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ABSTRACT
Online testing is a technique in which test derivation from a model
program and test execution are combined into a single algorithm.
We describe a practical online testing algorithm that is implemented
in the model-based testing tool developed at Microsoft Research
called Spec Explorer. Spec Explorer is being used daily by several
Microsoft product groups. Model programs in Spec Explorer are
written in the high level specification languages AsmL or Spec#.
We view model programs as implicit definitions of interface au-
tomata. The conformance relation between a model and an imple-
mentation under test is formalized in terms of refinement between
interface automata. Testing then amounts to a game between the
test tool and the implementation under test.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Testing tools

General Terms
Reliability,Verification

Keywords
Conformance testing, interface automata, runtime verification

1. INTRODUCTION
In this paper we consider testing of reactive systems. Reactive

systems take inputs as well as provide outputs in form of sponta-
neous reactions. Testing of reactive systems can very naturally be
viewed as a two-player game between the tester and the implemen-
tation under test (IUT). Transitions are moves that may originate
either from the tester or from the IUT. The tester may use a strat-
egy to choose which of the inputs to apply in a given state.

We describe here a new online technique for testing reactive sys-
tems. In this approach we join test derivation from a model program
and test execution into a single algorithm. This combines the ben-
efits of encoding transitions as method invocations of a model pro-
gram with the benefits of a game-based framework for reactive sys-
tems. Test cases become test strategies that are created dynamically
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as testing proceeds and take advantage of the knowledge gained by
exploring part of the model state space.

Formally, we consider model programs as implicit definitions of
interface automata and formulate the conformance relation between
a model program and a system under test in terms of alternating
simulation. This is a new approach for formalizing the testing of
reactive systems.

The technique we describe was motivated by problems that we
observed while testing large-scale commercial systems, and the re-
sulting algorithm has been implemented in a model-based testing
tool developed at Microsoft Research. This tool, called Spec Ex-
plorer [1, 7], is in daily use by several product groups inside of Mi-
crosoft. The online technique has been used in an industrial setting
to test operating system components and Web service infrastruc-
ture.

To summarize, we consider the following points as the main con-
tributions of the paper:

• The formalization of model programs as interface automata
and a new approach to using interface automata for confor-
mance testing, including the handling of timeouts.

• A new online or on-the-fly algorithm for using model pro-
grams for conformance testing of open systems, where the
conformance relation being tested is alternating simulation.
The algorithm uses state dependent timeouts and state depen-
dent action weights as part of its strategy calculation.

• Evaluation of the effectiveness of the theory and the tool for
the test of critical industrial applications.

The rest of the paper is organized into sections as follows. In
Section 2 we formalize what it means to specify a reactive system
using a model program. This includes a description of how the Spec
Explorer tool uses a model program as its input. Then in Section 3,
we describe the algorithm for online testing. In Section 4 we walk
through a concrete example that runs in the Spec Explorer tool. We
evaluate further sample problems and industrial applications of the
tool in Section 5. Related work is discussed in Section 6. Finally,
we mention some open problems and future work in Section 7.

2. SPECIFYING REACTIVE SYSTEMS
USING MODEL PROGRAMS

To describe the behavior of a reactive system, we use the notion
of interface automata [11, 10] following the exposition in [10]. In-
stead of the terms “input” and “output” that are used in [10] we
use the terms “controllable” and “observable” here. This choice of
terminology is motivated by our problem domain of testing, where
certain operations are under the control of a tester, and certain op-
erations are only observable by a tester.



DEFINITION 1. An interface automaton M has the following
components:

• A set S of states.

• A nonempty subset Sinit of S called the initial states.

• Mutually disjoint sets of controllable actions Ac and observ-
able actions Ao.

• Enabling functions Γc and Γo from S to subsets of Ac and
Ao, respectively.

• A transition function δ that maps a source state and an action
enabled in the source state to a target state.

Remark about notation: In order to identify a component of an
interface automaton M , we index that component by M , unless M
is clear from the context.

We write AM for the set Ac
M ∪ Ao

M of all actions in M , and we
let ΓM (s) denote the set Γc

M (s)∪ Γo
M (s) of all enabled actions in

a state s. An action a transitions from s to t if δM (s, a) = t.

2.1 Model program as interface automaton
A model program P declares a finite set of action methods and

a set of (state) variables. A model state is a mapping of state
variables to concrete values.1 Model programs in Spec Explorer
are written in a high level specification language AsmL [16] or
Spec# [4]. An action method m is similar to a method written
in a normal programming languages like C#, except that m is in
addition associated with a state-based predicate Prem[x] called the
precondition of m, that may depend on the input parameters x of
m. An example of a model program and some of the concepts in-
troduced in this section are illustrated below in Section 4.

The interface automaton MP defined by a model program P is
a complete unwinding or expansion of P as explained next. We
omit the suffix P from MP as it is clear from the context. The set
of initial states S init

M of M is the singleton set containing the initial
assignment of variables to values as declared in P .

For a sequence of method parameters �v, we write �vin for the input
parameters, i.e. the arguments, and we write �vout for the output
parameters, in particular including the return value.

The transition function δM maps a source state s and an action
a = 〈m,�v〉 to a target state t, provided that the following condi-
tions are satisfied:

• Prem[�vin] holds in s,

• the method call m(�vin) in state s produces the output param-
eters �vout, and yields the resulting state t;

In this case the action a is enabled in s. Each action method m,
is associated in a state s with a set of enabled actions Enabledm(s).
The set of all enabled actions ΓM (s) in a state s is the union of all
Enabledm(s) for all action methods m. The set of states SM is the
least set that contains Sinit

M and is closed under δM . The set AM is
the union of all ΓM (s) for s in SM .

2.1.1 Reactive behavior
In order to distinguish behavior that a tester has full control over

from behavior that can only be observed about the implementation
under test (IUT), the action methods of a model program are dis-
jointly partitioned into controllable and observable ones. This in-
duces, for each state s, a corresponding partitioning of ΓM (s) into

1In terms of mathematical logic, states are first-order structures.

controllable actions Γc
M (s) enabled in s, and observable actions

Γo
M (s) enabled in s. The action set AM is partitioned accordingly

into Ac
M and Ao

M . A state s where ΓM (s) is empty is called termi-
nal. A nonterminal state s where Γo

M (s) is empty is called active;
s is called passive otherwise.

2.1.2 Accepting States
In Spec Explorer the user associates the model program with an

accepting state condition that is a Boolean expression based on the
model state. The notion of accepting states is motivated by the
practical need to identify model states where tests are allowed to
terminate. This is particularly important when testing distributed or
multi-threaded systems, where IUT does not always have a global
reset that can bring it to its initial state. Thus ending of tests is
only possible from certain states from which reset is possible. For
example, as a result of a controllable action that starts a thread in the
IUT, the thread may acquire shared resources that are later released.
The successful test should not be finished before the resources have
been released.

From the game point of view, the player, i.e. the test tool, may
choose to make a move from an accepting state s to a terminal goal
state identifying the end of the play (or test), irrespective of whether
there are any other moves (either for the player or the opponent)
possible in s. Notice that an accepting state does not oblige the
player to end the test. By restating that in terms of the interface
automaton M , there is a controllable finish action in AM and a goal
state g in SM , s.t., for all accepting states s, δM (s, finish) = g. In
IUT, the finish action must transition from a corresponding state t
to a terminal state as well, reflecting the assumption that IUT can
reset the system at this point. Thus, ending the test in an accepting
state, corresponds to choosing the finish action.

2.2 IUT as interface automaton
In the Spec Explorer tool the model program and the IUT are

both given by a collection of APIs in form of .NET libraries (or
dlls). Typically the IUT is given as a collection of one or more
“wrapper” APIs of the actual system under test. The actual system
is often multi-threaded if not distributed, and the wrapper is con-
nected to the actual system through a customized test harness that
provides a particular high-level view of the behavior of the system
matching the abstraction level of the model program. The wrapper
provides a serialized view of the observable actions resulting from
the execution of the actual system. It is very common that only a
particular aspect of the IUT is being tested through the harness. In
this sense the IUT is an open system.

The program of the IUT can be seen as a restricted form of a
model program. We view the behavior of the IUT in the same way
as that of the specification. The interface automaton corresponding
to IUT is denoted by MIUT.

The finish action in the IUT typically kills the processes or ter-
minates the threads (if any) in the actual system under test.

2.3 Conformance relation
The conformance relation between a model and an implementa-

tion is formalized as refinement between two interface automata.
In order for the paper to be self contained we define first the no-
tions of alternating simulation and refinement following [10]. The
view of the model and the implementation as interface automata is a
mathematical abstraction. We discuss below how the conformance
relation is realized in the actual implementation.

In the following we use M to stand for the specification interface
automaton and N for the implementation interface automaton.



DEFINITION 2. An alternating simulation ρ from M to N is a
relation ρ ⊆ SM × SN such that, for all (s, t) ∈ ρ,

1. Γc
M (s) ⊆ Γc

N (t) and Γo
M (s) ⊇ Γo

N (t), and

2. ∀a ∈ Γo
M (s) ∪ Γc

N(t), (δM (s, a), δN (t, a)) ∈ ρ.

The intuition is as follows. Condition 1 ensures that, on one hand
all controllable actions in the model are possible in the implemen-
tation, and on the other hand that all possible responses from the
implementation are enabled in the model. Condition 2 guarantees
that if condition 1 is true in a given pair of source states then it
is also true in the resulting target states of any controllable action
enabled in the model and any observable action enabled in the im-
plementation.

DEFINITION 3. An interface automaton M refines an interface
automaton N if

1. Ao
M ⊆ Ao

N and Ac
M ⊆ Ac

N , and

2. there is an alternating simulation ρ from M to N , s ∈ Sinit
M ,

and t ∈ Sinit
N such that (s, t) ∈ ρ.

The first condition of refinement is motivated in the following
section. Intuition for the second condition can be explained in
terms of a conformance game. Consider two players: a controller
and an observer. The game starts from an initial state in Sinit

M ×Sinit
N .

During one step of the game one of the players makes a move.
When the controller makes a move, it chooses an enabled con-
trollable action a in the current model state s and transitions to
(δM (s, a), δN (t, a)), where the chosen action must be enabled in
the current implementation state t or else there is a conformance
failure. Symmetrically, when the observer makes a move, it chooses
an enabled observable action in the current IUT state t and tran-
sitions to the target state (δM (s, a), δN (t, a)), where the chosen
action must be enabled in the current model state s or else there
is a conformance failure. The game continues until the controller
decides to end the game by transitioning to the goal state.

2.4 Conformance checking in Spec Explorer
We provide a high level view of the conformance checking en-

gine in Spec Explorer. We motivate the view of IUT as an interface
automaton and explain the mechanism used to check acceptance of
actions.

Spec Explorer provides a mechanism for the user to bind the ac-
tions methods in the model to methods with matching signatures in
the IUT. Without loss of generality, we assume here that the sig-
natures are in fact the same. Usually the IUT has more methods
available in addition to those that are bound to the action methods
in the model, which explains the first condition of the refinement
relation. In other words, the model usually addresses one aspect of
the IUT and not the complete functionality of IUT.

The user partitions the action methods into observable and con-
trollable ones. In order to track the spontaneous execution of an
observable action in the IUT, possibly caused by some internal
thread, Spec Explorer instruments the IUT at the binary (MSIL)
level. During execution, the instrumented IUT calls back into the
conformance engine, notifying it about occurrences of observable
method calls. The conformance engine buffers these occurrences,
such that they can occur even during the execution of a control-
lable method in the implementation. A typical scenario is that a
controllable action starts a thread in the implementation, during the
execution of which several observable actions (callbacks) may hap-
pen. Another scenario is that there is only one thread of control;

however, observable methods are invoked in course of executing a
controllable method.

In the following we describe how a controllable action a =
〈m,�v〉 is chosen in the model program P and how its enabledness
in the IUT is checked. First, input parameters �vin for m are gener-
ated such that the precondition of the method call m(�vin) holds in
P . Second, m(�vin) is executed in the model and the implementa-
tion, producing output parameters �vout and �w, respectively. Thus a
is at this point an enabled action in the model. Third, to determine
enabledness of a in the IUT, the expected output parameters �vout of
the model and the output parameters �w of the IUT are compared
for equality, if �vout �= �w then a is enabled in the model but not in
the IUT, resulting in a conformance failure. For example, if �vout is
the special return value unit of type void but IUT throws an excep-
tion when m(�vin) is invoked, (i.e. �w is an exception value), then a
conformance failure occurs.

An observable action a = 〈m,�v〉 happens as a spontaneous reac-
tion from the IUT, which occurrence is buffered in the conformance
engine. When the conformance engine is in a state where it con-
sumes the next observable action from that buffer, it proceeds as
follows. Let a = 〈m,�v〉 be the next action in the buffer. First,
the precondition of the method call m(�vin) is checked in P . If the
precondition does not hold, a is not enabled in the model and a
precondition conformance failure occurs. Otherwise, m(�vin) is ex-
ecuted in the model yielding either a conformance failure in form
of a model invariant or postcondition failure, or yielding �w. If
�vout �= �w, an unexpected return value (or output parameter) con-
formance failure will be generated. If none of this failure situations
occur, a is admitted by the model, which then transitions from its
current state s to δMP (a, s).

3. ONLINE TESTING
Online testing (also called on-the-fly testing in the literature) is

a technique in which test derivation from a model program and
test execution are combined into a single algorithm. By generating
test cases at run time, rather than pre-computing a finite transition
system and its traversals, this technique is able to:

• Resolve the nondeterminism that typically arises in testing
reactive, concurrent and distributed systems. This avoids
generating huge pre-computed test cases in order to deal with
all possible responses from the system under test.

• Stochastically sample a large state space rather than attempt-
ing to exhaustively enumerate it.

• Provide user-guided control over test scenarios by selecting
actions during the test run based on a dynamically changing
probability distribution.

In Spec Explorer, the online testing algorithm (OLT) uses a (dy-
namically changing) strategy to select controllable actions. OLT
also stores information about the current state of the model, by
keeping track of the state transitions due to controllable and ob-
servable actions. The behavior of OLT depends on various user
configurable parameters. The most important ones are timeouts
and action weights. Before explaining the algorithm we introduce
the OLT parameters and explain their role in the algorithm.

3.1 Timeouts
In Spec Explorer there is a timeout function ∆, given by a model-

based expression, that in a given state s evaluates to a value ∆(s)
of type System.TimeSpan in the .NET framework. The primary pur-
pose of the timeout function is to configure the amount of time that



OLT should wait for to get a response from the IUT. The time-
out value may vary from state to state and may be 0 (which is the
default). The definition of the timeout function may reflect net-
work latencies, performance of the actual machine under test, time
complexity of the action implementations, test harnessing, etc, that
may vary between different test setups. In some situations, the use
of the timeout function is reminiscent of checking for quiescence
in the sense of ioco theory [20], e.g., when a sufficiently large time
span value is associated with an active state. Note however that a
timeout is typically enabled in the same state as observable actions
and does not correspond to quiescence.

The exact time span values do not affect the conformance rela-
tion. To make this point precise, we introduce a timeout extension
M t of an interface automaton M as follows. The timeout extension
of an interface automaton is used in OLT.

DEFINITION 4. A timeout extension M t of an interface automa-
ton M is the following interface automaton. The state vocabulary
of M t is the state vocabulary of M extended with a Boolean vari-
able timeout. The components of M t are:

• SM t = {sT , sF : s ∈ SM}, where timeout is true in sT and
false in sF .

• Sinit
M t = {sF : s ∈ Sinit

M }
• Ao

M t = Ao
M and Ac

M t = Ac
M ∪ {σ}, where σ is called a

timeout event.

• Observable actions are only enabled if timeout is false:

Γc
M t(sF ) = Γc

M (s)∪{σ}, Γc
M (sT ) = ∅, for all s ∈ SM ,

and controllable actions are only enabled if timeout is true:

Γo
M t(sT ) = Γo

M (s), Γo
M t(sF ) = ∅, for all s ∈ SM .

• The transition function δM t is defined as follows. For all
s, t ∈ SM and a ∈ ΓM (s) such that δM (s, a) = t,

– If a is controllable then δM t(a, sT ) = tF .

– If a is observable then δM t(a, sF ) = tF .

The timeout event sets timeout to true: δM t(σ, sF ) = sT for
all s ∈ SM .

We say that a state s of M t is an observation or passive state if
timeout is false in s, we say that s is a control or active state other-
wise.

3.2 Action weights
Action weights are used to configure the strategy of OLT to

choose controllable actions. There are two kinds of weight func-
tions: per-state weight function and decrementing weight function.
Each action method in P is associated with a weight function of
one kind. Let #(m) denote the number of times a controllable ac-
tion method has been chosen during the course of a single test run
in OLT.

• A per-state weight function is a function ωs that maps a model
state s and a controllable action method m to a nonnegative
integer.

• A decrementing weight function is a function ωd of the OLT
algorithm that maps a controllable action method m to the
value max(ωinit

m − #(m), 0), where ωinit
m is an initial weight

assigned to m.

We use ω(s,m) to denote the value of ωs(s, m) if m is associ-
ated with a per-state weight function, we use ω(s,m) to denote the
value of ωd(m) otherwise.

In a given model state s the action weights are used to make a
weighted random selection of an action method as follows. Let
m1, . . . , mk be all the controllable action methods enabled in s,
i.e. in Γo

M (s), the probability of an action method mi being chosen
is

prob(s, mi) =

{
0, if ω(s,mi) = 0;
ω(s,mi)/

∑k
j=1 ω(s,mj), otherwise.

A per-state weight can be used to guide the direction of the ex-
ploration according to the state of the model. These weights can
be used to selectively increase or decrease the probability of cer-
tain actions based on certain model variables. For example, as-
sume P has a state variable stack whose value is a sequence of in-
tegers, and a controllable action method Push(x) that pushes a new
value x on stack. One can associate a per-state weight expression
MaxStackSize − Size(stack) with Push that will make the probabil-
ity of Push less as the size of stack increases and gets closer to the
maximum allowed size.

Decrementing weights are used when the user wants to call a
particular action method a specific number of times. With each
invocation of the method, the associated weight decreases by 1 until
it reaches zero, at which point the action will not be called again
during the run. A useful analogy here is with a bag of colored
marbles, one color per action method – marbles are pulled from the
bag until the bag is empty. Using decrementing weights produces a
random permutation of actions that takes enabledness of transitions
into account.

3.3 Online testing algorithm
We provide here a high level description of the OLT algorithm.

We are given a model program P and an implementation under test
IUT. The purpose of the OLT algorithm is to generate tests that pro-
vide evidence for the refinement from the interface automaton M
to the interface automaton M t

IUT, where M is the timeout extension
M t

P of MP .
It is convenient to view OLT as a conservative extension of M

where the information about #(m) is stored in the OLT state, since
the controller strategy may depend on this information. This does
not affect the conformance relation. In the initial state of OLT,
#(m) is 0 for all controllable action methods m.

A controller strategy (or output strategy) π maps a state s ∈ SOLT

to a subset of Γo
M (s�M). A controller step is a pair (s, t) of OLT

states such that t�M = δM (s�M, 〈m,�v〉) for some action 〈m,�v〉
in π(s), and #(m)t = #(m)s +1. In general, OLT may also keep
more information, e.g. limited history of the test runs or, projected
state machine coverage data, etc, that may affect the overall con-
troller strategy in successive test runs of OLT. Such extensions are
orthogonal to the description of the algorithm below, as they affect
only π. An observer step is a pair (s, t) of OLT states such that
t�M = δM (s�M, a) for some a ∈ Γc

M (s�M), and #s = #t.
By a test run of OLT we mean a trace �s = s0s1 . . . sk ∈ S+

OLT
where s0 is the initial state and, for each i, (si, si+1) is a controller
step or an observer step. A successful test run is a test run that ends
in the goal state.

We are now ready to describe the top-level loop of the OLT al-
gorithm. We write sOLT for the current state of OLT. We say that
an action a is legal (in the current state) if a is enabled in sOLT�M ,
a is illegal otherwise. Initially sOLT is the initial state of OLT. The
following steps are repeated subject to additional termination con-
ditions (discussed in the following section):



Step 1 (observe) Assume sOLT is a passive state (timeout is false).
OLT waits for an observable action until ∆(sOLT�M) amount
of time elapses. If an observable action a occurs within this
time, there are two cases:

1. If a is illegal then the test run fails.

2. If a is legal, OLT makes an observable step (sOLT, s)
and sets sOLT to s. OLT continues from Step 1.

If no observable action happened, OLT sets timeout to true.

Step 2 (control) Assume sOLT is an active state (timeout is true).
Assume π(sOLT) �= ∅. OLT chooses an action a ∈ π(sOLT),
such that the probability of the method of a being m is

prob(sOLT�M, m),

and invokes a in the IUT. There are two cases:

1. If a is not enabled in IUT, the test run fails.

2. If a is enabled in IUT, OLT makes a controllable step
(sOLT, s), where s is an observation state, and sets sOLT

to s. OLT continues from Step 1.

Step 3 (terminate) Assume π(sOLT) = ∅. If sOLT�M is the goal
state then the test run succeeds else the test run fails.

Notice that the timeout event in Step 1 happens immediately if
∆(sOLT�M) = 0. In terms of M , a timeout event is just an observ-
able action.

The failure verdict in Step 3 is justified by the assumption that a
successful run must end in the goal state. Step 3 implicitly adds a
new controllable action fail to AOLT and, upon failure, a transition
δM (sOLT, fail) = sOLT, such that fail is never enabled in MIUT.
For example, if a timeout happens in a nonaccepting state and the
subsequent state is terminal then the test run fails.

3.4 Termination conditions and cleanup phase
The algorithm uses several termination conditions. Most impor-

tant of these is the desired length of test runs and the total length of
all the test runs. When a limit is reached, but the current state of the
algorithm is not an accepting state, then the main loop is executed
as above but with the difference that the only controllable actions
that are used must be marked as cleanup actions. The intuition
behind cleanup actions is that they help drive the system to an ac-
cepting state. For example, actions like closing a file or aborting a
transition are typical cleanup actions, whereas actions like opening
a new file or starting a new task are not.

4. EXAMPLE: CHAT SERVER
We illustrate here how to model and test a simple reactive sys-

tem, a sample called a chat system, using the Spec# specification
language [4] and the Spec Explorer tool [1].

4.1 Overview
The chat system lets members enter the chat session. Members

that have entered the session may post messages. The purpose of
the model is to specify that all messages sent by a given client are
received in the same order by all the recipients. We refer to this
condition as the local consistency criterion of the system. For ex-
ample, if there are two members in the session, client 1 and client
2, and client 1 sends two messages, first “hi” and then “bye”, then
client 2 must first receive “hi” and then receive “bye”.

We do not describe how the chat session is created. Instead, we
assume that there is a single chat session available at all times. The

model is given in two parts. The first part describes the variables
that encode the state at each point of the system’s run. Each run
begins in the initial state and proceeds in steps as actions occur.
The second part describes the system’s actions, such as entering the
chat session or posting a message. Each action has preconditions
that say in which state the action may occur and a method body that
describes how the state changes as a result of the action.

4.2 System State
The state of the system consists of instances of the class Client

that have been created so far, denoted by enumof(Client) in Spec#,
and a map Members that for each client specifies the messages that
have been sent but not yet delivered to that client as sender queues.
Each sender queue is identified by the client that sent the messages
in the queue.

class Client {}

MemberState Members = Map{};

type Message = string!;
type MemberState = Map<Client,SendersQueue>;
type SendersQueue = Map<Client,Seq<Message>>;

The system state is identified by the values of enumof(Client)

and Members. In the initial state of the system enumof(Client) is an
empty set and Members is an empty map.

4.3 Actions
There are four action methods for the chat system: the control-

lable action methods Create, Enter, Post, and the observable ac-
tion method Deliver. The Create action method creates a new
instance of the Client class, as a result of this action the set of
clients created so far, enumof(Client) is extended with the new
client. Some of the preconditions are related to scenario control
and are explained later.

Client! Create()
requires CanCreate; // scenario control

{
return new Client();

}

A client that is not already a member of the chat session may
join the session. A client c becomes a member of the chat session
when the action Enter(c) is called. When a client joins the ses-
sion, the related message queues are initialized appropriately. The
precondition PreEnter[c] of Enter is c notin Members.

void Enter(Client! c)
requires CanEnter; // scenario control
requires c notin Members;

{
foreach (Client d in Members)

Members[d] += Map{<c,Seq{}>};
Members += Map{<c,Map{d in Members; <d,Seq{}>}>};

}

A member of the chat session may post a message to all the other
members. When a sender posts a message, the message is appended
at the end of the corresponding sender queue of each of the other
members of the session.

void Post(Client! sndr, Message msg)
requires CanPost; // scenario control
requires sndr in Members && Members.Size > 1;

{
foreach (rcvr in Members)

if (rcvr != sndr) Members[rcvr][sndr] += Seq{msg};
}



A message being delivered from a sender to a receiver is an ob-
servable action or a notification callback that occurs whenever the
chat system forwards a particular message to a particular client.
When a delivery is observed, the corresponding sender queue of
the receiver has to be nonempty, and the message must match the
first message in that queue or else local consistency is violated.
If the preconditions of the delivery are satisfied then the delivered
message is simply removed from the corresponding sender queue
of the recipient.

void Deliver(Message msg, Client! sndr, Client! rcvr)
requires rcvr in Members && sndr in Members[rcvr];
requires Members[rcvr][sndr].Length > 0 &&

Members[rcvr][sndr].Head == msg;
{

Members[rcvr][sndr] = Members[rcvr][sndr].Tail;
}

4.4 Scenario control
The Spec Explorer tool allows the user to limit the exploration of

the model in various ways. We illustrate some of this functionality
on this example.

4.4.1 Additional preconditions
In order to impose a certain order of actions we introduce the

following derived mode property and define the scenario control
related enabling conditions for the controllable action methods us-
ing the mode property. The scenario we have in mind is that all
clients are created first, then they enter the session, and finally they
start posting messages. We also limit the number of clients here to
be two.

The additional preconditions that limit the applicability of ac-
tions are only applied to controllable actions. The preconditions
constrain the different orders in which the controllable actions will
be called. For observable actions, any violation of the precondi-
tions is a conformance failure.

enum Mode { Creating, Entering, Posting };

Mode CurrentMode { get {
if (enumof(Client).Size < 2) return Mode.creating;
if (Members.Size < 2) return Mode.entering;
return Mode.posting; }

}

bool CanCreate {get{return CurrentMode==Mode.Creating;}}
bool CanEnter {get{return CurrentMode==Mode.Entering;}}
bool CanPost {get{return CurrentMode==Mode.Posting; }}

4.4.2 Default parameter domains
In order to execute the action methods we also need to provide

actual parameters for the actions. In this example we do so by re-
stricting the domain of possible messages to fixed strings by provid-
ing a default value for the Message type through exploration settings
of Spec Explorer. In general, parameters to actions are specified by
using state dependent parameter generators. A parameter gener-
ator of an action method m is evaluated in each state separately
and produces in that state a collection of possible input parameter
combinations for m.

4.4.3 State filters
We may restrict the reachable states of the system with state-

based predicates called filters. A transition to a new state is ignored
if the state does not satisfy the given filters. We make use of two
filters in this example: NumberOfPendingDeliveries < k for some
fixed k, and NoDuplicates that are defined below. The first filter
prevents the message queues from having more than k− 1 pending
deliveries in total in any given state. The second filter prevents a

given message from being posted in states where that message is
already in the queue of messages pending delivery.

int NumberOfPendingDeliveries { get {
return Sum{c in Members;

Sum{d in Members[c]; Members[c][d].Length}};
}}
bool NoDuplicates { get {

return Forall{c in Members, d in Members[c];
NoDupsSeq(Members[c][d])};

}}
bool NoDupsSeq(Seq<string> s) {

return Forall{x in s; Exists1{y in s; x == y}};
}

4.4.4 State groupings
In Spec Explorer one can use state groupings to avoid multiple

equivalent states [13, 8] from being explored. By using the follow-
ing state grouping we can avoid different orders in which clients
enter the session:

object IgnoreEnteringOrder { get {
if (CurrentMode == Mode.posting) return Members;
else return <enumof(Client),Members.Size>;

}}

Notice that in entering mode, the number of members increases,
but the grouping implies that any two states with the same number
of members are indistinguishable. Without using the grouping we
would also get the two transitions and the intermediate state where
client c1 has entered the session before client c0. With n clients
there would be n factorial many orders that are avoided with the
grouping. The use of groupings has sometimes an effect similar to
partial order reduction.

If we explore the chat model with the given constraints and only
allow a single message “hi”, then we explore the state space that is
shown Figure 1.

4.5 Execution
Before we can run the model program against a chat server im-

plementation, here realized using TCP/IP and implemented in .NET,
Spec Explorer requires that we complete the test configuration. We
do so by providing a reference to the implementation and establish
conformance bindings, which are isomorphic mappings between
the signature of the model program and the IUT.

Our methodology also requires that objects in the model that are
passed as input arguments, must have a one-to-one correspondence
with objects in the IUT. This dynamic binding is implicitly estab-
lished by the Create call, which, when run, binds the object created
in the model space automatically to the object returned by the im-
plementation.

Running this example in the Spec Explorer tool with the online
algorithm showed a number of conformance discrepancies with re-
spect to a TCP/IP-based implementation of this specification writ-
ten in C#. In particular, the implementation does not respect the lo-
cal consistency criterion and creates new threads for each message
that is posted, without taking into account whether prior messages
from the same sender have been delivered to the given receiver.
Figure 2 shows a particular run of the model against the implemen-
tation using the online algorithm of Spec Explorer where a confor-
mance violation is detected. In this case the Message domain was
configured to contain two messages “hi” and “bye”.

5. EVALUATION
We evaluate the use of online testing on a number of sample

problems. The different case studies are summarized in Table 1.
In each case the model size reflects approximately the number of
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Figure 1: Exploration of the Chat model with two clients, one message “hi”, and the filter NumberOfPendingDeliveries < 2, generated
by Spec Explorer. The label of each node displays the value of the IgnoreEnteringOrder property. Active states are shown as ovals
and passive states are shown as diamonds. Unlabeled arcs from passive to active state are timeout transitions. Observable actions
are prefixed by a question mark.

lines of the model code excluding scenario control. Implementa-
tion size reflects approximately the number of implementation code
lines that are directly related to the functionality being tested. For
example, the full size of the chat server implementation including
the test harness is 2000 lines of C# whereas the core functionality
of the server that is targeted by the model is just 300 lines of C#. In
each case the implementation is either multi-threaded or distributed
(in the case of the chat system). The number of threads is the to-
tal number of concurrent threads that may be active in the IUT. The
number of locks that are use by the implementation is in some cases
dependent on the size of the shared resources being protected. For
example, the shared bag is implemented by an array of a fixed size
and each array position may be individually locked. The number
of runs refers to the total number of online test runs starting from
the initial state. The number of steps per run is the total number of
actions occurring in each test run.

Here is a short evaluation of each of the problems. The first
three samples are also available in the sample directory of the Spec
Explorer distribution [1]. The last (WP) project is an example of
industrial usage of Spec Explorer within Microsoft product teams.

Chat Described in Section 4. Code coverage is not 100% because
the functionality that allows clients to exit the session is not
modeled. The timeout used is 0, implying that observable
actions are not waited for if there is a controllable action en-
abled in the same state. The Chat Server implementation
starts a thread for each delivery that is made, which, in gen-
eral, violates the local consistency criterion. The bug is dis-
covered with at least two messages being posted by a client.
However, the same code coverage is reached already with
two clients and a single message. The FSM for this case is
illustrated in Figure 1.

Bag A multi-threaded implementation of a bag (multi-set). Sev-
eral concurrent threads are allowed to add, delete and lookup
elements from a shared bag. The example is a variation of
a corresponding case study used in [19]. In this case the
85% coverage of the code was already obtained with a single
thread and bag with capacity 1. The remaining part of the
code is not modeled and consequently not reachable using
the model. However, a locking error (missing lock) in the im-



Figure 2: Screenshot of running online testing against the chat server implementation with Spec Explorer. Delivery of message “bye”
from client c0 to client c1 is observed from state s18 violating the fifo requirement on message delivery since “hi” from c0 to c1 was
posted before “bye” but has not been delivered as shown by the tooltip on state s18 that shows the value of Members.

plementation could only be discovered with at least 2 threads
and bag with capacity 2. Although the use of 2 threads did
not improve code coverage, it gave e.g. full projected state
and transition coverage where the projected states were all
the possible thread states. In the implementation random
small delays were inserted to enforce different schedules of
the threads. It was useful for the timeout to be state-based
e.g. depending on whether all threads were active or not.

Daisy A model of a distributed file system called Daisy.2 Roughly
70% of the functionality was modeled, including creation of
files and directories, and reading and writing to files. The
code coverage measure refers to the whole library includ-
ing the functionality that was not covered. The model is at
a much higher level of abstraction, e.g. nodes and blocks
are not modeled. In this case two thirds of the conformance
violations that were discovered with multiple users between
the model and the implementation were due to modeling or
harnessing errors. Same code coverage was reached with a
single user. The implementation code was a C# translation

2Used as a common case study during the joint CAV/ISSTA
2004 special event on specification, verification, and testing of
concurrent software. The event was organized by Shaz Qadeer
(qadeer@microsoft.com).

of the original case study written in Java. The implemen-
tation threads were instrumented with small random delays
that helped to produce more interleavings of the different
user threads accessing Daisy.

WP A system-level object-model (WP1) and a system-level model
(WP2) of an interaction protocol between different compo-
nents of the Windows operating system, used by a Windows
test team. WP2 is composed of 7 smaller closely interacting
models.

The model-based approach helped to discover 10 times more
errors than traditional manual testing, while the effort in de-
veloping the model took roughly the same amount of time
as developing the manual test cases. The biggest impact that
the modeling effort had was during the design phase, the pro-
cess helped to discover and resolve 2 times more design is-
sues than bugs that were found afterwards. Despite the fact
that unit testing had already reached 60% code(block) cov-
erage in case of WP2, bugs that were found in the process
were shallow. The additional 10% percent was gained by
model-based testing. Typically 100% code coverage is not
possible due to various reasons, such as features that are cut
or intended for future releases and result in dead code from
the point of view of the release version under test. More-



Table 1: Online testing sample problems.
Sample
problem

Model
#lines

IUT
#lines

IUT #threads IUT #locks IUT
block
coverage

OLT
#runs

OLT
#steps
per run

OLT
timeout

Chat 30 300 #messages 6 90% 10 10 0
Bag 100 200 #clients bag capacity 85% 10 100 state based

0–500ms
Daisy 200 1500 #clients #files + #nodes

+ #blocks
60% 10 200 state based

0–100ms
WP1 200 3500 data dependent data dependent 100% 100 100 100ms
WP2 2000 20000 data dependent data dependent 70% 30 100 100ms

over, the model did not cover all of the exceptional behav-
ior of the implementation. However, additional manual tests
were only able to increase the code coverage marginally by
1-2%. Using online model-based testing helped to discover
deep system-level bugs, for which manual test cases would
have been hard to construct. When developing new versions
of the code, models need to be adjusted accordingly, but such
changes are typically local, whereas manual test cases have
to be redesigned and sometimes completely rewritten.

In all the cases above the number on code coverage of the imple-
mentation did not reflect any useful measurement on how well the
implementation was tested. In most cases when bugs were found,
at least two or more threads and a shared resource were involved,
although the same code coverage could often be achieved with a
single thread. A demanding task was to correctly instrument the
implementation code with commit actions that correspond to ob-
servable actions that match the level of abstraction in the model.
For example, often conformance violations were discovered due to
observable actions being invoked out of order. In order to produce
a valid serialization of the observable actions that happen in con-
current threads, the multiplexing technique [9] was used in the test
harness of Bag and in the WP projects.

In general, our experience matched that of our users: when our
customers discover discrepancies using our tool, typically about
half of them originate from the informal requirements specification,
the model, or bugs in the test harness, and half are due to coding
errors in the implementation under test. The modeling effort itself
had in all cases a major impact during the design phase, a lot of
design errors, typically twice as many as the number of bugs dis-
covered afterwards, were discovered early on and avoided during
coding.

6. RELATED WORK
Games have been studied extensively during the past years to

solve various control and verification problems for open systems. A
comprehensive overview on this subject is given in [10], where the
game approach is proposed as a general framework for dealing with
system refinement and composition. The paper [10] was influential
in our work for formulating the testing problem as a refinement
between interface automata. The notion of alternating simulation
was first introduced in [2].

The basic idea of online/on-the-fly testing is not new. It has been
introduced in the context of labeled transition systems using ioco
theory [6, 20, 22] and has been implemented in the TorX tool [21].
Ioco theory is a formal testing approach based on labeled transition
systems (that are sometimes also called I/O automata). An exten-
sion of ioco theory to symbolic transition systems has recently been
proposed in [12].

The main difference between alternating simulation and ioco is
that the system under test is required to be input-enabled in ioco (in-
puts are controllable actions), whereas alternating simulation does
not require this since enabledness of actions is determined dynam-
ically and is symmetric in both ways. In our context it is often
unnatural to assume input completeness of the system under test,
e.g. when dealing with objects that have not yet been created – an
action on an object can only be enabled when the object actually ex-
ists in a given state. Refinement of interface automata also allows
the view of testing as a game, and one can separate the concerns of
the conformance relation from how you test through different test
strategies.

There are other important differences between ioco and our ap-
proach. In ioco theory tests can terminate in arbitrary states, and ac-
cepting states are not used to terminate tests. In ioco quiescence is
used to represent the absence of observable actions in a given state,
and quiescence is itself considered as a action. Timeouts actions
in Spec Explorer are essentially used to model special observable
actions that allow the tool to switch from passive to active mode,
and in that sense influence the action selection strategies. Typically
a timeout is enabled in a passive state where also other observable
actions are enabled (see e.g. Figure 1, where each passive state
has two enabled actions, one of which is a timeout), thus timeouts
do not, in general, represent absence of other observable actions.
State dependency of the timeout function is essential in many ap-
plications. In our approach states are full first-order structures from
mathematical logic. The update semantics of an action method is
given by an abstract state machine (ASM) [15]. The ASM frame-
work provides a solid mathematical foundation to deal with arbi-
trarily complex states. In particular, we can use state-based expres-
sions to specify action weights, action parameters, and other con-
figurations for OLT. We can also reason about dynamically created
object instances, which is essential in testing object-oriented sys-
tems. When dealing with objects, interface automata are extended
to model automata in [7]. Model automata refinement is alternating
simulation where actions are terms that must match modulo object
bindings, if a model object is bound to an implementation object
then the same model object cannot subsequently (during a later
step) be bound to a different implementation object, thus preserving
a bijection between objects in the model and objects in the imple-
mentation [7]. Support for dynamic object graphs is also present in
the Agedis tools [17].

An early version of a model-based online testing algorithm pre-
sented here, was implemented in the AsmLT tool [3] (AsmLT is
a predecessor of Spec Explorer); in AsmLT accepting states and
timeouts are not used. A brief introduction to the Spec Explorer
tool is given in [14]. Besides online testing, the main purpose of
Spec Explorer is to provide support for model validation and of-
fline test case generation. Test cases are represented in form of



finite game strategies [18, 5]. Spec Explorer is being used daily by
several Microsoft product groups.

7. OPEN PROBLEMS & FUTURE WORK
There are a number of open problems in testing large, reactive

systems. Here is a list of problems that we have encountered, and
that are also widely recognized in the testing community.

Achieving and measuring coverage. In the case of external
nondeterminism it is difficult to predict the possible behaviors and
what part of the state space is being covered in future runs.

Scenario control. What is a convenient language or notation for
generating strategies that obtain particular behaviors? This is re-
lated to playing games with very large or even infinite state spaces,
where at every point in time there is only a limited amount of
knowledge available about the history.

Failure analysis. Understanding the cause of a failure after a
long test run is related to a similar problem in the context of model-
checking.

Failure reproduction. Obtaining short repro cases for failures
that have been detected after long runs is an important practical is-
sue. This is complicated by the fact that the reproduction of failures
may not always be possible due to external nondeterminism.

Failure avoidance. A tester running online testing in a stress-
testing mode against an IUT often wants to continue running the
tool even after a failure is found. Of course the same failure should,
if possible, be avoided in continued testing.

Some of these problems can be recast as problems of test strategy
generation in the game-based sense. For this a unifying formal test-
ing theory based on games and first-order states seems promising.
We are currently working on several of these items, in particular
scenario control. We are also extending the work started in [5] to
online testing using Markov decision theory for optimal strategy
generation from finite approximations (called test graphs) of the
model program.
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