

Towards Understanding Programs
through Wear-based Filtering

Robert DeLine1, Amir Khella2, Mary Czerwinski1, George Robertson1

1
Microsoft Research

One Microsoft Way
Redmond, WA 98052, USA

1-425-705-4972

{rdeline, marycz, ggr} @microsoft.com

2
Computer Science Department

Human Computer Interaction Lab
University Of Maryland

College park, MD 20742, USA
1-301-405-2725

akhella@cs.umd.edu

ABSTRACT
Large software projects often require a programmer to make
changes to unfamiliar source code. This paper presents the results
of a formative observational study of seven professional
programmers who use a conventional development environment
to update an unfamiliar implementation of a commonly known
video game. We describe several usability problems they
experience, including keeping oriented in the program’s source
text, maintaining the number and layout of open text documents
and relying heavily on textual search for navigation. To reduce the
cost of transferring knowledge about the program among
developers, we propose the idea of wear-based filtering, a
combination of computational wear and social filtering. The
development environment collects interaction information, as with
computational wear, and uses that information to direct the
attention of subsequent users, as with social filtering. We present
sketches of new visualizations that use wear-based filtering and
demonstrate the feasibility of our approach with data drawn from
our study.

Keywords
Computational wear, collaborative filtering, implicit query,
program comprehension, software visualization

1. INTRODUCTION
In a large, long-term software project, a team programmer must
often get to know an unfamiliar portion of the source code in
order to fix a bug, to add a feature or to refactor the code to meet a
design constraint. The code may be unfamiliar, for instance,
because a different programmer was previously responsible for
that portion of the code or because the software is in a
maintenance phase where responsibility for the code is no longer
strictly apportioned among the team’s programmers. A
programmer facing such a task often relies on little more than the
executable code itself. Documentation about the code -- either in
the form of inline comments or separate design documents -- is
expensive to produce and maintain and is hence often missing or
out-of-date. Although researchers have proposed tools to help
programmers change unfamiliar code [31], a programmer today
typically uses a development environment, like Emacs, Visual
Studio or Eclipse, both to learn about the unfamiliar code and to
perform the development task. In this paper, we describe a

formative observation study of professional programmers using a
typical development environment to make changes to unfamiliar
code and the usability problems they experience.

To combat the expense of software documentation, we also
explore cheap ways to transfer knowledge from programmers
familiar with the code to those unfamiliar with it. In previous
research, Hill, Holland, Wroblewski and McCandless introduced
the idea of computation wear, namely, capturing a user’s
interaction history with a document and making that history
available to others interacting with the same document [11]. Other
researchers have developed the idea of collaborative filtering,
namely, allowing users to rate or annotate portions of a large
shared information source (e.g. newsgroups) to help one another
quickly find high-quality subsets of the information [9][12]. In
this paper, we combine those ideas into wear-based filtering. We
propose saving programmers’ interactions with a project’s source
code and using that interaction history to direct the attention of
subsequent programmers to the important portions of the code.

For instance, Figure 1 shows a sketch of a proposed development
environment in which the user’s current position in the source
code forms an implicit query [6] into the code’s interaction
history. The list at the bottom left labeled “Frequently Accessed
Next” shows the definitions (methods and fields) that previous
programmers visited most often directly after visiting the current
method. In this case, after visiting method TimerTick, developers
next visited TetrisGrid 31% of the time, Move 16% of the time,
and so on. One of those methods (Figure.Move) is selected and
shown in the source preview panel on the lower right.

In order to explore whether or not program code visitation
frequency and implicit importance are even correlated with each
other, and to discuss these ideas further with real developers, we
ran a formative user study on program comprehension. Formative
studies are used early in the design of a prototype concept, in
order to initially explore the idea with stakeholders in the design
and to get user feedback for iterating or even initially designing a
prototype. In Section 2, we describe our study and the usability
issues that it uncovered. In Section 3, we describe three
conceptual designs that address these usability issues and use the
idea of wear-based filtering. In Section 4, we compare our work to
existing research and conclude in Section 5.

2. THE STUDY
2.1 Participants
Seven experienced programmers (all male), average age of 36
years old (range=30 to 42), participated in this study for receipt of
2 copies of Microsoft software gratuity. The programmers were
chosen to match a series of profile questions that were used in the
screening process. These questions included the requirements
that they work on small software development teams, often need

to debug or modify the code of other developers, and that they
have worked on long-term projects in the past. In addition, we
asked the participants about their history using a computer
(average=21.6 years), length of time spent programming
(average=17.7 years), what their editor of choice was: 5 used
Visual Studio.net, 1 used Visual Studio 2003 and Notepad, and
another only used Notepad. As for their preferred debugging
tools, all reported using the tools that come with Visual Studio,
though 1 used FoxPro and CodeWarrior for Palm in addition to

Figure 1. Sketch of an editor using wear-based filtering

Visual Studio. On average, the participants worked in software
development teams of around 13 members.

2.2 Methods and Procedure
Each participant was run singly in our user study laboratory. The
experimenter was in the room with the developer the entire time,
as this was a “think aloud” study, where the participant tells the
experimenter what they are thinking as they work on the code.
When participants first arrived in the lab, they were given
instructions as to the goals of the study, told that there were no
“right or wrong” answers but that we were primarily interested in
how programmers approach and comprehend code written by
someone else. They were told that they would be given a certain
time period (20 minutes) for each task, and that they might not
finish, but that this was ok since it was their thought processes
that we were interested in. The study was run on a late model
Compaq Evo machine with double flat panel LCD monitors
running at 2560 x 1024 total resolution. A late model Microsoft
keyboard and IntelliMouse were used for input. Windows XP and
Visual Studio.Net were used to review the code during the study.

Code from the game Tetris was used in the study for a number of
reasons. First, the source code was of a nontrivial size and
complexity. Second, since domain expertise is a critical factor in
code comprehension, we chose a game that all our participants
had played many times to ensure that they were familiar with the
functionality that the program provides. The Tetris game we used
was called GATetris, downloadable from the Code Project web
site at http://www.codeproject.com/csharp/CsGATetris.asp.

In order to collect quantitative information about the code
exploration process for each participant, a custom-designed logger
was run to track code traversal information. The logger was
developed as an add-in to Visual Studio.net to catch various
editing, debugging and browsing events. The logger writes all
interaction events with timestamps to a raw data file. A C#
customizable script is developed to crawl over logs and aggregate
the events into statistics and path analyses. In addition, Camtasia
Studio version 2.0 [3] was used to videotape the desktop
behaviors of each participant.

2.3 Tasks
First, each participant was given an opportunity to explore the
source code and program behavior for up to ten minutes. Then,
the participant was asked to do the following four tasks, always in
the same sequential order. (This is because the tasks start out very
simple and increase in difficulty.)

1. Which method in the source code determines the next
game piece that falls?

2. When a new game begins, the pieces fall at a rate of one
grid square per second. What conditions in the game
play cause this rate to speed up? Which method contains
the logic to increase the speed?

3. The game currently features several different figures,
shown below:

Line

LThunder1

RThunder

LeftT

RightT

Triangle

However, the game does not feature a square figure like
this one:

Square

Add this square figure to the game. Notice that unlike
the existing figures, rotating a square figure has no
effect – the square looks the same at every rotation
angle – which makes it simpler to implement than the
other figures. Be sure to update the game logic to ensure
that the square figure is a candidate for falling.

4. Change the game so that hitting the space key during
game play causes the current figure to fall immediately
as far down as it can. This feature spares the player from
having to hit the down arrow key many times in
succession. The figure’s fast fall does not need to be
animated. The figure can simply disappear from its
current position and reappear at the bottom of the grid.

(Note that the actual game does include the Square figure, which
we removed from the source code to support task 3.)

2.4 Dependent measures
We were interested in the users’ traversal paths through the code,
in addition to their ability to complete the four tasks and solve the
quiz questions. Finally, we collected importance ratings on a
variety of methods and classes from the code, using a subjective
rating scale from 1 to 5, with 5 indicating the item is very
important for understanding the code.

2.5 Results
2.5.1 Task completion
Participants were able to find the answers to task 1 100% of the
time, and reviewed the code enough to answer task 2 100% of the
time. Since they were given a deadline of only 20 minutes to

1 The names of the figures appear throughout the source code. The

names LThunder and RThunder are both inconsistent with the
names LeftT and RightT (L and R rather than Left and Right)
and should presumably be named Lighting or Bolt rather than
Thunder. We left the names as-is since inconsistent and
confusing names are typical.

solve each task, tasks 3 and 4, which involved actually modifying
the code, had lower success rates. Task 3 and 4 were only
completed by 1 out of 7 users (a different user each time) in the
20 minutes given, but several users got very close and were
headed in the right direction.

2.5.2 Quiz responses.
After trying all 4 tasks, participants were asked to close Visual
Studio and perform a quiz on their comprehension of the code
base. Participants fared well on questions about TetrisGrid and
NewFigure (both related to tasks 1 and 2), but had more trouble
with other questions related to drawing and animating game
pieces (tasks 3 and 4). In other words, participants were able to
answer questions for tasks they completed better than for the more
difficult tasks that they were less likely to have finished in time.
This result is not surprising.

2.5.3 Correlations between method and class
importance ratings and frequency of access
In addition to taking a quiz on the code base, participants were
asked to rate the importance of various methods and classes for
the tasks they had performed, in addition to understanding the
code overall. A Pearson product moment correlation of those
ratings was carried out against the actual frequencies of visiting
those areas of the code, across all the participants. The
correlation was significant, r=.79, p<.01. In general, therefore,
areas of the code most frequently visited were also rated as more
important by the participants.

2.5.4 Observations
All participants started by exploring the control flow of the
program by looking for places in the project which might be good
candidates for an entry point. Participants who started exploring
the member variables made faster progress than those who started
by looking at functions. Despite the fact that all subjects were
familiar with the game’s concept, only two of the subjects used
top down comprehension to hypothesize that the major
functionality should be implemented through a timer. This
assumption helped them to locate the main timer event handler
using "Find in Files". The remaining subjects used bottom up
comprehension and navigated a larger percentage of the code
before locating the same function. The two most widely used
features for forward navigation were "‘Go to Definition"’ and
"‘Find in Files"’.

2.5.5 Usability issue
Although our goal was not to evaluate the usability of Visual
Studio, we did observe many issues that detracted from an optimal
user experience while participants carried out their tasks.
Primarily, issues related to navigating and “re-finding” areas of
the code that had already been visited detracted from developers
quickly accomplishing their tasks. Search (“Find”) was also
problematic, in that there were several versions (scoped or
unscoped) and users often found themselves searching in a limited
space when they thought they were performing a global search. In
addition, while the tabbed main window was useful for keeping
multiple areas of the code viewable within one click, there was a
lot of hunting and pecking observed when users forgot what an
area of the code was called, or when too many tabs were opened.
At some point, most users ended up closing all the tabbed
windows and starting over to make the tabs more navigable and to

remove clutter on the screen. Some users complained that, though
they like the class view, it resized every time they edited the code.
It was clear that users thought of the code via its spatial layout,
and wanted their class views to maintain a consistent look as well.
There was also a lot of effort involved in window layouts across
the two monitors. Users expressed annoyance when the layouts
were not maintained or optimized for their task at hand. One user
had issues with Intellisense not behaving correctly while typing
with a compilation error. One user wanted a “clear all” button for
when you start something new in the code, and asked for a way to
save snapshots of where he was in the code for different tasks in a
single project. He said he does not know of many programs that
do that and it would really help. There were a few issues related
to F-key functionality (e.g., users using F6 when they wanted the
functionality related to F5).

2.5.6 User comments
Users provided several helpful suggestions and ideas for
improving the experience of comprehending code written by
someone else. Some users suggested that graphical depictions
would be much more easily understood than textual ones for
initial code exploration. Visualization that described the high
level architecture and abstracts away the detail was mentioned as
key. Also, understanding the relationships between components
was suggested as helpful. Finally, having easy-to-use tools to
help a developer navigate around the code base (e.g. find which
code calls a method, or find all instances of a variable, etc.) would
improve efficiency and understanding, according to our
participants. It was also mentioned that brief, one-line
explanations (written by a developer) on certain lines within the
code for important processes would make for quick understanding
of code areas easier. One participant suggested that the developer
should be able to tag code as they explore it, including 1) the
main summaries of user input source (keyboard, timer) 2) A
UML-type diagram for reviewing the main classes. This user
wanted to place these tools on a third monitor, and click on them
to get an instantaneous breakdown of the main parts - in other
words visually navigate the classes if desired, and 3) Show a drop
down for the whole solution A) Namespace B) Class C) Field
selector type (data, methods, properties, private) D) Function
Selector that would let developers navigate to any part of the
program, regardless of what file they are in. Now we support the
current file, but in practice, this user said he navigates around the
program, and he only wants one file open at a time. In fact this
user mentioned that he only usually wanted one function at a time,
with a quick way to get back to the functions he was just working
on. Finally, some users stated that they would have understood
the code better initially if there had been description headers at
the top of each code file that explained the contents. Essentially
when attempting to trace a method’s origin, the developer would
use search to find where it existed and how it was used in other
places. Any shortcuts for this navigation task were described as
useful.

2.6 Discussion
Based on the post-experiment questionnaires, all subjects agreed
that finding the entry point and understanding the control flow
was the most difficult task since the code was giving them a
broader working set than what they need for the task. The large
number of members and variables in each class made it difficult
for most of them to navigate using class view. Many participants

expressed their need to eliminate from view those areas of code
irrelevant to the current task, in order to identify areas that have
not been explored yet. Moreover, they also expressed the need for
an advanced highlighting and annotation tool that they can use
with the same simplicity of noting something on paper, while
being linked to the code. When asked about what they would say
to subsequent code owners, all participants agreed about
communicating the names of the important areas in the code.
Some participants also communicated a "navigation path" that
would lead others through the best route to understand the code.

3. EXPLORING CONCEPTUAL DESIGNS
Throughout the study, participants were not shy about
complaining about the lack of inline comments and overview
documentation. They wanted to “pick the brain” of the original
author, chiefly to get a summary of the game’s major components
and their functions and to learn how control flows among these
components. The cost of such knowledge transfer, either in the
form of documentation or direct communication, can be
considerable. Hence, we propose designs that use interaction
history as a free source of information about the program.

Here we present mockups of three conceptual designs that use
interaction history to address two major problems that the
participants experienced: (1) needing to scan much of the source
code to find the system’s most important pieces, and (2) getting
lost while exploring the code.

3.1 The FAN List: implicit queries of history
In the study, we repeatedly saw the following frustrating scenario.
The user is studying a given method and would have questions
about other parts of the code, like “What does this called method
do?”, “Who calls this method?”, or “How is this referenced data
structure represented?” To discover the answers, the user would
navigate from away the current method to a part of the code likely
to provide answers. In the best case, the user would navigate
directly with the “go to definition” command and would return
directly afterward. However, in many cases, the navigation would
involve textual search, followed by pruning out the search results
by visiting each result site. In some cases, the user would navigate
several hops away from the original method of interest. The result
is that the user would often get lost and have a hard time returning
to the original method of interest.

To address this, we combine computational wear, social filtering
and implicit queries in our mockup of the Frequently Accessed
Next (FAN) List design, shown in Figure 1. At the top of the
figure is the usual code editor. At the bottom left is the FAN List.
Based on the current definition (method or field) under the cursor
in the editor window, the FAN List displays all definitions to
which that previous users navigated directly after leaving the
current definition more than 5% of the time. Clicking on an item
in the FAN List causes the definition to appear in the preview
window to the right of the FAN List. This allows the user to
inspect the given definition (and the code around it) without
changing the current focus in the editor window. (Double-clicking
on an item in the FAN List puts that definition in the editor
window, so the user can also navigate with the FAN List.)

This design addresses both the problems mentioned above. When
the user has a question about the method in the current focus,
rather than searching the entire source code, the FAN List
displays likely places for the answer to lie because they are the

most related places in the code, according to previous users’
navigation steps. Of course, if the user’s question is sufficiently
unrelated to previous users’ tasks involving the focus method,
then the FAN List may not point to the most relevant code. The
intent is to give the user assistance most of the time.

Second, the preview window allows the user to inspect related
code without losing the current focus. This supports questions
whose answers are one hop away from the code under focus. For
multiple hops, the design could be modified to make the preview
window a first-class editor with its own FAN List. The worth of
this additional complexity depends on the frequency of multiple-
hop questions.

In the current design, the FAN list is ordered by frequency, so that
the most visited item appears first. This has two potential
problems. First, during the early stages of development of a
system, this might become self-perpetuating. That is, something
that others frequently access is more likely to be pursued, hence
reinforce the existing statistics. Second, the frequency order for
some items may be different in different contexts. Programmers
may find this disconcerting. An alternative design might have a
fixed ordering (e.g., alphabetic or in the same order the items are
defined in the source), with frequency information provided

Figure 2. Code Favorites (L) vs Studio's Class View (R)

textually or graphically. Our intention is to try each of these
techniques and evaluate the alternatives iteratively with real users.

3.2 Code Favorites: wear-filtered overviews
The results of the study indicate that interaction history can be
used to distinguish parts of the code based on their importance.
An initial overview that provides developers with code hotspots
should accelerate the comprehension process by highlighting the
areas which should receive early attention. Additionally,
developers need to specify which of these members are relevant to
their tasks and constitute a working set for later use.

We propose Code Favorites, a prototype providing a customizable
class browser to navigate classes and members similar to favorite
folders [13]. Figure 2 shows Code Favorites (left) versus Visual
Studio’s Class View (right). Class View displays in a tree view all
of the projects in the system, the types defined in those projects
and the members defined in those types. Code Favorites, instead,
filters the tree based on interaction history. In this case, only
members that previously received 50 or more visits are displayed
as children of their containing class node. The remaining members
are displayed as children of an ellipsis node, labeled “More
members”, that is a child of their containing type. Similarly, only
the most frequently accessed projects and types are shown.

As with favorite folders, checkboxes allow the user to move items
in and out of the ellipsis folders. Checking an item in an ellipsis
folder moves it out to the parent node; unchecking an item moves
it to the parent’s ellipsis folder. The novelty of this design over
the original favorite folders is seeding the list of favorites based
on the team’s interaction history.

The main advantage of this design for program comprehension is
that it highlights “hot spots” in the code, directing attention to
those places where previous programmers have worked most
often. Compared with the “Frequently Accessed Next” list, the
change to the development environment’s existing user interface
is modest. The checkboxes that let the user to move items in and
out of the ellipsis folders allow the user to establish working sets
of types and methods. But of course we intend to evaluate and
iterate each of these designs and compare them to each other.

3.3 Wear for degree-of-interest highlights
Several of the participants complained that there was no overview
showing the system components and their relationships, either in
the form of documentation or as an online visualization. This lack
of overview is likely a big contributor to their getting lost as they
navigated around the code. Modern development environments
are capable of automatically generating UML class diagrams, such
as the one shown in Figure 3. Here we propose supplementing or
filtering such diagrams based on interaction history.

The UML diagram in Figure 3 shows the various classes in one of
the Tetris projects and two kinds of relationships among the
classes, namely inheritance (“is-a”, shown with triangle arrows)
and association (“has-a”, shown with open arrows and field
labels). Over this diagram we superimpose interaction history data

as a heat map with four gradients of red. The field TetrisGrid.-
currentFigure and the method TetrisGrid.TimerTick, for instance,
were accessed quite often, the field Settings.leftKey less so, and
the method SingleSquare.Draw less still. The fields, properties,
and methods shown with white background were accessed
relatively infrequently or not at all.

The advantage of such a diagram is that it shows the whole system
and the degree to which previous programmers worked on various
parts. The display and its highlights remain unchanged as the user
navigates among the definitions, which should help to keep the
user oriented, particularly if a “you are here” marker is kept in
sync with the editor’s cursor. In addition to the “you are here”
marker, we could also highlight the Frequently Accessed Next
members. The clear disadvantage is that the diagram is large,
detailed, and cannot scale to large systems.

One approach to addressing the scaling problem is to use wear
data as a filter, in the style of Code Favorites. We could use
ellipses to omit from the lists those fields, properties and methods
with white backgrounds. We could also collapse seldom accessed
classes, like TetrisGridContainerDesigner, to just their names or
omit them altogether. Such a diagram would scale better but
would be less useful in keeping the user oriented. The benefits
and tradeoffs from each of these designs might change with
different task contexts, and hopefully by studying them in situ we
can learn general heuristics for optimal presentation based on task
type.

3.4 Discussion
3.4.1 Task-specific versus task-neutral data
An assumption behind our conceptual designs is that the
frequency of navigation to a definition varies roughly in
proportion to the definition’s importance. This may not always be
the case. For instance, a developer who often fixes obscure bugs
will generate interaction data that emphasizes parts of the code
that relatively unimportant for understanding the program. Our
hope is that aggregating data over many developers doing many
tasks will counteract the task-specific nature of each epoch of
interaction data.

An alternative approach could take advantage of the task-specific
nature of the data. Many development teams encourage the
convention that changes to the source code be committed to the
source control system in batches dedicated to a single conceptual
change, i.e. to a single programmer task. For such teams, the
interaction history could be stored and presented per programmer,
and per check-in [2]. As a prelude to any of our conceptual
designs, we could present the user with a list of check-ins and
their textual descriptions. The user could then select a check-in
whose description mentions a task similar to the user’s current
task. Our visualization would then use that check-in’s associated
interaction history rather than the team’s aggregate interaction
history.

Figure 4. UML diagram with wear heat map

3.4.2 Cleaning up the interaction data
In all of the study sessions, we saw participants make false steps
in navigating to a definition in which they were interested. For
instance, the participant would misremember the location of a
definition or would be distracted by a definition with a similar or
misleading name. Recovering from the mistake could sometimes
take several navigation steps.

Such mistakes have the effect of tainting the interaction data,
which in turn can diminish the quality of our visualizations. To
address this, the data could be filtered to weed out these mistakes.
For instance, a long visit duration or the occurrence of an edit at
the target of a navigation step could be used as a cue that the
navigation was successful. Similar care must be taken in
bootstrapping the visualizations, which are useful only after a
threshold amount of interaction data has been collected.

4. RELATED WORK
4.1 Program comprehension
Previous studies have focused on proposing and validating
cognitive models of program comprehension rather than on
usability issues with development environments. Here we briefly
summarize these previous results.

4.1.1 Cognitive models of program comprehension
Previous work focusing on the psychology of programming
identified two main approaches for program comprehension:
bottom up and top down [20]. In bottom up comprehension, lines
of code are recognized as functional chunks, which are
consolidated into algorithms, and finally into a semantic process.
Top down comprehension, also called hypothesized
understanding, assumes the existence of an initial clue or
hypothesis about the intended functionality of the code. Iterative
refinement is used to understand the program in a top down
fashion, building more hypotheses at each level and verifying
their validity. Additionally, Letovsky [14] introduced the
knowledge-based approach, where programmers can employ both
bottom up and top down comprehension, depending on the cues
that are given to them. Another study by Littman et. al [15]
identified two additional, equally important comprehension
strategies: systematic and as-needed. The systematic strategy
describes the comprehension process as the use of extensive
symbolic execution of the data and control flow between modules
to gain a detailed understanding of the program prior to code
modification. In contrast, the as-needed strategy tries to minimize
the effort required by localizing understanding to only those parts
of the program that need to be changed. Finally, Mayrhauser and
Vans observed in their study [18] that program understanding is
built concurrently at several levels of abstraction, by freely
switching between bottom-up, top-down and knowledge-based
strategies.

One family of studies has focused on code beacons, first
introduced by Brooks [2], which are stereotypical segments of
code. Wiedenbeck and Scholtz [34] examined the role of beacons
in program comprehension. Gellenbeck and Cook [8] showed that
beacons include meaningful variable and function names,
comments and program structure. Crosby et al [5] investigated the
role of expertise in recognizing code beacons. He concluded that
“beacons may be in the eye of the beholder,” for instance, when
more experienced programmers could recognize lines from a
binary search algorithm that novices did not distinguish. Beacon

identification have been discussed throughout software
engineering literature [16][17][32][33] as an essential ability that
expert programmers use during program understanding. These
findings coincide with Petre’s analysis [22] on the ability of
expert programmers to organize and use secondary notation in
graphical programming to boost readership skills.

4.1.2 Program comprehension studies
Different strategies have been employed to study empirical
program comprehension. During a maintenance task requiring
comprehension, the measures of completeness, correctness and
time required to finish the task [14][15] are frequently used.
Recall tests [21][27] are also performed to test subjects’ abilities
to answer questions regarding a piece of code that they study for a
limited time period. Subjective ratings [27] has been used recently
to measure different levels of comprehension. Additionally,
program comprehension studies may ask subjects to label or
group different code members based on the similarity of their
functionalities [23]. Soloway and Erlich [30] asked programmers
to fill in blank lines and complete unfinished programs on paper
in an unfamiliar source code without providing specifications
about the program’s use or functionality. Similarly, Bertholf et al.
[1] asked novice developers to complete incomplete literal
programs on paper. Additional techniques to measure program
comprehension involved completing incomplete call graphs [19],
modifying existing code [28], report a bug [29], or separate
source code from two different algorithms. The tasks and
measures used in our initial user study were chosen to provide a
somewhat different set of metrics, and of course to examine the
usefulness of the concept of wear-based filtering.

4.1.3 Graphical versus textual notations
Mixed results have been reported through the literature on the role
of text and graphics for program comprehension. While Green
and Petre [10] observed that text was faster than graphics for
experimental program comprehension tasks, Scanlan [24] reported
an improvement using graphical visualizations when comparing
textual algorithms and structured flowcharts. Petre [22] attributes
the difficulty in understanding program visualizations to the fact
that graphical representation have fewer navigational cues, namely
secondary notations, when compared to program text: source code
implies a serial inspection strategy. Moreover, she observed that
experienced readers tend to use parallel textual and graphical
information whenever available to assist their comprehension
process: They use text as a main source to guide their
understanding of graphical representation.

4.2 History-rich Digital Objects
Hill, Hollan, Wroblewski, and McCandless [11] presented the
idea of computational wear on digital objects as a similar effect to
the wear occurring to physical objects. Computational wear
consists of recording the previous activity with digital objects
(documents, images, interface elements...) including the events
and context that comprise their use. When accessed later,
graphical abstraction encoding previous experience is displayed as
part of the objects themselves. Edit wear corresponds to
authorship changes and read wear corresponds to readership
history. Authoring wear has been exploited by Eick, Steffen and
Sumner [7] to visualize changes to lines of code for code
reviewing purposes.

4.3 Social information filtering
Social information filtering [4] is an automation of the “word-of-
mouth” recommendations [26]. In such scenarios, items are
recommended based on values assigned by other “trusted” users
with similar tastes. Social information filtering systems are
becoming widely popular in online shopping, news, blogging, and
several other areas. In these domains, users’ navigation and
interaction with the system (views, purchases…) are logged and
presented later to subsequent visitors. Additionally, users
augment this information with their own reviews, ratings and
personal recommendations.

4.4 Mining interaction history
Schneider, Gutwin, Penner and Paquette [25] describe a system
that logs a programmer’s interaction history and stores that history
in the team’s source control system so that it may be shared
among team members. Their focus is team awareness and
coordination (e.g. which team member is currently editing which
code) rather on program comprehension. In particular, we believe
that our proposed use of interaction history for social filtering is a
new contribution.

5. CONCLUSION
We have presented the results of a formative, observational study
of professional programmers making changes to unfamiliar code.
The biggest complaint observed concerned inadequate overview
documentation about the system and the biggest usability problem
involved getting lost while navigating around the source code. To
address both of these, we combine computational wear with social
filtering. Specifically, we propose gathering interaction data from
the programmers’ development environment and using that data to
filter the parts of the program shown to future programmers.

In the paper, we presented three conceptual visualizations using
wear-based filtering. We are currently implementing prototypes of
these visualizations for evaluation with professional programmers.
We are also working with a development team to gather a few
months of actual interaction data. This will allow us to compare
data from real development tasks to the data we gathered in our
study and to evaluate our designs based on real data.

6. References
[1] C. F. Bertholf and J. Scholtz, "Program Comprehension of

Literate Programs by Novice Programmers.," Empirical
Studies of Programmers: Fifth Workshop., Norwood, NJ,
1993.

[2] R. Brooks, "Towards a Theory of the Comprehension of
Computer Programs," International Journal of Man-Machine
Studies 18, vol. 18, pp. 543-554, 1983.

[3] "Camtasia Studio," TechSmith.

[4] Cohen, J., editor, "Special Issue on Information Filtering," in
Communications of the ACM, vol. 35, 1992.

[5] M. E. Crosby, J. Scholtz, and S. Wiedenbeck, "The Roles
Beacons Play in Comprehension for Novice and Expert
Programmers," in Proceedings of PPIG, 2002.

[6] M. Czerwinski, S. Dumais, G. Robertson, S. Dziadosz, S.
Tiernan, and M. v. Dantzich, "Visualizing implicit queries
for information management and retrieval," in Proceedings
of CHI'99, 1999, 560-567.

[7] S. G. Eick, J. L. Steffen, and J. Eric E. Sumner, "Seesoft-A
Tool for Visualizing Line Oriented Software Statistics,"
IEEE Trans. Softw. Eng., vol. 18, pp. 957-968, 1992.

[8] E.M.Gellenbeck and C. R. Cook, "An Investigation of
Procedure and Variable Names as Beacons during Program
Comprehension," Empirical Studies of Programmers, fourth
Workshop, ed. J. Koenemann-Belliveau, T.G. Moher and
S.P. Robertson, Ablex, Norwood NJ, 1991.

[9] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry, "Using
collaborative filtering to weave an information tapestry,"
Communications of the ACM, vol. 35, pp. 61-70, 1992.

[10] T. R. G. Green and M. Petre, "When Visual Programs are
Harder to Read than Textual Programs," in Human-
Computer Interaction: Tasks and Organisation, Proceedings
{ECCE}-6 (6th European Conference Cognitive
Ergonomics), 1992.

[11] W. C. Hill, J. D. Hollan, D. Wroblewski, and T. McCandless,
"Edit Wear and Read Wear," in Proceedings of CHI'92,
1992.

[12] J. A. Konstan, B. N. Miller, D. Maltz, J. L. Herlocker, L. R.
Gordon, and J. Riedl, "GroupLens: applying collaborative
filtering to Usenet news," Communications of the ACM, vol.
40, pp. 77-87, 1997.

[13] B. Lee and B. Bederson, "Favorite Folders: A Configurable,
Scalable File Browser," UMD 2003.

[14] S. Letovsky, "Cognitive processes in program
comprehension," first workshop on empirical studies of
programmers on Empirical studies of programmers, 1986.

[15] D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway,
"Mental models and software maintenance," first workshop
on empirical studies of programmers on Empirical studies of
programmers, 1986.

[16] A. Von Mayrhauser and A. M. Vans, "Program
comprehension during software maintenance and evolution,"
Computer, vol. 28, pp. 44-55, 1995.

[17] A. Von Mayrhauser and A. M. Vans, "Identification of
dynamic comprehension processes during large scale
maintenance.," IEEE Transactions on Software Engineering,
vol. 22, pp. 424-437, 1996.

[18] A. V. Mayrhauser and A. M. Vans, Program Comprehension
During Software Maintenance and Evolution: IEEE
Computer Society Press, 2001.

[19] P. W. Oman and C. R. Cook, "Typographic Style is More
than Cosmetic," Communications of the ACM, vol. 33, pp.
506-520, 1990.

[20] N. Pennington, "Comprehension strategies in programming,"
Empirical Studies on Programmers - Second workshop,
Norwood, NJ, 1987.

[21] N. Pennington, "Stimulus Structures and Mental
Representations In Expert Comprehension of Computer
Programs," Cognitive Psychology, vol. 19, pp. 295-341,
1987.

[22] M. Petre, "Why looking isn't always seeing: readership skills
and graphical programming," Commuunications of the.
ACM, vol. 38, pp. 33--44, 1995.

[23] R. S. Rist, "Plans in programming:
Definition,Demonstration, and Development," Empirical
Studies of Programmers, 1st Workshop, 1986.

[24] D. A. Scanlan, "Structured flowcharts outperform
pseudocode: An experimental comparison," IEEE Trans.
Softw. Eng., 1989.

[25] Schneider, K.A., Gutwin, C., Penner, R. and Paquette, D.
"Mining a Software Developer's Local Interaction History,"
1st International Workshop on Mining Software Repositories,
2004.

[26] U. Shardanand and P. Maes, "Social information filtering:
algorithms for automating “word of mouth"," in Proceedings
of the CHI'95, 1995, pp. 210-217.

[27] B. Shneiderman, "Measuring computer program quality and
comprehension," International Journal of Man-Machine
Studies, vol. 9, pp. 465-478, 1977.

[28] B. Shneiderman, R. Mayer, D. McKay, and P. Heller,
"Experimental investigations of the utility of detailed
flowcharts in programming," Communications of the ACM,
vol. 20, pp. 373-381, 1977.

[29] B. Shneiderman, R. Mayer, D. McKay, and P. Heller,
"Experimental investigations of the utility of detailed
flowcharts in programming," Communications of the ACM,
vol. 20, pp. 373-381, 1977.

[30] E. Soloway and K. Ehrlich, "Empirical studies of
programming knowledge," Readings in artificial intelligence
and software engineering, 1986.

[31] M.-A. D. Storey, K. Wong, and H. A. Muller, "Rigi: A
Visualization Environment for Reverse Engineering," 19th
International Conference on Software Engineering, 1997.

[32] S. Wiedenbeck, "Beacons in computer program
comprehension.," International Journal of Man-Machine
Studies, vol. 25, pp. 697-709, 1986.

[33] S. Wiedenbeck, "Novice/Expert Differences in Programming
Skills," International Journal of Man-Machine Studies, vol.
23, pp. 383-390, 1985.

[34] S. Wiedenbeck and J. Scholtz, "Beacons: A knowledge
structure in program comprehension," in Designing and
Using Human-Computer Interfaces and Knowledge Based
Systems., G. Salvendy and M. J. Smith, Eds. Amsterdam, The
Netherlands: Elsevier, 1989, pp. 82-87.

