIP) could be a pixel image 
of distorted characters, and the proper response would be 
the ASCII string of corresponding characters (in this case, 
D98LDGNV).  

HIPs are increasingly used to protect services against 
automatic script attacks. Examples of such services 
include email (spam), online registrations (fraud, denial of 
service, or DoS), ticket/event reservations (DoS), online 
voting (stuffing), login (DoS), chat rooms, weblogs, etc. 
Many companies such as Yahoo, Microsoft, 
TicketMaster, Register.com, and Google, are currently 
using HIPs to protect their online services. To be 
effective, a HIP must be difficult enough to discourage 
script attacks by raising the computation and/or 
development costs of breaking the HIP to an unprofitable 
level. At the same time, the HIP must be easy enough to 
not discourage humans from using the service. Early HIP 
designs have successfully met these criteria [1]. For 
instance, when MSN Hotmail deployed its first HIP, 
hotmail registrations dropped by 19% without impacting 
customer support inquiries. A study of the data revealed 
that the drop corresponded to mail accounts acquired by 
scripts for the purpose of spamming. However, the 
growing sophistication of attackers and increasing profit 
incentives have rendered most of the currently deployed 
HIPs vulnerable to attacks [2,12]. Yet, most companies 
have been reluctant to increase the difficulty of their HIPs 

 

 

Figure 1: An example character based HIP 



 

for fear of making them too complex or unappealing to 
humans. This has raised an important question: Is it 
possible to design human-friendly HIPs that are easy for 
humans but difficult for computers?  

Work on distinguishing computers from humans traces 
back to the original Turing test [3] which asks that a 
human distinguish between another human and a machine 
by asking questions of both. In contrast, we are interested 
in building a computer program designed to distinguish 
between another computer program and a human [4]. 
Such programs have been called reverse Turing tests, 
HIPs, or CAPTCHAs (Completely Automated Public 
Turing Tests to Tell Computer and Human Apart) [6]. An 
overview of this work can be found in [5]. Construction 
of HIPs of practical value is difficult because it is not 
sufficient to develop challenges to which humans are 
somewhat more successful than machines. This is because 
the cost of failure from using machines to solve the 
puzzles may be very small. In practice, if one wants to 
block automated scripts, a challenge at which humans are 
about 90% successful and machines are 1% successful, 
may not be sufficient, especially when the cost of failure 
and repetition is low for the machine [2,7,12]. At the 
same time, the identical challenge must not put too much 
burden on the human in order to avoid discouraging the 
use of the service. This is summarized in Figure 2. 

The figure shows an ideal distribution of HIPs. The sweet 
spot, where the HIPs are easy for humans to recognize but 
difficult for hackers to crack, is not guaranteed to actually 
exist. Furthermore, automatically generated HIPs, being 
random in nature, will have a distribution of difficulty, 
with some particular instances extending beyond the 
hypothesized sweet spot. Depending on the cost of the 
attack and the value of the service, automatic scripts 
should not be more successful than 1 in 10,000 (0.01%) 
and the human success rate should approach at least 90%.  
While the latter is a common requirement for reducing the 
number of retries a human user has to endure, the former 
is obtained by analyzing the cost of hiring humans to 
solve HIPs. For example, requiring a signup HIP for 
creating an e-mail account only imposes a maximal cost 

of about .002 cents per message, while the minimum 
estimate for the costs/potential revenue from sending 
spam are around .0025 cents, with many spammers 
charging or earning 5 to 10 times that [12]. The sweet 
spot will decrease in size over time as computers get 
faster, attackers get more sophisticated, and HIPs are 
specifically targeted. Unfortunately, humans are unlikely 
to get better at solving HIPs in the same timeframe 
[10,11].   

We have come across dozens of proposals for HIP 
designs, ranging from counting objects in a picture, 
segmenting faces, recognizing animations, identifying 
words in audio, etc. [6]. Among visual challenges, 
character identification is the most obvious favorite 
because 1) OCR (optical character recognition) is a well 
studied field and the state of the art is well known, 2) 
characters were designed by humans for humans and 
humans have been trained at the task since childhood, 3) 
each character has a corresponding key on the keyboard 
and 8 keystrokes span a space of over 1000 billion 
solutions, 4) the task is easily understood by users without 
much instruction, and 5) character-based HIPs can be 
generated quickly (300 8-character HIPs per second on a 
3GHz P4 [2,12]). Owing to these merits, character-based 
HIPs have been adopted by several companies to protect 
various services on the web. A few examples are 
presented below: 

Mailblocks: While signing up for free email service with 
mailblocks (www.mailblocks.com), one will find HIP 
challenges of the type: shown in Figure 3(a). 

MSN: Starting in July 2004, MSN introduced their 
second generation HIP. While signing up for free e-mail 
with MSN Hotmail (www.hotmail.com), one will find 
HIP challenges of the type shown in Figure 3(b). 

Register.com: While requesting a whois lookup for a 
domain at www.register.com, one will find HIP 
challenges of the type shown in Figure 3(c). 

EZ-Gimpy (CMU): While signing up for free e-mail 
service with Yahoo! (www.yahoo.com) before August 
2004, one received HIP challenges of the type shown in 
Figure 3(d). 

Yahoo!: Starting in August 2004, Yahoo! introduced their 
second generation HIP. Two examples are presented in 
Figure 3(e). 

Ticketmaster: While looking for concert tickets at 
www.ticketmaster.com, one will receive HIP challenges 
of the type shown in Figure 3(f). 

Google/Gmail: While signing up for free e-mail with 
Gmail at www.google.com, one will receive HIP 
challenges of the type shown in Figure 3(g). 

So, while solutions to Yahoo HIPs (before August ‘04) 
are common English words, those for Ticketmaster and 
Google do not necessarily belong to the English 

 

Figure 2: Regions of feasibility as a function of HIP difficulty 
for humans and computer algorithms. 



 

dictionary. They appear to have been created using a 
phonetic generator [8]. 

Recently, each of these HIPs has been systematically 
broken, with a success rate of 5% or greater at a rate of 
300 attempts per second [2,12]. In each case, the attack 
was based on a dedicated segmentation attack, followed 
by a generic recognition attack based on machine 
learning. The need for much harder HIPs has brought the 
existence of a sweet spot into question, and has forced us 

to examine the computer versus human side of the 
problem. 

Computers are very good at OCR. In fact, the state-of-the-
art algorithms are very close to human performance on 
single printed character recognition and some commercial 
OCR systems can achieve speeds of 1000 recognized 
characters per second. Recognizing letters such as the one 
below 

 

can be done with a 95%+ success rate using machine 
learning, given letters with similar distortions [9]. 

The story is quite different, however, when the location of 
the character(s) is not known a-priori. The problem of 
detection, or segmentation, has remained a challenging 
problem in the fields of handwriting recognition, speech 
recognition and computer vision for the last two decades. 
For example, in the following image,  

 

finding where the letter is (segmentation) and which letter 
it is (recognition) can yield several false positives. 
Furthermore, the recognition rate falls to single digit 
numbers. 

Segmentation is intrinsically difficult for both computers 
and humans because 1) it is computationally expensive, 
since every position must be tested for a potential 
candidate, 2) the space of input is very large since it 
includes all the non-valid characters, and 3) identifying 
the valid characters in the image is a combinatorially 
difficult problem. For instance, correctly identifying 
which 8 characters among 20 candidates (assuming 12 
false positives), has a 1 in 125,970 (20 choose 8) chance 
of success by random guessing. 
 
In light of the results from [2,12], successful HIPs will 
have to rely on segmentation problems that are difficult 
for computers, rather than simpler character recognition 
problems where the location of each character is easy to 
infer. One of the goals of this paper is to better understand 
human segmentation and recognition capabilities, for the 
purpose of designing a segmentation-based HIP that is 
easy for humans but difficult for computers. 

The fact that we do not fully understand how humans do 
segmentation is important. Notably, despite a geometric 
growth in computational power, segmentation tasks such 
as cursive handwriting, continuous speech and vision 
have only made marginal progress in the last 10 years. 
We can conjecture that without a scientific breakthrough, 
even a 100X speedup in computers would only yield 
marginal improvements in current segmentation 

  

Figure 3(a): Mailblocks HIP samples.  

  

Figure 3(b): MSN HIP samples.  

  

Figure 3(c): Register.com HIP samples.  

  

  

  

Figure 3(d): EZ-Gimpy (CMU) HIP samples.  

  
Figure 3(e): Yahoo! HIP samples.  

   

  

Figure 3(f): Ticketmaster HIP samples.  

  

  

Figure 3(g): Google HIP samples.  



 

algorithms. In all likelihood, humans will remain much 
better at segmentation than computers for a few more 
years. Our hope is therefore to make our HIPs 
“segmentation complete”. 

Character distortions 
Character-based HIPs employ a set of character 
distortions to make them hard to OCR using computers. 
The basic character transformations include translation, 
rotation (clockwise or counterclockwise), and scaling. 
Rotation is usually less than 45 degrees to avoid 
converting a 6 into a 9, an M into a W etc. Both 
computers and humans find HIPs, using these three 
transformations, easy to solve (see Figures 5, 6, and 7). 
To increase the difficulty of computer-based OCR, we 
introduced two kind of warping: 

1. Global Warp: The global warp produces character-
level, elastic deformations. It is obtained by 
generating a random displacement field followed by a 
low pass filter. The resulting displacement field is 
then applied to the image with interpolation. These 
appear to bend and stretch the given characters. 

 =>  

The purpose of these elastic deformations is to 
foil template matching algorithms. 

2. Local Warp: Local warp is intended to produce 
small ripples, waves, and elastic deformations along 
the pixels of the character, i.e., at the scale of the 
thickness of the characters, rather than the scale of 
the width and height of the character. The local warp 
deformations are generated in the same manner as the 
global warp deformations, by changing the low pass 
filter cut-off to a higher frequency. The purpose of 
the local warp is to foil feature-based algorithms 
which may use character thickness or serif features to 
detect and recognize characters. 

 =>  

We have verified that the warp distortions are effective at 
breaking commercial OCR (e.g. Scansoft’s OCR). 
However, HIPs generated using random characters and 
these five distortions (assuming characters do not touch or 
overlap) can still easily be solved by computers using a 
sophisticated training algorithm and a sufficient amount 
of data [9]. As a result they are very vulnerable to 
computer OCR attacks, and indeed all the HIPs deployed 
by major companies have been broken [2,12]. To pose a 
much more difficult computer segmentation problem, 
clutter is introduced into the HIP. Crisscrossing straight 
lines and arcs, background textures, and meshes in 
foreground and background colors are commonly 
introduced as clutter. Increasing the clutter density 
typically increases the segmentation difficulty. In this 

paper, we use random arcs of different thicknesses as 
clutter. 

USER STUDY I 
We carried out a series of studies in an effort to examine 
the effects that a number of parameters would have on 
human observers of the resultant HIPs. The studies were 
designed to be run electronically, allowing participants to 
do the HIP recognition tasks from the comfort of their 
own offices. 76 users were recruited to participate in the 
first set of experiments. All were employees at a large 
software company. Average age of the participants was 
35.2 (range of 22-54 years of age), 17 were female, and 
all but 12 had normal or corrected-to-normal vision. In 
addition, 42 wore glasses or contacts of some kind. All 
but six of the participants had at least an undergraduate 
education (six responded “other” which could have 
included a PhD). 

For the first study, it was important that we obtained some 
baseline measures of some of the parameters independent 
of each other prior to examining their difficulty for users 
in combination. For that reason, we chose the dimensions 
of translation, scaling, rotation and global warping of the 
HIP characters. The experiment was designed to present 
several difficulty levels of these four factors 
independently to users and determine the users’ accuracy 
at solving the resulting HIPs. Accuracy was defined as the 
percentage of characters correctly recognized. For 
example, for 8 character HIPs, getting on average 7 
characters correct would imply an accuracy of 87.5 
percent. In another set of studies, combinations of these 
variables, as used today in actual HIP generation, were 
presented to users to see where human observers begin to 
have problems. The hypothesis was that human accuracy 
would be almost 100%, even with increasing difficulty 
values for the individually observed parameters. 
Additionally, it is well known that these initial parameters 
are quite easily solved by computers using standard 
recognition techniques [2,12]. 

Because we expected human performance to be at a very 
high level for the individual parameters, a non-zero 
baseline combination of parameters for translation, 
scaling, rotation, and global warp was chosen for 
inclusion for a small number of trials in the first study. 
This “baseline” combination was included because it was 
expected to be more difficult for the humans and 
computers. The baseline combination was then added to 
one of the parameters, local warping, as it was our 
hypothesis that this set of parameters might be hard for 
humans. 

Since we had no benchmark performance data to base any 
of these hypotheses on, we had to come up with difficulty 
levels based on our own piloting of the HIPs at the 
various levels. Two experimenters ran through a series of 
trials at all levels of HIP difficulty both for those varying 
on only one parameter and then for combinations of the 



 

parameters. This pilot data was then used to drive the 
settings for the parameters used in the HIP creation in the 
studies so that they ranged from very easy to very difficult 
trials (if possible) for each individual variable, and then 
finally for the initial combinations we chose to study.  

The pilot study then led to our including the following 
settings for the first set of experiments. Only one HIP was 
created at each parameter level, and each participant saw 
that same exact HIP in a predetermined, randomized 
order. The seven parameters tested in the first user study 
were plain (or undistorted) text, translated test, rotated 
text, scaled text, global warping, local warping, and local 
warping combined with all the previous parameters. 

In summary, participants were provided with a website 
for viewing 68 HIPs and for entering what they thought 
the solutions to the puzzles were. If the HIP was deemed 
to be unreadable by the participants, they could enter 
“unreadable” by pressing a button provided on the 
website for that trial. Each response provided by the 
participant was recorded, as was the response time prior 
to completing each HIP. Total time to complete the 
experiment was approximately 15 minutes. If desired, 
participants were encouraged to enter some contact 
information in order to receive a lunch/dinner coupon for 
the local cafeteria.  

Plain Text 
Plain text is text that has not been altered with any 
distortions, as shown in Figure 4. Participants were very 
accurate at identifying the plain text letters. 73 

participants recognized all letters perfectly, while 3 
participants missed a single letter. 

Translated Text 
Translated text is moved either up or down and left or 
right by an amount, as shown in Figure 5. We increased 
the amount of translation in nine steps from 0% to 40% of 
the character size. Participants had a very high accuracy 
rate with translated text. The accuracy rate was 99% or 
above for all levels. 

Rotated Text 
Rotated text is text that is turned either in a clockwise or 
counterclockwise direction as shown in Figure 6. We 
rotated text in ten incremental steps from 0 degrees to 45 
degrees. Participants had a very high accuracy rate with 
rotated text. The accuracy rate was 99% or above for all 
levels. 

Scaled Text 
Scaled text is text that is stretched or compressed in the x-
direction and stretched or compressed in the y-direction, 
as shown in Figure 7. We scaled the text in eleven 
incremental steps from 0% to 50%, as shown in figure 8. 
Participants had a very high accuracy rate with scaled text, 
as shown in Figure 8. The accuracy rate was 98% or 
above for all levels. 

Global Warp Text 
Global warp is a warping field that covers an entire eight 
character HIP, as shown in Figure 9. Each character’s 
twists and turns are dependent on the twists and turns of 
nearby characters. We increased the amount of global 
warping in 11 incremental steps from 0 to 390, as shown 

 

Figure 4: Example of Plain Text (M7F47VWC) 

 

Figure 5: Example of Translated Text, levels 10 (5MS9FVLL), 
25 (3R2YAZ9X), and 40 (C7AXBZZR) 

 

Figure 6: Example of Rotation Text, levels 15 (PWVDYLVH), 
30 (B5PYMMLB), and 45 (GSB5776E) 

 

Figure 7: Example of Scaled Text, levels 20, 35, and 50 
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Figure 8: Accuracy rate for scaled text 

 



 

in Figure 10. The global warp value indicates the 
magnitude of the global warp field and is proportional to 
the average movement of ink pixels in the HIP. 

Participants had a very high accuracy rate with levels of 
global warp up to level 270. Accuracy drops off 
dramatically with more global warp, as shown in Figure 
10. A One-Way ANOVA shows that accuracy is reliably 
different for levels of global warp, F(10,65) = 73.08, p 
< .001. Post-hoc tests show that the 0-270 levels of global 
warp are reliably different from the 300-390 levels of 
global warp at the p < .05 level, using Bonferroni 
corrections for multiple tests in this and all following 
post-hocs.  

Local Warp Text 
Local warp is a warping field that is independent for each 
character within a HIP, as shown in Figure 11. The twists 
and turns on one character have no bearing on the twists 
and turns of the next character. The local warp was 
incremented in 16 steps from 0 to 90, as shown in Figure 
12. The local warp value indicates the magnitude of the 
local warp field and is proportional to the average 
movement of ink pixels in the HIP. Participants had a 
very high accuracy rate with levels of local warp up to 
level 45, and very poor accuracy at level 70 and above, as 
shown in Figure 12. A One-Way ANOVA shows that 
accuracy is reliably different for levels of local warp, 
F(15,60) = 120.24 , p < .001. Post-hoc tests indicate that 
levels 0-60 are reliably different from levels 65-90. 

Local Warp plus Baseline Text 
This parameter is a complex interaction between the 
conditions that have already been used. The amount of 
translation, rotation, scaling, and global warp is held 
constant throughout these conditions and is called the 

“baseline”. We used level 20 of translation, level 20 of 
rotation, level 20 of scaling, and level 75 of global warp. 
See Figure 13 for three examples of this condition. Local 
warp is manipulated with the same levels used in the 
previous parameter, as shown in Figure 14.  

Participants had a high accuracy rate with local warp plus 
baseline up to level 55 of local warp. After level 50, 
accuracy decreased in gradual steps, as is shown in Figure 
14. A One-Way ANOVA shows that accuracy is reliably 
different for levels of local warp plus baseline, F(15,60) = 
98.08, p < .001. Post-hoc tests show that levels 0-55 are 
reliably difference from levels 70-90. 

 

Figure 9: Example of Global Warp Text, levels 180 
(UHYE8VBL), 270 (B3277UHF), and 360 (GLX45BMS) 
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Figure 10: Accuracy rate for global warp text 

 

 

Figure 11: Example of Local Warp Text, levels 30 
(TXUNYXRG), 55 (7SXUPGCB), and 80 (PRCK3P9R) 

0
0.2
0.4

0.6
0.8

1

0 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90

Amount of Local Warpp
(c

)

Figure 12: Accuracy rate for local warp text 

 

Figure 13: Example of Local Warp plus Baseline Text, levels 
30 (92MP93E2), 55 (93RZYTRS), and 80 (F8PUCBTD) 
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Figure 14: Accuracy rate for local warp plus baseline text 



 

USER STUDY II 
Twenty-nine more users from the same large software 
company were recruited for the second set of experiments. 
Average age of the participants was 35.2 (range of 26-54 
years of age), 10 were female, and 23/29 had normal or 
corrected-to-normal vision. In addition, 19 wore glasses 
or contacts of some kind. All but six of the participants 
had at least an undergraduate education (once again 6 
responded “other” which could have included a PhD). 
Despite the similarities in the profiles between 
participants in studies 1 and 2, only one participant 
participated in both studies. 

The goals of the second study included examining the 
users’ performance on the baseline we had chosen for 
study 1, in addition to evaluating our next set of 
parameters that we thought humans might be able to 
handle quite easily. This set of HIP parameters, however, 
was a set that computers recognize much more poorly 
than the first set [2,12]. The hypothesis going into the 
second study was that it should be possible to find 
difficulty settings in some of these parameters (either 
alone or in combination with others) that are easy for 
humans to solve, but are very difficult for computers to 
“break”, at least using today’s recognition algorithms. 
Other than the new HIP examples, all of details of the 
study were identical to Study 1. 

Thin Arcs that Intersect 
In this condition, a HIP with a small amount of constant 
translation is manipulated with nine levels of thin 
squiggly lines – or arcs, as is shown in Figure 15. The 
arcs in this condition cross over the HIP’s characters. 
There are 9 levels of arcs ranging from 9 to 45 arcs across 
the HIP, as shown in Figure 16. 

Participants had a very high accuracy rate with thin arcs 
that intersect. The accuracy rate was 94% or above for all 

levels, as shown in Figure 16. The differences between 
the numbers of arcs is not reliably different, F(8,21) = 
0.84, p > .05. 

Thin Arcs that Intersect plus Baseline 
In this condition, a HIP with a small amount of constant 
translation, rotation, scaling and global warp is included 
with the manipulation of number of thin arcs that intersect. 
The arcs in this condition will cross over the HIP’s 
characters, as is shown in Figure 17. There are 14 levels 
of arcs ranging from 0 to 36 arcs across the HIP, as shown 
in Figure 18. 

Participants had a high accuracy rate with thin arcs that 
intersect plus baseline, with accuracy above 90% for all 
but the highest number of arcs examined, as shown in 
Figure 18. A One-Way ANOVA shows that accuracy is 
reliably different for levels of thin arcs that intersect plus 
baseline, F(13,16) = 2.70, p < .01. Despite reliable main 
effects, post-hoc tests found no reliable differences 
between any two conditions. 

Thick Arcs that Intersect 
In this condition, a HIP with a small amount of constant 
translation is manipulated with nine levels of thick arcs 
that cross over the HIP characters, as shown in Figure 19. 
The number of arcs used range from 9 to 45, as shown in 
Figure 20. 

Participants had more difficulty with thick arcs that 
intersect than with any other parameter in these studies. 
Accuracy stayed reasonably high through level 22 before 
dropping off considerably, as shown in Figure 20. A One-

 

Figure 17: Example of This Arcs that Intersect plus baseline, 
levels 0(ABCDEFGH), 18 (4HSZL5WF), and 36 (5EP8322Z) 
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Figure 18: Accuracy rate for thin arcs that Intersect plus 
Baseline 

 

Figure 15: Example of This Arcs that Intersect, levels 18 
(K8M8KWL2), and 36 (24YGP2VY) 
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Figure 16: Accuracy rate for thin arcs that intersect 

 



 

Way ANOVA shows that accuracy is reliably different, 
F(8,21) = 50.66, p < .001. Post-hoc tests show that levels 
9-22 are reliably different from levels 36-45. 

Thick Arcs that Intersect plus Baseline 
In this condition, a HIP with a small amount of constant 
translation, rotation, scaling, and global warp is combined 
with 14 levels of thick arcs that cross over the HIP 
characters, as shown in Figure 21. The number of arcs 
used ranged from 0 to 36, as shown in Figure 22. 

Not surprisingly, thick arcs that intersect are also difficult 
for participants when the baseline distortions are also 
incorporated, as shown in Figure 22. A One-Way 
ANOVA shows that accuracy is reliably different, 
F(13,16) = 49.27, p < .001. Post-hoc tests show that levels 
0-22 are reliably different from levels 27-36. 

Thick Arcs that Don’t Intersect 
In this condition, a HIP with a small amount of constant 
translation is manipulated with nine levels of thick arcs 
that do not cross over the HIP characters, a few examples 
of which are shown in Figure 23. The number of arcs used 
ranges from 9 to 45, as shown in Figure 24. 

Participants had a very high accuracy rate with thick arcs 
that don’t intersect. The accuracy rate was 96% or above 
for all levels, as can be seen in Figure 24. The differences 
between levels of arcs is not reliably different, F(8,21) = 
0.96, p > .05. 

Thick Arcs that Don’t Intersect Plus Baseline 
In this condition, a HIP with a small amount of constant 
translation, rotation, scaling, and global warp is combined 
with 14 levels of thick arcs that do not cross over the HIP 
characters. A few examples are shown in Figure 25. The 
number of arcs used ranged from 0 to 36 (Figure 26). 

Participants had a very high accuracy rate with thick arcs 
that don’t intersect plus baseline distortions. The accuracy 
rate was 92% or above for all levels, as shown in Figure 
26. The differences between levels of arcs was reliably 
different, F(13,16) = 2.12, p < .05. Despite the reliable 
main effect, post-hoc tests did not find any reliable 
differences between any two conditions. 
 

 

Figure 19: Example of Thick Arcs that Intersect, levels 18 
(FN2VMZ85), and 36 (SMZCWTXX) 
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Figure 20: Accuracy rate for Thick Arcs that Intersect 

 

 

Figure 21: Example of Thick Arcs that Intersect plus Baseline, 
levels 0 (ABCDEFGH), 18 (4L6PSPZL), and 36 (ZFG4N4ME) 
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Figure 22: Accuracy rate for Thick Arcs the Intersect plus 
Baseline 

 

Figure 23: Example of Thick Arcs that don’t intersect, levels 9 
(HAYPA9M6), 18 (S7W4FK8Z), and 45 (XYVV6SRL) 
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Figure 24: Accuracy rate for Thick Arcs that don’t Intersect 

 



 

DISCUSSION 
We ran two user studies to understand where the human 
perceptual limits with regard to solving HIPs were for a 
variety of lone and combined parameters typically used to 
automatically generate HIPs that are difficult for a 
computer hacker to break. In the first study, it was 
hypothesized that humans would easily solve HIPs that 
only varied on one parameter of distortion, and in fact that 
is what the data revealed. For the parameter levels tested 
on plain, translated, rotated or scaled text HIPs, users 
were at 99% correct or higher. It would be difficult to 
imagine how to make these unidimensional HIPs difficult 
for users to solve, given today’s typical web page size 
constraints, screen resolutions, and viewing distances. 
Study 1 also showed that for global warping, local 
warping and local warping plus a combination of other, 
distorting parameters, there is a significant decrease in 
human HIP solution accuracy. This was unexpected for 
all but the combined parameter HIP condition. It would 
appear that today’s recognition algorithms and training 
methods outperform humans with sufficient levels of text 
warping. In effect, the human results from study 1 and the 
computer results reported in [2,12] indicate that if the 
positions of the characters are known (pure recognition 
task), there are no sweet spots for HIPs. 

This prompted us to move to a segmentation task, in 
which additional clutter misleads computer attacks as to 
where the real characters are located. The second study 
examined the addition of arcs to the HIP designs and 
showed that human recognition performance was quite 

good for the baseline combination of parameters that had 
been used in Study 1 (but in that study local warping had 
been added). Accuracy was also quite high across all 
levels of HIP recognition with thin arcs in the foreground. 
Adding thin arcs to the baseline distortion increased error 
rates only at the highest difficulty levels significantly. 
Adding intersecting thick arcs, either with or without the 
baseline distortion, caused significant performance 
decrements, but non-intersecting thick arcs did not.  

In summary, study 2 showed that adding clutter via thin 
arcs or non-intersecting thick arcs gives us two additional 
dimensions at which humans perform well. This is 
particularly significant because both of these dimensions 
can be used to design a segmentation-based HIP, knowing 
that segmentation is the Achilles’ heel of machine-
learning based computer attacks [2,12].  

LESSONS LEARNED 
The need to protect services from automatic script attack 
has created a market for HIPs. The design of good HIPs is 
turning out to be much more difficult than previously 
thought, pitting human against computer, in a dynamic 
and complex economic environment. This is the first set 
of studies on the human side of the equation.  

Study 1 indicated that there are probably no sweet spots in 
which humans are significantly better than computers for 
HIPs where character location is easy to guess.  Study 2 
pointed to two directions for building segmentation-based 
HIPs, which are more likely to be harder for computers 
while remaining easily solvable by humans. 

User data is necessary to drive HIP design in a direction 
that will not cause discomfort for most humans but will 
give hackers trouble for some time.  

FUTURE WORK 
The first user study examined individual distortions, while 
the second user study made a preliminary attempt at 
studying combinations of these features through the use of 
a baseline (obtained from the first study). Real-world 

 

  

Figure 25: Example of Thick Arcs that don’t Intersect plus 
Baseline, levels 0 (ABCDEFGH), 18 (VCM9DNXS), and 36 

(HPTX7YNX) 
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Figure 26: Accuracy rate for Thick Arcs that don’t Intersect 
plus Baseline 

Distortion (parameter range) Computer 
accuracy range 

Rotation (-45° to 45°) 0.00% - 0.00% 

Global warp (120-360) 0.04% - 8.08% 

Local warp (20-80) 0.01% - 3.51% 

Local warp (20-80) + Baseline 0.01% - 5.23% 

Thin arcs (9 – 45) 0.04% - 3.07% 

Thick arcs (9 – 45) 0.27% - 34.04% 

Thick non-intersecting arcs (9 – 45) 0.16% - 0.30% 

Table 1. Preliminary computer accuracy results for single 
character recognition. 



 

HIPs (see Introduction) employ more parameters and a 
much larger combination of these parameters. Examples 
include intersecting and non-intersecting arcs of different 
thicknesses, arcs in the background color, random meshes, 
background textures, etc. Some HIPs such as the 
Ticketmaster and Google HIPs, use phonetic generators to 
make the characters in these HIPs more readable to 
humans. 

We do not consider the user time to respond to a HIP to 
be a major critical factor at this stage in our research. 
Participants took 10-15 seconds to respond to all of the 
HIPs reported here. Only the most difficult HIPs took an 
extra second or two longer than the easiest HIPs. In 
addition, the character misrecognitions are fascinating, 
but upon reflection, not very surprising. For example, the 
HIP for local warp, level 80 (Figure 11) has the stem of a 
K angled backwards. Only one participant correctly 
identified the warped letter while all other participants 
identified it as an X or unreadable. Still, we are currently 
focusing on character-based recognition in our next line 
of studies of this technology. 

As part of another study, we conducted computer 
experiments with character distortions addressed in this 
paper. At this time, we have some preliminary results on 
single character recognition results. A brief summary of 
these results is presented in Table 1. As in the case of 
humans, computer accuracy is very high under rotation 
(Figure 6) and in the presence of non-intersecting arcs 
(Figure 23). Both had near zero percent errors. However, 
with character warp distortions (local and global) and 
intersecting arcs (thin and thick), we note that though 
computer and human accuracies were similar under very 
low distortion parameters, computer accuracies were 
significantly better under high distortion. Overall these 
preliminary results appear to indicate that for single 
character recognition, computers do much better than 
humans. Part of our future research is to study and 
compare human and computer recognition accuracies on 
single- and multi-character HIPs in greater detail. 

Several lines of future research are possible that explore 
interactions between these parameters to produce a human 
friendly HIP. With time, computers will become 
incrementally better at computer vision and hackers will 
exploit these improvements. A good understanding of HIP 
design from a human perspective is inevitable in order to 
stay one step ahead of the hackers.  

CONCLUSION 
HIPs with thick foreground arcs are easily recognized at 
certain levels for humans, and yet these conditions remain 
extremely difficult for computer hackers to solve. The 
contribution of this research is to continue to drive our 
HIP design from a user-centered perspective, wherein we 
try to design for a “sweet spot” that maximizes the 
comfort of human solvers while minimizing the ease of 
the code being broken through machine learning. 
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