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Abstract 
This article explains how to add spatial search functions (point-near-point and point in 

polygon) to Microsoft SQL Server™ 2005 using C# and table-valued functions. It is 

possible to use this library to add spatial search to your application without writing any 

special code. The library implements the public-domain C# Hierarchical Triangular Mesh 

(HTM) algorithms from Johns Hopkins University.  That C# library is connected to SQL 

Server 2005 via a set of scalar-valued and table-valued functions. These functions act as a 

spatial index.   

 

Resources  
The article is illustrated by examples that can be downloaded from 

http://msdn.microsoft.com/sql/2005/. The sample package includes: 

• An 11 MB sample spatial database of United States cities and river-flow gauges.  

• The sample queries from the sql\testScript.sql article. 

• A Visual Studio 2005 project, \htm.sln, with all the SQL and C# code.   

• A paper, doc\Table_Valued_Functions.doc. 

• An article, doc\HtmCsharp.doc, that provides a manual page for each routine. 

• An article, doc\HTM.doc, that explains the Hierarchical Triangular Mesh 

algorithms in detail. 

• An article, doc\There_Goes_the_Neighborhood.doc, which explains how 

the HTM algorithms are used in Astronomy. This article also explains two other 

approaches: zones for batch-oriented point-to-point and point-area comparisons, and 

regions for doing Boolean algebra on areas.  Public domain implementations of those 

approaches implemented for SQL Server are used in the SkyServer, a popular 

Astronomy website for the Sloan Digital Sky Survey (http://SkyServer.SDSS.org/ and 

by several other astronomy data servers. 
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Introduction 
Spatial data searches are common in both commercial and scientific applications. We 

developed a spatial search system in conjunction with our effort to build the SkyServer 

(http://skyserver.sdss.org/) for the astronomy community.  The SkyServer is a multi-

terabyte database that catalogs about 300 million celestial objects.  Many of the questions 

astronomers want to ask of it involve spatial searches. Typical queries include, “What is 

near this point?” “What objects are inside this area?” and “What areas overlap this area?” 

 

For this article, we have added the latitude/longitude (lat/lon) terrestrial sphere (the earth) 

grid to the astronomer’s right ascension/declination (ra/dec) celestial sphere (the sky) 

grid. The two grids have a lot in common, but the correspondence is not exact; the 

traditional order lat-lon corresponds to dec-ra. This order reversal forces us to be explicit 

about the coordinate system. We call the Greenwich-Meridian-Equatorial terrestrial 

coordinate system the LatLon coordinate system. The library supports three coordinate 

systems:   

• Greenwich Latitude-Longitude, called LatLon 

• Astronomical right-ascension–declination called J2000 

• Cartesian (x, y, z) called Cartesian.   

Astronomers use arc minutes as their standard distance metric. A nautical mile is an arc 

minute, so the distance translation is very natural. Many other concepts are quite similar. 

To demonstrate these, this article will show you how to use the spatial library to build a 

spatial index on two USGS datasets: US cities, and US stream-flow gauges. Using these 

indexes and some spatial functions, the article provides examples of how to search for 

cities near a point, how to find stream gauges near a city, and how to find stream gauges 

or cities within a state (polygonal area).   

 

We believe this approach is generic. The spatial data spine schema and spatial data 

functions can be added to almost any application to allow spatial queries.  The ideas also 

apply to other multi-dimensional indexing schemes. For example, the techniques would 

work for searching color space or any other low-dimension metric space.  

Table Valued Functions: The Key Idea 
The key concept of relational algebra is that every relational operator consumes one or 

more relations and produces an output relation. SQL is syntactic sugar for this idea, 

allowing you to define relations (data definition language) and to manipulate relations 

with a select-insert-update-delete syntax. 

 

Defining your own scalar functions lets you make some extensions to the relational 

database – you can send mail messages, you can execute command scripts, and you can 

compute non-standard scalars and aggregate values such as  tax() or median(). 

 

However, if you can create tables, then you can become part of the relational engine – 

both a producer and consumer of relational tables.  This was the idea of OLEDB, which 

allows any data source to produce a data stream. It is also the idea behind the SQL Server 

2000 Table Valued Functions.  



   

Implementing table valued functions in Transact-SQL is really easy: 
create function t_sql_tvfPoints()  

 returns @points table (x float, y float) 

 as begin 

 insert @points values(1,2); 

 insert @points values(3,4); 

      return; 

 end 

 

This is fine if your function can be done entirely in Transact-SQL. But implementing 

OLEDB data sources or Table Valued Functions outside of Transact-SQL is a real 

challenge in SQL Server 2000.   

 

The common language runtime (CLR) integration of SQL Server 2005 makes it easy to 

create a table-valued function. You create a list, an array, or any IEnumerable object 

(anything you can do foreach on), and then you cast it as a table. That’s all there is to it. 

 
[SqlFunction( TableDefinition   = "x float, y float" , 

    FillRowMethodName = "FillPair")] 

 public static IEnumerable csPoints( ) 

 { 

  int[,] points = { { 1, 2 }, { 3, 4 } }; 

  return (IEnumerable) points; 

 }  
 

You compile this in Visual Studio and click Deploy. The table-valued function is 

installed in the database.  

Using Table-Valued Functions to Add a Spatial Index 
There is a lot of confusion about indexes.  Indexes are really simple – they are tables with 

a few special properties: 

• SQL Server has only one kind of associative (by value) index – a B-tree. The B-

tree can have multi-field keys, but the first field carries most of the selectivity. 

• Conceptually, the B-Tree index is a table consisting of the B-Tree key fields, the 

base table key fields, and any included fields that you want to add to the index.  

• B-tree indexes are sorted according to the index key, such as.ZIP code or 

customer ID, so that lookup or sequential scan by that key is fast.   

• Indexes are often smaller than the base table, carrying only the most important 

attributes, so that looking in the index involves many fewer bytes than examining 

the whole table. Often, the index is so much smaller that it can fit in main 

memory, thereby saving even more disk accesses.  

• When you think you are doing an index lookup, you are either searching the index 

alone (a vertical partition of the base table), or you are searching the index, and 

then joining the qualifying index rows to rows in the base table via the base-table 

primary key (a bookmark lookup).  

 

The central idea is that the spatial index gives you a small subset of the data. The index 

tells you where to look and often carries some helpful search information with it (called 
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Figure 2: The start of a space 

filling Peano or Hilbert curve 

(one recursively divides each 

cell in a systematic way.) The 

cells are labeled. All points in 

cell ‘nwse’ have a key with that 

prefix so you can find them all 

in the ‘nwse’ section of the B-

tree, right before ‘nwne’ and 

right after ‘nwsw’. The circle is 

an area of interest that overlaps 

two such cells.  

included columns or covering columns by the 

experts.)  The selectivity of an index tells how 

big this initial reduction is (the coarse subset 

of Figure 1). When the subset is located, a 

careful test examines each member of the 

subset and discards false positives. That 

process is indicated by the diamond in Figure 

1. A good index has few false positives. We 

use the Figure 1 metaphor (the coarse subset 

and the careful test) throughout this article.  

 

B-trees and table-valued functions can be 

combined as follows to let you build your own 

spatial index that produces coarse subsets: 

1. Create a function that generates keys 

that cluster related data together. For 

example, if items A and B are related, then the keys for A and B should be nearby 

in the B-tree key space.  

2. Create a table-valued function that, given a description of the subset of interest, 

returns a list of key ranges (a “cover”) containing all the pertinent values. 

 

You cannot always get every key to be near all its relatives because keys are sorted in one 

dimension and relatives are near in two-dimensional space or higher. However, you can 

come close. The ratio of false-positives to correct 

answers is a measure of how well you are doing.  

 

The standard approach is to find some space filling curve 

and thread the key space along that curve. Using the 

standard Mercator map, for example, you can assign 

everyone in the Northwest to the Northwest key range, 

and assign everyone in the Southeast to the Southeast key 

range. Figure 2 shows the 2
nd

 order space-filling curve 

that traverses all these quadrants, assigning keys in 

sequence. Everyone in the Northwest-Southwest quadrant 

has the key prefix nwsw. If you have an area like the 

circle shown in Figure 2, you can look in the key range   
key between ‘nwsw’ and ‘nwse’  

This search space is eight times smaller than the whole 

table and has about 75 percent false positives (indicated 

by the area outside the circle but inside the two boxes). 

This is not a great improvement, but it conveys the idea. 

A better index would use a finer cell division. With fine 

enough cells, the converging area could have very few 

false positives. A detailed review of space-filling curves 

and space-partitioning trees can be found in the books of 

Hanan Samet [Samet]. 
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Figure 1:  The key idea: the spatial index gives 

you a small subset of the data (at least 100x 

smaller) and then a careful test discards all 

false positives. An index is good if there are 

relatively few false positives. We use this idea 

(the coarse subset and the careful test) 

throughout this article.  



   

Now we are going to define a space-filling curve – the Hierarchical Triangular Mesh 

(HTM) that works particularly well on the sphere. The earth is round and the celestial 

sphere is round, so this spherical system is very convenient for geographers and 

astronomers. We could do similar things for any metric space. The space-filling curve 

gives keys that are the basis of the spatial index. Then, when someone has a region of 

interest, our table valued function will give them a good set of key-ranges to look at (the 

coarse filter of Figure 1). These key ranges will cover the region with spherical triangles, 

called trixels, much as the two boxes in Figure 2 cover the circle.  The search function 

need only look at all the objects in the key ranges of these trixels to see if they qualify 

(the careful test in Figure 1). 

 

To make this concrete, assume we have a table of Objects  
 create table Object ( objID bigint primary key, 

     lat  float, -- latitude 

     lon  float, -– longitude 

     HtmID bigint)-– the HTM key 

and a distance function dbo.fDistanceLatLon(lat1, lon1, lat2, lon2) that gives 

the distance in nautical miles (arcminutes) between two points. Further assume that the 

following table-valued function gives us the list of key ranges for HtmID points that are 

within a certain radius of a lat-lon point.   
define function  

 fHtmCoverCircleLatLon(@lat float, @lon float, @radius float) 

 returns @TrixelTable table(HtmIdStart bigint, HtmIdEnd bigint) 

 

Then the following query finds points within 40 nautical miles of San Francisco (lat,lon) 

= (37.8,-122.4): 
select O.ObjID, dbo.fDistanceLatLon(O.lat,O.lon, 37.8, -122.4) 

from fHtmCoverCircleLatLon(37.8, -122.4, 40) as TrixelTable  

 join Object O  

   on O.HtmID between TrixelTable.HtmIdStart           -- coarse test 

                  and TrixelTable.HtmIdEnd       

where dbo.fDistanceLatLon(lat,lon,37.8, -122.4) < 40   -- careful test 

 

We now must define the HTM key generation function, the distance function, and the 

HTM cover function.  That’s what we do next using two United States Geological spatial 

datasets as an example. If you are skeptical that this scales to billions of objects, go to 

http://skyserver.sdss.org/ and look around the site. That Web site uses this same code to 

do its spatial lookup on a multi-terabyte astronomy database.   

 

This article is about how you use SQL Table Valued Functions and a space-filling curve 

like the HTM to build a spatial index. As such, we treat the HTM code itself as a black 

box documented elsewhere [Szalay], and we focus on how to adapt it to our needs within 

an SQL application.  

The Datasets 
The US Geological Survey gathers and publishes data about the United States. Figure 3 

shows the locations of 18,000 USGS-maintained stream gauges that measure river water 



   

 

Figure 3: Graphical display of the latitude and longitude (lat/lon) of USGS stream gauges and of 

USGS places.  These two datasets are about 20,000 items each and are about 4 MB in all. We use 

them to motivate the spatial search examples.  

flows and levels. The USGS also publishes a list of 23,000 place names and their 

populations.   

USGS Populated Places (23,000 cities) 

The USGS published a list of place names and some of their attributes in 1993.  There are 

newer lists at the USGS website but they are fragmented by state, so it is difficult to get a 

nationwide list.  The old list will suffice to demonstrate spatial indicies. The data has the 

following format: 
create table Place( 

      PlaceName   varchar(100) not null, -- City name 

      State       char(2)      not null, -- 2 char state code 

      Population  int          not null, -- Number of residents (1990) 

      Households  int          not null, -- Number of homes (1990) 

      LandArea    int          not null, -- Area in sqare KM 

      WaterArea   int          not null, -- water area within land area 

      Lat         float        not null, -- latitude in decimal degrees 

      Lon         float        not null, -- longitude decimal degrees 

      HtmID       bigint       not null primary key --spatial index key 

) 

To speed name lookups, we add a name index, but the data is clustered by the spatial key. 

Nearby objects are co-located in the clustering B-tree and thus on the same or nearby disk 

pages.  
create index Place_Name on Place(PlaceName) 

 

All except the HtmID data can be downloaded from the USGS Web site. The SQL Server 

2005 data import wizard can be used to import the data (we have already done that in the 

sample database.)  The HtmID field is computed from the Lat Lon by:  
update Place set HtmID = dbo.fHtmLatLon(lat, lon) 

USGS Stream Gauges (17,000 instruments) 

The USGS has been maintaining records of river flows since 1854. As of 1 Jan 2000, 

they had accumulated over 430 thousand years of measurement data. About six thousand 

active stations were active, and about four thousand were online. The gauges are 

described in detail at http://waterdata.usgs.gov/nwis/rt.  A NOAA site shows the data 



   

from a few hundred of the most popular stations in a very convenient way: 

http://weather.gov/rivers_tab.php.   

 

Our database has just the stations in the continental United States (see Figure 3). There 

are also stations in Guam, Alaska, Hawaii, Puerto Rico, and the Virgin Islands that are 

not included in this database.  The stream gauge station table is:  
create table Station ( 

      StationName   varchar(100) not null,     -- USGS Station Name 

 State         char(2)      not null,     -- State location 

 Lat           float        not null,     -- Latitude in Decimal  

Lon           float        not null,     -- Longitude in Decimal 

 DrainageArea  float        not null,     -- Drainage Area (km2) 

 FirstYear     int          not null,     -- First Year operation  

 YearsRecorded int          not null,     -- Record years (at Y2k) 

 IsActive      bit          not null,     -- Was it active at Y2k?    

 IsRealTime    bit          not null,     -- On Internet at Y2K? 

 StationNumber int          not null,     -- USGS Station Number 

 HtmID         bigint       not null,     -- HTM spatial key 

                                            -- (based on lat/lon) 

 primary key(htmID, StationNumber) )   

      

As before, the HtmID field is computed from the Lat Lon fields by: 
update Station set HtmID = dbo.fHtmLatLon(lat, lon) 

 

There are up to 18 stations at one location, so the primary key must include the station 

number to make it unique. However, the HTM key clusters all the nearby stations 

together in the B-tree. To speed lookups, we add a station number and a name index:  
create index Station_Name   on Station(StationName) 

create index Station_Number on Station(StationNumber) 

 



   

The Spatial Index Table 

Now we are ready to create our spatial index.  We could have added the fields to the base 

tables, but to make the stored procedures work for many different tables, we found it 

convenient to just mix all the objects together in one spatial index. You could choose 

(type,HtmID) as the key to segregate the different types of objects; but, we chose 

(HtmID, key) as the key so that nearby objects of all types (cities and steam gagues) are 

clustered together.  The spatial index is: 
 

create table SpatialIndex ( 

      HtmID   bigint   not null , -- HTM spatial key (based on lat/lon) 

 Lat     float    not null , -- Latitude in Decimal  

Lon     float    not null , -- Longitude in Decimal 

      x       float    not null , -- Cartesian coordinates, 

      y       float    not null , -- derived from lat-lon 

      z       float    not null , --, 

      Type    char(1)  not null , -- place (P) or gauge (G) 

      ObjID   bigint   not null , -- object ID in table 

      primary key (HtmID, ObjID) ) 

 

The Cartesian coordinates will be explained later in this topic. For now, it is enough to 

say that the function fHtmCenterPoint(HtmID) returns the Cartesian (x,y,z) unit vector 

for the centerpoint of that HTM triangle. This is the limit point of the HTM, as the center 

is subdivided to infinitely small trixels. 

 

The SpatialIndex table is populated from the Place and Station tables as follows: 
insert SpatialIndex 

select  P.HtmID, Lat, Lon, XYZ.x, XYZ.y, XYZ.z,  

    'P' as type, P. HtmID as ObjID 

  from   Place P cross apply fHtmLatLonToXyz(P.lat, P.lon)XYZ 

 

insert SpatialIndex 

  select S.HtmID, Lat, Lon, XYZ.x, XYZ.y, XYZ.z,  

   'S' as type, S.StationNumber as ObjID 

  from   Station S cross apply fHtmLatLonToXyz(S.lat, S.lon) XYZ 

 

To clean up the database, we execute: 
DBCC INDEXDEFRAG    ( spatial  , Station, 1) 

DBCC INDEXDEFRAG    ( spatial  , Station, Station_Name) 

DBCC INDEXDEFRAG    ( spatial  , Station, Station_Number) 

DBCC INDEXDEFRAG    ( spatial  , Place,   1) 

DBCC INDEXDEFRAG    ( spatial  , Place,   Place_Name) 

DBCC INDEXDEFRAG    ( spatial  , SpatialIndex, 1)   

DBCC SHRINKDATABASE ( spatial  , 1  ) -- 1% spare space 
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Figure 4: Cartesian coordinates allow 

quick tests for point-in-polygon and 

point-near-point. Each lat/lon point has a 

corresponding (x,y,z) unit vector.  

A Digression: Cartesian Coordinates 

You can skip this if you like. It is not needed to use the library. The HTM code heavily 

uses a trick to avoid spherical geometry: it moves from the 2D surface of the sphere to 

3D.  This allows very quick tests for “inside a polygon” and for “nearby a point” queries.   

 

Every lat/lon point on the sphere can be 

represented by a unit vector in three-

dimensional space v = (x,y,z).  The north and 

south poles (90° and -90°) are v = (0,0,1), and 

v = (0,0,-1) respectively. Z represents the axis 

of rotation, and the XZ plane represenst the 

Prime (Greenwich) Meridian ,having 

longitude 0° or longitude 180°. The formal 

definitions are: 

 x = cos(lat)cos(lon) 

 y =cos(lat)sin(lon) 

 z = sin(lat) 

 

These Cartesian coordiates are used as follows. 

Given two points on the unit sphere, p1=(x1,y1,z1) 

and p2 = (x2,y2,z2), then their dot product, p1•p2 = x1*x2+y1*y2+z1*z2, is the cosine of the 

angle between these two points. It is a distance metric. 

 

If we are looking for points within 45 nautical miles (arc minutes) of point p1, that is at 

most 45/60 degrees away from p1. The dot product of such points with p1 will be less 

than d=cos(radians(45/60). The “is nearby” test becomes { p2 |  p2•p1 < d}, which is a 

very quick test.  

 

Cartesian coordinates also allow a 

quick test for point-inside-polygon.  

All our polygons have great-circle or 

small-circle edges. Such edges lie 

along a plane intersecting the sphere.  

So the edges can be defined by the 

unit vector, v,  normal to the plane 

and by a shift along that vector.  For 

example, the equator is the vector v 

= (0,0,1) and shift zero.  Latitude 60° 

is defined by vector v = (0,0,1) with 

a shift of 0.5, and a 60° circle around Baltimore is defined by vector v = (0.179195, -

0.752798, 0.633392)  with a shift of 0.5.  A place,  p2, is within 60° of Baltimore  if p2•v 

< 0.5.  The same idea lets us decide if a point is inside or outside a HTM triangle by 

evaluating three such dot products.  That is one of the main reasons the HTM code is so 

efficient and fast. 
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Figure 5: Each great or small circle is the intersection 

of a plane with the circle. A point is inside the circle if 

its dot product with the plane’s normal vector is less 

than cos(θ) where 2θ is the circle’s arc-angle diameter.  



   

We have implemented several helper procedures to convert from LatLon to Cartesian 

coordiantes: 

fHtmXyz(HtmID) returns the xyz vector of the centerpoint of an HtmID  

fHtmLatLonToXyz(lat,lon) returns an xyz vector  

fHtmXyzToLatLon(x,y,z) returns a lat,lon vector.  

They are  used below and documented in the the API spec and Intellisense [Fekete].  

 

The library here defaults to 21-deep HTM keys (the first level divides the sphere into 8 

faces and each subsequent level divides the speherical triangle into 4-sub-triangles.)  The 

table below indicates that a 21-deep trixel is fairly small.  The code can be modified to go 

31-deep deep before the 64-bit representation runs out of bits.  

 

Table 1:  Each HTM level subdivdes the sphere.  For each level, this table shows the area in 

square degrees, arc minutes, arc seconds, and meters. The Trixel colum shows some charactic 

sizes:  the default 21-deep trixels is about .3 arc second
2
.  The USGS data has about ½ object per 

12-deep trixel. 

Area objects / trixel HTM 

depth deg
2
 arc min

2
 arc sec

2
 earth m

2
 trixel SDSS  USGS  

sphere 41253 148,510,800 534,638,880,000 5.E+14    

0 5157 18,563,850 66,829,860,000 6E+13  3E+8  

1 1289 4,640,963 16,707,465,000 2E+13  8E+7  

2 322 1,160,241 4,176,866,250 4E+12  2E+7  

3 81 290,060 1,044,216,563 1E+12  5E+6  

4 20 72,515 261,054,141 2E+11  1E+6 30,000 

5 5 18,129 65,263,535 6E+10  3E+5 7,500 

6 1 4,532 16,315,884 2E+10 1 deg
2
 73242 1,875 

7 3E-1 1,133 4,078,971 4E+9  18311 468 

8 8E-2 283 1,019,743 1E+9  4578 117 

9 2E-2 71 254,936 2E+8  1144 29 

10 5E-3 18 63,734 6E+7  286 7 

11 1E-3 4 15,933 2E+7  72 2 

12 3E-4 1 3,983 4E+6 1 amin
2
 18 0.5 

13 8E-5 3E-1 996 943816  4 0.1 

14 2E-5 7E-2 249 235954  1  

15 5E-6 2E-2 62 58989  0.3  

16 1E-6 4E-3 16 14747  .  

17 3E-7 1E-3 4 3687    

18 8E-8 3E-4 1 922    

19 2E-8 7E-5 2E-1 230 1 asec
2
   

20 5E-9 2E-5 6E-2 58 1 km
2
   

21 1E-9 4E-6 2E-2 14    

22 3E-10 1E-6 4E-3 4    

23 7E-11 3E-7 9E-4 1 1 m
2
   

24 2E-11 7E-8 2E-4 2E-1    

25 5E-12 2E-8 6E-5 6E-2    

26 1E-12 4E-9 1E-5 1E-2    

 



   

Typical Queries 
Assuming we can get the functions defined, we are ready to do a few queries.  

1. Find Points near point:  find towns near a place.  

The most common query is to find all places nearby a certain place or point.  Consider 

the query, “Find all towns within 100 nautical miles of Baltimore Maryland.”  The HTM 

triangles covering a 100 nautical mile circle (100 arc minutes from) Baltimore are 

obtained by  
select *  -- find a HTM cover 100 NM around Baltimore 

from fHtmCoverCircleLatLon(39.3, -76.6, 100)   

This returns the Trixel Table at right.  That is, the 

fHtmCoverCircleLatLon() function returns a set of 

HTM triangles that “cover” the circle (in this case, a 

single trixel).  The HTM keys of all objects inside the 

circle are also inside one of these triangles.  Now we need to look in all those triangles 

and discard the false positives (the careful test of Figure 1).  We will order the answer set 

by the distance from Baltimore, so that if we want the closest place, we can just select the 

TOP 1 WHERE distance > 0 (we want to exclude Baltimore itself from being closest). 

 
declare @lat float, @lon float 

select @lat = lat, @lon = lon  

from Place  

where Place.PlaceName = 'Baltimore'  

  and State = 'MD'  

select ObjID, dbo.fDistanceLatLon(@lat,@lon, lat, lon) as distance 

from SpatialIndex join fHtmCoverCircleLatLon(@lat, @lon, 100)   

   On HtmID between HtmIdStart and HtmIdEnd           -- coarse test 

   and type = 'P' 

   and dbo.fDistanceLatLon(@lat,@lon, lat, lon) < 100 -- careful test 

 order by distance asc 

 

The cover join returns 2,928 rows (the coarse test); 1,122 of them are within 100 air miles 

(the careful test). This gives us 61% false positives – all within 9 milliseconds.   

 

These are such common tasks that there are standard functions for them:  
  fHtmNearbyLatLon(type, lat, lon, radius) 

 fHtmNearestLatLon(type, lat, lon) 

so the query above becomes: 
select ObjID, distance  

from fHtmNearestLatLon('P', 39.3, -76.61)    

 

The  Baltimore circle HTM cover   

HtmIdStart HtmIdEnd 

14023068221440 14027363188735 



   

2. Find places inside a box.  

Applications often want to find all the objects inside a square view-port when displaying 

a square map or window.  Colorado is almost exactly square with corner points (41N, -

109°3’W) in the NW corner and (37°N-102° 3’E) in the SW corner.  The state’s center 

point is (39°N, -105°33’E) so one can cover that square with a circle centered at that 

point. 
declare @radius float 

set @radius = dbo.fDistanceLatLon(41,-109.55,37,-102.05)/2 

select *  

from Station  

where StationNumber in ( 

    select ObjID  

     from fHtmCoverCircleLatLon(39, -105.55, @radius) join SpatialIndex  

  on HtmID between HtmIdStart and HtmIdEnd 

   and lat between 37 and 41 

   and lon between -109.05 and -102.048 

       and type = 'S') 

OPTION(FORCE ORDER) 

 

This example returns 1,030 stream gauges in about 46 milliseconds. Five other Colorado 

gauges are right on the border that wanders south of 37° by up to 1 nautical mile.  These 

extra 5 stations appear when the southern latitude is adjusted from 37° to 36.98°
1
.  The 

cover circle returns 36 triangles. The join with the SpatialIndex table returns 1,975 

gauges.  That’s 47 percent false positives.  The next section shows how to improve on 

this by using the HTM regions to specify a polygon cover rather than a cover for a circle.  

 

The FORCE ORDER clause is an embarrassment – if missing, the query runs ten times 

longer because the optimizer does a nested-loops join with the spatial index as the outer 

table.  Perhaps if the tables were larger (millions of rows), the optimizer would pick a 

different plan, but we cannot count on that.  Paradoxically, the optimizer chose the 

correct plan without any hints for all the queries in the previous section. 

                                                 
1
  GIS systems and astronomical applications often want a buffer zone around a region.  The HTM code 

includes support for buffer zones, and they are much used in real applications, Look at reference [Szalay] to 

see how this is done.  



   

3. Find places inside a polygon. 

The HTM code lets us specify the area as a circle, a rectangle, a convex hull, or a union 

of these regions.  In particular, the HTM library allows you to specify a region using the 

following linear syntax:  
 

circleSpec := ‘CIRCLE LATLON ’      lat lon radius   

 |  ‘CIRCLE J2000 ’       ra  dec radius 

 | ‘CIRCLE [CARTESIAN ]’ x y z   radius   

rectSpec    := ‘RECT LATLON ’        { lat lon }2 

 |  ‘RECT J2000 ’         { ra  dec }2 

 | ‘RECT [CARTESIAN ]’   { x y z   }2 

hullSpec    := ‘CHULL LATLON ’       { lon lat }3+ 

 | ‘CHULL J2000 ’        { ra dec  }3+ 

 | ‘CHULL [CARTESIAN ]’  { x y z   }3+ 

convexSpec := ‘CONVEX ’ [ ‘CARTESIAN ’] { x y z D }* 

areaSpec :=  rectSpec | circleSpec | hullSpec | convexSpec  

regionSpec := ‘REGION ’ {areaSpec}* | areaSpec  

 

To give examples of region specifications: 
 

CIRCLE A point specification and a 1.75 nautical mile (arc minute) radius. 
'CIRCLE LATLON 39.3 -76.61 100' 

 'CIRCLE CARTESIAN 0.1792 -0.7528 0.6334 100' 

RECT Two corner points defining the minimum and maximum of the lat, lon. The 

longitude coordinates are interpreted in the wrap-around sense, i.e., 

lonmin=358.0 and lonmax=2.0, is a 4 degree wide range.  The latitudes must be 

between the North and South Pole.  The rectangle edges are constant latitude 

and longitude lines, rather than the great-circle edges of CHULL and CONVEX.    
 'RECT LATLON 37 -109.55  41 -102.05' 

CHULL Three or more point specifications define a spherical convex hull with edges 

of the convex hull connecting adjacent points by great circles.   The points 

must be in a single hemisphere, otherwise an error is returned. The order of 

the points is irrelevant.  
 'CHULL LATLON 37 -109.55 41 -109.55 41 -102.051 37 -102.05' 

CONVEX Any number (including zero) of constraints in the form of a Cartesian vector 

(x,y,z) and a fraction of the unit length of the vector.   
         'CONVEX   -0.17886 -0.63204 -0.75401 0.00000 

                   -0.97797  0.20865 -0.00015 0.00000  

                    0.16409  0.57987  0.79801 0.00000   

                    0.94235 -0.33463  0.00000 0.00000' 

REGION  A region is the union of zero or more circle, rect, chull, and convex areas.  
 ‘REGION CONVEX 0.7 0.7 0.0 –0.5 CIRCLE LATLON 18.2 –22.4 1.75’ 

 



   

Any of these region descriptions can be fed to the fHtmCoverRegion() routine that 

returns a trixel table describing a set of trixels (triangular areas) covering that region. The 

simpler code for the Colorado query is:  
select S.*  

from  ( select ObjID  

         from fHtmCoverRegion('RECT LATLON 37 -109.55  41 -102.05')  

              loop join SpatialIndex 

   on HtmID between HtmIdStart and HtmIdEnd 

        and lat between 37 and 41 

        and lon between -109.05 and -102.048 

            and type = 'S') as G  

  join Station S on G.objID = S.StationNumber 

OPTION( FORCE ORDER)  

 

This unusual query format is required to tell the optimizer exactly the order in which to 

perform the join (to make the “force order” option work correctly).  It is difficult to 

modify the optimizer in this way, but until table-valued functions have statistics, they are 

estimated to be very expensive. You  have to force them into the inner loop join.   

 

The  query returns 1030 stream gauges and has 1,365 candidates from the cover, so there 

are 25 percent false positives. Note that the rectangle cover is better than the circular 

cover, which had 61% false positives.  There is polygon syntax for non-rectangular states, 

but this article is about table valued functions, not about the HTM algorithms.  You can 

see the HTM code in the project, and also in the documentation for the project. 

 

A similar query can be cast as a convex hull as: 
select S.*  

from  ( select ObjID  

         from fHtmCoverRegion( 

            'CHULL LATLON 37 -109.55 41 -109.55 41 -102.05 37 -102.05')  

              loop join SpatialIndex 

   on HtmID between HtmIdStart and HtmIdEnd 

        and lat between 37 and 41 

        and lon between -109.05 and -102.048 

            and type = 'S') as G  

  join Station S on G.objID = S.StationNumber 

OPTION( FORCE ORDER)  

 

The  query returns 1030 stream gauges and has 1,193 candidates from the cover, so there 

are 14 percent false positives. The convex hull cover is even better than the equivalent 

rectangular cover in this case.   

4. Advanced topics – complex regions. 

The previous examples gave the syntax for regions and a discussion of point-near-point 

and point-in-rectangle searches. Regions can get quite complex.  They are Boolean 

combinations of convex areas.  We do not have the space here to explain regions in 

detail, but the HTM library in the accompanying project has the logic to do Boolean 

combinations of regions, simplify regions, compute region corner points, compute region 

areas, and has many other features.  Those ideas are described in [Fekete], [Gray], and 

[Szalay].  



   

To give a hint of these ideas, consider the state of Utah.  Its boundaries are approximately 

defined by the union of two rectangles:  
declare @utahRegion varchar(max) 

set @utahRegion = 'region '   

    + 'rect latlon 37 -114.0475  41 -109.0475 ' -- main part 

    + 'rect latlon 41 -114.0475  42 -111.01  '  -- Ogden & Salt Lake. 

 

Now we can find all stream gauges in Utah with the query:  
select S.*  

from  (  

   select ObjID  

   from fHtmCoverRegion(@utahRegion)  

      loop join SpatialIndex 

      on HtmID between HtmIdStart and HtmIdEnd 

      and (((     lat between 37        and      41)  -- careful test 

             and (lon between -114.0475 and -109.04)) -- are we inside  

          or ((   lat between 41        and      42)  -- one of the two 

             and (lon between -114.0475 and -111.01)) -- boxes? 

      ) 

      and type = 'S' ) as G    

  join Station S on G.objID = S.StationNumber   

OPTION( FORCE ORDER)  

 

The cover returns 38 trixels.  The join returns 775 stations.  The careful test finds 670 

stations in Utah, and two Wyoming stations that are right on the border (14 percent false 

positives).   

 

Most states require much more complex regions.  For example, a region string to 

approximate California is:  
declare @californiaRegion varchar(max) 

set @californiaRegion = 'region ' 

                + 'rect  latlon 39    -125 '    -- nortwest corner 

                            +  '42    -120 '    -- center of Lake Tahoe  

                + 'chull latlon 39    -124 '    -- Pt. Arena 

                             + '39    -120 '    -- Lake  tahoe. 

                             + '35    -114.6 '  -- start Colorado River 

                             + '34.3  -114.1 '  -- Lake Havasu 

                             + '32.74 -114.5 '  -- Yuma 

                             + '32.53 -117.1 '  -- San Diego 

                             + '33.2  -119.5 '  -- San Nicholas Is 

                             + '34    -120.5 '  -- San Miguel Is. 

                             + '34.57 -120.65 ' -- Pt. Arguelo 

                             + '36.3  -121.9 '  -- Pt. Sur  

                             + '36.6  -122.0 '  -- Monterey 

                             + '38    -123.03 ' -- Pt. Rayes 

select stationNumber 

from fHtmCoverRegion(@californiaRegion)  

   loop join SpatialIndex 

   on HtmID between HtmIdStart and HtmIdEnd 

   /* and <careful test> */ 

   and type = 'S'     

 join Station S on  objID = S.StationNumber  

OPTION( FORCE ORDER)  

 



   

The cover returns 108 trixels, which cover 2,132 stations.  Of these, 1,928 are inside 

California, so the false positives are about 5 percent -- but the careful test is nontrivial.  

 

That same query, done for places rather than stations, with the careful test included, looks 

like this: 
select *  

from Place  

where HtmID in  

 ( select distinct SI.objID 

 from fHtmCoverRegion(@californiaRegion)   

   loop join SpatialIndex SI 

       on SI.HtmID between HtmIdStart and HtmIdEnd  

  and SI.type = 'P' 

   join place P on SI.objID = P.HtmID 

         cross join fHtmRegionToTable(@californiaRegion) Poly 

  group by SI.objID, Poly.convexID  

     having min(SI.x*Poly.x + SI.y*Poly.y + SI.z*Poly.z - Poly.d) >= 0  

 )     

OPTION( FORCE ORDER)  
 

This uses the convex-halfspace representation of California and the techniques described 

in [Gray] to quickly test if a point is inside the California convex hull.  It returns 885 

places, seven of which are on the Arizona border with California (the polygon 

approximates California).  It runs in 0.249 seconds on a 1GHz processor.  If you leave off 

the “OPTION( FORCE ORDER)” clause it runs slower, taking 247 seconds. 

 

Because this is such a common requirement, and because the code is so tricky, we added 

a procedure fHtmRegionObjects(Region,Type) that returns object IDs from 

SpatialIndex.  This procedure encapsulates the tricky code above, so the two California 

queries become: 

 
select *   -- Get all the California River Stations 

from Station 

where stationNumber in -- that are inside the region 

 (select ObjID  

  from fHtmRegionObjects(@californiaRegion,'S'))  

  

select *   -- Get all the California Cities 

from Place 

where HtmID in  -- that are inside the region 

 (select ObjID  

 from fHtmRegionObjects(@californiaRegion,'P')) 

 

The Colorado and Utah queries are also simplified by using this routine. 



   

4. Summary  

The HTM spatial indexing library presented here is interesting and useful in its own right. 

It is a convenient way to index data for point-in-polygon queries on the sphere. But, the 

library is also a good example of how SQL Server and other database systems can be 

extended by adding a class library that does substantial computation in a language like 

C#, C++, Visual Basic, or Java.  The ability to implement powerful table-valued 

functions and scalar functions and integrate these queries and their persistent data into the 

database is a very powerful extension mechanism that starts to deliver on the promise of 

Object-Relational databases. This is just a first step. In the next decade, programming 

languages and database query languages are likely to get even better data integration.   

This will be a boon to application developers. 
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Appendix: The Basic HTM Routines 
This section describes the HTM routines. The companion document [Szalay] has a 

manual page for each routine, and the routines themselves are annotated to support 

Intellisense. 

 

In what follows, lat and lon are in decimal degrees (southern and western latitudes are 

negative), and distances are in nautical miles (arc minutes.) 

HTM library version: fHtmVersion() returns versionString 

The routine returns an nvarchar(max) string giving the HTM library version. 

Example use: 
 print dbo.fHtmVersion() 

Returns something like: 
  ‘C# HTM.DLL V.1.0.0 1 August  2005 ’ 

Generating HTM keys: fHtmLatLon (lat, lon) returns HtmID  

The routine returns the 21-deep HTM ID of that LatLon point.  

Example use: 
 update Place set HtmID = dbo.fHtmLatLon(Lat,Lon) 

There are also fHtmXyz() and fHtmEq() functions for astronomers.  

LatLon to XYZ: fHtmLatLonToXyz (lat,lon) returns Point (x, y, z) 

The routine returns the Cartesian coordinates of that Lat Lon point.  

Example use (this is the identity function): 
Select LatLon.lat, LatLon.lon-360     

from fHtmLatLonToXyz(37.4,-122.4) as XYZ cross apply  

     fHtmXyzToLatLon(XYZ.x, XYZ.y, XYZ.z) as LatLon 

There is also an fHtmEqToXyz() functions for astronomers.  

XYZ to LatLon: fHtmXyzToLatLon (x,y,z) returns Point (lat, lon) 

The routine returns the Cartesian coordinates of that Lat Lon point.  

Example use (this is the identity function): 
Select LatLon.lat, LatLon.lon-360     

from fHtmLatLonToXyz(37.4,-122.4) as XYZ cross apply  

     fHtmXyzToLatLon(XYZ.x, XYZ.y, XYZ.z) as LatLon 

There is also an fHtmXyzToEq() functions for astronomers.  

 

Viewing HTM keys: fHtmToString (HtmID) returns HtmString   

Given an HtmID, the routine returns a nvarchar(32) in the form [N|S]t1t2t3…tn where each 

triangle number ti is in {0,1,2,3} describing the HTM trixel at that depth of the triangular 

mesh. .  

Example use: 
print 'SQL Server development is at: ' +  

    dbo.fHtmToString(dbo.fHtmLatLon(47.646,-122.123)) 

which returns: ‘N132130231002222332302’. 

There are also fHtmXyz() and fHtmEq() functions for astronomers.  



   

HTM trixel Centerpoint:  fHtmToCenterpoint(HtmId) returns Point (x, y, z) 

Returns the Cartesian center point of the HTM trixel specified by the HtmID.  

Example use: 
select * from fHtmToCenterPoint(dbo.fHtmLatLon(47.646,-122.123))  

HTM trixel corner points:  fHtmToCornerpoints(HtmId) returns Point (x, y, z) 

Returns the three Cartesian corner points of the HTM trixel specified by the HtmID.  

Example use: 
select * from fHtmToCornerPoints(dbo.fHtmLatLon(47.646,-122.123))  

Computing distances: fDistanceLatLon(lat1, lon1, lat2, lon2)  returns distance   

Computes the distance, in nautical miles (arc minutes) between two points.  

Example use: 
declare @lat float, @lon float 

select @lat = lat, @lon = lon  

from  Place  

where PlaceName = 'Baltimore' and State = 'MD'  

select PlaceName,  

       dbo.fDistanceLatLon(@lat,@lon, lat,  lon) as distance 

from Place 

There are also fDistanceXyz() and fDistanceEq() functions for astronomers.  
 

The following routines return a table which serves as a spatial index. The returned spatial 

index table has the data definition:  
SpatialIndexTable table ( 

      HtmID   bigint   not null , -- HTM spatial key (based on lat/lon) 

 Lat     float    not null , -- Latitude in Decimal  

Lon     float    not null , -- Longitude in Decimal 

      x       float    not null , -- Cartesian coordinates, 

      y       float    not null , -- derived from lat-lon 

      z       float    not null , --, 

      Type    char(1)  not null , -- place (P) or gauge (G) 

      ObjID   bigint   not null , -- object ID in table 

 distance float   not null , -- distance in arc minutes to object 

      primary key (HtmID, ObjID) ) 

Finding nearby objects: fHtmNearbyLatLon(type, lat, lon, radius)  returns 
SpatialIndexTable 

Returns a list of objects within the radius distance of the given type and their distance 

from the given point.  The list is sorted by nearest object.   

Example use: 
  select distance, Place.* 

  from fHtmNearbyLatLon('P', 39.3, -76.6, 10) I join Place  

  on I.objID = Place.HtmID 

  order by distance 

There are also fHtmGetNearbyEq () and fHtmGetNearbyXYZ() functions for 

astronomers.  



   

Finding the nearest object:  fHtmNearestLatLon(type, lat, lon) returns SpatialIndexTable 

Returns a list containing the nearest object of the given type to that point.   

Example use: 
  select distance, Place.* 

  from fHtmNearestLatLon('P', 39.3, -76.6) I join Place  

  on I.objID = Place.HtmID 

There are also fHtmGetNearestEq () and fHtmGetNearestXYZ() functions for 

astronomers.  
 

The following routines return a table describing the HtmIdStart and HtmIdEnd of a set of 

trixels (HTM triangles) covering the area of interest.  The table definition is:  
TrixelTable table ( 

        HtmIdStart   bigint not null , -- min HtmID in trixel 

  HtmIdEnd     bigint not null   -- max HtmID in trixel  

    ) 

Circular region HTM cover:  fHtmCoverCircleLatLon(lat, lon, radius) returns trixelTable  

Returns a trixel table covering the designated circle.  

Example use: 
declare @answer nvarchar(max) 

declare @lat float, @lon float 

select @lat = lat, @lon = lon  

from Place  

where Place.PlaceName = 'Baltimore'  

  and State = 'MD'  

set @answer = ' using fHtmCoverCircleLatLon() it finds:      ' 

select @answer = @answer   

     + cast(P.placeName as varchar(max)) + ', '  

     + str( dbo.fDistanceLatLon(@lat,@lon, I.lat, I.lon) ,4,2)  

     + '  arcmintes distant.'  

from SpatialIndex I join fHtmCoverCircleLatLon(@lat, @lon, 5)   

   On HtmID between HtmIdStart and HtmIdEnd -- coarse test 

   and type = 'P'       -- it is a place 

   and dbo.fDistanceLatLon(@lat,@lon, lat, lon)  

                         between 0.1 and 5  -- careful test 

   join Place P on I.objID = P.HtmID 

    order by dbo.fDistanceLatLon(@lat,@lon, I.lat, I.lon) asc 

print 'The city within 5 arcminutes of Baltimore is: '  

    + 'Lansdowne-Baltimore Highlands, 4.37 arcminutes away' 

There are also fHtmCoverCircleEq() for astronomers.  

General region specification to HTM cover: fHtmCoverRegion(region) returns trixelTable  

Returns a trixel table covering the designated region (regions are described earlier in this 

topic).  
select S.*  

from  ( select ObjID  

         from fHtmCoverRegion('RECT LATLON 37 -109.55  41 -102.05')  

              loop join SpatialIndex 

   on HtmID between HtmIdStart and HtmIdEnd 

        and lat between 37 and 41 

        and lon between -109.05 and -102.048 

            and type = 'S') as G  

  join Station S on G.objID = S.StationNumber 



   

OPTION( FORCE ORDER)  

General region simplification: fHtmRegionToNormalFormString(region) returns 
regionString   

Returns a string of the form REGION {CONVEX {x y z d}* }* where redundant 

halfspaces have been removed from each convex; the convex has been simplified as 

described in [Fekete] 
print dbo.fHtmToNormalForm('RECT LATLON 37 -109.55  41 -102.05') 

 

The following routine returns a table describing the HtmIdStart and HtmIdEnd of a set of 

trixels (HTM triangles) covering the area of interest.  The table definition is:  
RegionTable ( convexID     bigint not null ,  -- ID of the convex, 0,1,… 

  halfSpaceID bigint not null  -- ID of the halfspace  

                                              -- within convex, 0,1,2, 

  x           float  not null  -- Cartesian coordinates of 

  y           float  not null  -- unit-normal-vector of  

  z           float  not null  -- halfspace plane 

  d           float  not null  -- displacement of halfspace  

  )     -- along unit vector [-1..1]  

     

Cast RegionString as Table: fHtmRegionToTable(region) returns  RegionTable   

Returns a table describing the region as a union of convexes, where each convex is the 

intersection of the x,y,z,d halfspaces.  The convexes have been simplified as described in 

[Fekete].  Section 4 of this article describes the use of this function.  
select * 

from dbo.fHtmToNormalForm('RECT LATLON 37 -109.55  41 -102.05') 

 

Find Points Inside a Region: fHtmRegionObjects(region, type) returns  ObjectTable   

Returns a table containing the objectIDs of objects in SpatialIndex that have the 

designated type and are inside the region.  
select *   -- find Colorado places. 

from Places join  

where HtmID in 

 select objID  

 from dbo. fHtmRegionObjects('RECT LATLON 37 -109.55  41 -102.05',‘P’) 

General region diagnostic: fHtmRegionError(region ) returns message  

Returns “OK” if region definition is valid; otherwise, returns a diagnostic saying what is 

wrong with the region definition followed by a syntax definition of regions.  
print dbo.fHtmRegionError ('RECT LATLON 37 -109.55  41 -102.05') 
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HTM Concepts Reviewed 

The Hierarchical Triangular Mesh is a multilevel, recursive decomposition of the sphere. At the top, depth 

1, there are eight spherical triangles, four each for the Northern and Southern hemispheres. Four of these 

triangles share a vertex at the pole. The sides opposite the pole form the equator. You can imagine these by 

orienting a regular octahedron so that two of its vertices are at the poles, and the other four are equally 

spaced on the equator. The spherical polygons are the projection of the edges of the octahedron onto the 

circumscribing sphere. There are eight unique integers that represent these triangles.  

 

Triangles in the mesh scheme are called trixels. Each trixel can be split into four smaller trixels by 

introducing new vertices at the midpoints of each side, and adding a great circle arc segment to connect the 

new vertices with the existing one. Trixel division repeats recursively and indefinitely to produce smaller 

and smaller trixels. Each trixel has a level number that corresponds to the number of times an original 

(octant) triangle had to be split. Points in this decomposition are represented by a leading 1 bit and then the 

level 0 trixel number [0..7] and then the successive sub-trixel numbers [0..3]. This gives each trixel and its 

center-point a unique 64 bit identifier, called an HTM ID (HtmID) that represents a particular trixel in the 

HTM hierarchy. The smallest valid HtmID is 8 – being the level 0 HtmID of the triangle 0.  HtmIDs are 

numbered from level 0.  The term depth tells how many levels are involved: depth = level+1.   

 

Though the division process can continue indefinitely, the 64-bit representation runs out of bits at depth 31.  

Depth 25 is good enough for most applications—about 0.6 meter on the surface of the Earth or 0.02 arc 

seconds. The code here defaults to depth 21 (0.3 arc seconds). Note that this numbering scheme is not a 

complete cover on the positive integers, and not all bit patterns form valid HtmID numbers. 

 

Some of the functions described here return a region, or area, on the sphere. The return value of these 

functions are referred to as trixel tables, which are tables of HtmID ranges for trixels that overlap or cover 

the region. The structure of these tables is quite simple: they are rows of two 64-bit numbers (BIGINTs) 

[Htm_start, Htm_stop] that are the starting and ending values of HtmIDs of trixels in the range. The 

HtmIDs in this context are always for trixels at depth 21.  

 

The library supports three coordinate systems:  

1. LatLon is the Greenwich Meridian spherical coordinate system of latitude and longitude (lat, 

lon) used by geographers. 

2. J2000 or Equatorial is the celestial right ascension and declination (ra, dec) spherical 

coordinate system used by astronomers (the vector pointing at the center of the Milky Way 

defines the intersection of the J2000 prime meridian with the J2000 equator). 

3. Cartesian is a the unit vector representation of a sphere; a point on the sphere (either LatLon 

or J2000) has a corresponding unit vector. The North Pole is (0,0,1) and the prime meridian 

intersection with the equator is (1,0,0).   

 

This library is installed in the sample Spatial database, which uses the LatLon coordinates. Many of the 

examples are geared to that.  The astronomy examples are drawn from tables at http://skyserver.sdss.org/. 

 



   

Find Version of Installed HTM Code 

fHtmVersion()  
Returns a string describing version of HTM code.  A typical description has a version and timestamp:  

“C# HTM.DLL V.1.0.0; 2005 July 30”. 

Returns: 

version varchar(max)  version string of installed code  

Example use: 
 declare @version varchar(max) 

 select @version = dbo.fHtmVersion() 

 print 'Installed version is: ' + @version 

Produces: 
Installed version is: C# HTM.DLL V.1.0.0; 2005 July 30   

Geometric Conversion Functions  

fHtmXyzToLatLon(x, y, z) 
Given the Cartesian coordinates (x, y, z), returns a table containing the corresponding LatLon coordinates. 

Parameters: 

x:  float not null x 

y:  float not null y 

z:  float not null z 

 

Returns: 

VertexTable(lat float, lon float) The lat/lon equivalent of the given point.  

Example use: 
 Select * from dbo.fHtmXyzToLatLon(1.0, 0.0, 0.0) 

  

Errors: Empty table is returned if (x, y, z) is too close to (0, 0, 0)  (within 1e9 of zero). 

fHtmXyzToEq(x, y, z) 
Given the Cartesian coordinates (x, y, z), returns a table containing the corresponding J2000 (ra, dec) 

coordinates. 

Parameters: 

x:  float not null x 

y:  float not null y 

z:  float not null z 

 

Returns: 

VertexTable(ra float, dec float) The RA/DEC equivalent of the given point.  

Example use: 
 Select * from dbo.fHtmXyzToEq(1.0, 0.0, 0.0) 

  

Errors: Empty table is returned, if (x, y, z) is too close to (0, 0, 0)  (within 1e9 of zero). 

   

fHtmLatLonToXyz(lat, lon) 
Given a LatLon point, returns a table containing the corresponding Cartesian coordinates (x, y, z). 

Parameters: 

lat:  float not null latitude 



   

lon:  float not null longitude 

 

Returns: 
VertexTable(x float, y float, z float)   

Example use: 
 Select * from dbo.fHtmLatLonToXyz(0.0, 0.0) 

  

Errors: None. Extreme latitude values are truncated to [-90 … 90]   

fHtmEqToXyz(ra, dec) 
Given a J2000 (equatorial) point returns a table containing the corresponding Cartesian coordinate (x, y, z).  

Parameters: 

ra:  float not null right ascension 

dec: float not null declination 

 

Returns: 
VertexTable(x float, y float, z float)   

Example use: 
 Select * from dbo.fHtmEqToXyz(0.0, 0.0) 

  

Errors: None. Extreme declination values are truncated to [-90 … 90]   

Compute HtmID for a point  

fHtmLatLon (lat, lon) 
Given a LatLon point, returns the 21-deep HtmID of that point on the earth.  

Parameters: 

lat:  float not null latitude 

 It is converted to the range [-90 ... 90] 

lon:  float not null longitude 

Returns: 

htmID bigint not null  the 21-deep HtmID of that (ra,dec) point.  

Example use: 
 Declare @htmID bigint 

 Select @htmID =dbo.fHtmLatLon(lat,lon) 

 From Place  

 where placeName = ‘Baltimore’ and state = ‘MD’ 

Errors: None.   

fHtmEq(ra, dec) 
Given a  J2000 (equatorial) point, returns the 21-deep HtmID of that point on the celestial sphere.  

Parameters: 

Ra:  float not null right ascension in degrees.   

It is converted to a [0 … 360) range 

Dec: float not null declination in degrees.   

It is converted to the range [-90 ... 90] 

Returns: 

htmID bigint not null  the 21-deep HtmID of that (ra,dec) point.  

Example use: 
 Declare @htmID bigint 

 Select @htmID =dbo.fHtmEq(ra,dec) 

 From Stars 

 Where id = 42 



   

Errors: None.   

fHtmXyz(x,y,z) 
Given a Cartesian point, returns the 21-deep HtmID of that point on the sphere.  

Parameters: 

x:  float not null   vector to galaxy center or prime meridian intersection with 

equator 

y:  float not null   vector normal to x in galactic plane or normal to prime 

meridian 

z:  float not null   vector normal to galactic plane or equator 

xyz will be normalized to 1.  ( (0, 0, 0) is converted to RA = 0, DEC = 0, i.e. (1, 0, 0)). 

Returns: 

htmID bigint not null  the 21-deep HtmID of that (x,y,z) point.  

Example use: 
 Declare @htmID bigint 

 Select @htmID = dbo.fHtmXyz(1,0,0) 

Errors:  None.   



   

HTM Triangle Functions 

fHtmToCenterPoint (HtmID) 
Given an HtmID, return its Cartesian x,y,z centerpoint as a vertex table.  

Parameters: 

HtmID: bigint not null HtmID of a triangle.  

Returns: 

VertexTable(x float, y float, z float).  

Example use: 
 Select x,y,z from fHtmToCenterPoint(dbo.fHtmLatLon(38,115)) 

Errors: None.   

fHtmToCornerPoints (HtmID) 
Given an HtmID, returns the three Cartesian x,y,z corner points of the triangle as a vertex table. If the 

HtmID has less shallow depth, this will be a large triangle. For example, HtmID = 8 returns the corner 

points of the entire octant.  

Parameters: 

HtmID: bigint not null HtmID of a triangle.  

Returns: 

VertexTable(x float, y float, z float).  

Example use: 
 Select x,y,z from fHtmToCornerPoints(dbo.fHtmLatLon(38,115)) 

Errors:  None.   

Distances Between Points 

fDistanceLatLon( lat1, lon1, lat2, lon2) 
Given two LatLon points, fDistanceLatLon() returns distance between them in arc minutes (nautical miles).  

Parameters: 

lat1:  float not null latitude in degrees truncated to [-90, 90].    

lon1:  float not null longitude in degrees truncated to [0,360).      

lat2:  float not null latitude in degrees truncated to [-90, 90].    

lon2:  float not null longitude in degrees truncated to [0,360).      

Returns: 

Float not null  distance in arc minutes  

Example use: 
 If (60 != dbo.fDistanceLatLon(0, 0, 1, 0) ) print 'error' 

Errors: None.   

fDistanceEq( ra1, dec1, ra2, dec2) 
Given two J2000 (equatorial) points, fDistanceEq() returns distance between them in arc minutes.  

Parameters: 

Ra1:  float not null right ascension in degrees truncated to [0,360].   

Dec1: float not null declination in degrees truncated to [-90, 90].    

Ra2:  float not null right ascension in degrees truncated to [0,360].   

Dec2: float not null declination in degrees truncated to [-90, 90].   .   

Returns: 

Float not null  distance in arc minutes  

Example use: 
 If (60 != dbo.fDistanceEq(0, 0, 1, 0) ) print 'error' 



   

Errors: None.   

fDistanceXyz( x1,y1,z1, x2,y2,z2) 
Given two Cartesian points, fHtmXyz returns distance between them in arc minutes.  

Parameters: 

x1, x2:  float not null   vector to galaxy center or prime meridian intersection with 

equator. 

y1, y2:  float not null   vector normal to x in galactic plane or prime meridian 

z1, z2:  float not null   vector normal to galactic plane or to north pole. 

(x, y, z) will be normalized. (0,0,0) will be converted to (0, 0, 1)  

Returns: 

Float not null  distance in arc minutes  

Example use: 
 If (5400 != dbo.fDistanceXyz(0, 1, 0, 0, 0, 1) ) print 'error' 

Errors:  None.   

  



   

REGIONS 
A region is an area of interest on the celestial sphere. You can specify a region as a polygon, a convex hull 

of a polygon, a rectangle, or a circle. Inside the kernel of the HTM engine, all regions are represented as a 

union of convexes, which are, in turn, intersections of halfspaces. For more information, see the article 

(Htm.doc) in the Geospatial project. 

 

Syntactically, a region is a list of convexes. Furthermore, a convex is a list of halfspaces, and a halfspace is 

a 4-tuple {x, y, z, D}.  

Region Specifications 

This is the syntax for region (cover) specifications: 

 
circleSpec := 'CIRCLE J2000'         ra dec  rad  

 |  'CIRCLE LATLON'        lat lon rad 

 | 'CIRCLE [CARTESIAN ]'  x y z   rad  

rectSpec    := 'RECT J2000'          {ra  dec}2  

 |  'RECT LATLON'         {lat lon}2 

 | 'RECT [CARTESIAN ]'   {x y z  }2 

polySpec    := 'POLY J2000'          {ra  dec}3+  

 |  'POLY LATLON'         {lat lon}3+ 

 | 'POLY [CARTESIAN ]'   {x y z  }3+ 

hullSpec    := 'CHULL J2000'         {ra  dec}3+ 

 |  'CHULL LATLON'        {lat lon}3+ 

 | 'CHULL [CARTESIAN ]'  {x y z  }3+ 

convexSpec := 'CONVEX J2000'        {ra  dec D}* 

 |  'CONVEX LATLON'       {lat lon D}* 

 |  'CONVEX [CARTESIAN ]’ {x y z   D}* 

areaSpec  := circleSpec 

 |  rectSpec 

 |  polySpec 

 |  hullSpec 

 |  convexSpec 

regionSpec := 'REGION' {areaSpec}* 

 |  areaSpec 

Examples of Region Specifications 

 
REGION  A number of convexes (including zero) 
 REGION CONVEX 1 0 0 0.7 0 1 0 0.7 

REGION CONVEX J2000 0 0 0.99    5 3 0.99 

REGION CONVEX J2000 0 0 0.99 CONVEX J2000 5 3 0.99 

 REGION CONVEX LATLON 90 0 0  

 REGION 

 

CONVEX Any number of (including zero) constraints 

 CONVEX CARTESIAN 0.7 0.7 0.0 -0.5 0.7 –0.7 0.0 –0.5 

CONVEX 

 

CIRCLE A Point specification, like J2000 ra,dec, and an arc minutes radius. Angles are in 

degrees. Represented as a CONVEX consisting of a single constraint. 

 CIRCLE J2000 182.25 –22.432 1.75 

 CIRCLE CARTESIAN 0.7 0.0 0.7 1.75 



   

 

RECT Followed by two angular point specs, defining the minimum and maximum of the ra,dec. The 

latmin must be smaller than latmax. In a similar case for the longitudes, they are interpreted in 

the wrap-around sense, i.e., ramin=358.0 and ramax=2.0, means a four-degree wide range.  
 RECT J2000 182.25 –1.432 184.75 1.44 

 

POLY Followed by an optional single coordinate specification and a number of corresponding point 

specifications (two or three numbers each). The spherical polygon will be created by 

connecting the points by great circle segments. Because it is restricted to a convex polygon, 

the order does not matter, but must be consistent. If there is a bowtie pattern in the points, or 

if the polygon is not convex, an error will result.  
 POLY J2000 -109.55 41 -102.05 41 -102.05 37 -109.55 37 

 

CHULL Followed by an optional single coordinate specification, and a number of corresponding point 

specifications (two or three numbers each). The spherical convex hull will be created by 

connecting the adjacent points by great circles. At least three points are needed. The points 

should all be within a single hemisphere, otherwise an error is returned. The order of the 

points is irrelevant.  
 CHULL J2000 180. -1. 190. -2. 185. 3. 182. 4. 185. 5.  



   

fHtmRegionToNormalFormString (regionSpec) 
Given a string describing a region, fHtmRegionToNormalFormString () returns the normalized 

representation of that region as a union of non-empty convex hulls, with redundant constraints (halfspaces) 

discarded from each convex.  

Parameters: 

regionSpec: nvarchar(max) not null  see syntax for region specifications above.  

Returns: 

nvarchar(max) not null  returns the normalized region spec of the form  

REGION {CONVEX {x y z d}* }*  

(or null if error).  

Example use: 
 Declare @regionSpec nvarchar(max) 

 Select @regionSpec = dbo.fHtmToNormalForm('CIRCLE J2000 195 0 1') 

Errors:  

 regionSpec syntax error, returns empty string, see fHtmRegionError() 

fHtmRegionToTable (regionSpec) 
Given a string describing a region, fHtmRegionToTable() returns the tabular representation of the region as 

a union of non-empty convex hulls, with redundant constraints (halfspaces) discarded from each convex. 

The tabular representation has the schema described below:  

Parameters: 

regionSpec: nvarchar(max) not null  see syntax for region specifications above.  

Returns: 
RegionTable ( 

        convexID     bigint not null ,  -- ID of the convex, 0,1,… 

  halfSpaceID bigint not null  -- ID of the halfspace  

                                              -- within convex, 0,1,2, 

  x           float  not null  -- Cartesian coordinates of 

  y           float  not null  -- unit-normal-vector of  

  z           float  not null  -- halfspace plane 

  d           float  not null  -- displacement of halfspace  

       -- along unit vector [-1..1]  

    ) 

 Or empty table if error.  

Example use: 
   

 select *  

from fHtmToNormalForm('CIRCLE J2000 195 0 1') 

Errors:  

 regionSpec syntax error, returns empty table., see fHtmRegionError() 

fHtmRegionObjects (regionSpec, type) 
This routine is particular to the SQL Server 2005 sample spatial database and library which has Place, 

Station, and SpatialIndex tables, and has these functions installed. Given a string describing a region and a 

type “P” for place or “S” for station, fHtmRegionObjects() returns the tabular list of all the SpatialIndex 

objects of that type that are inside that region:  

Parameters: 

regionSpec: nvarchar(max) not null  see syntax for region specifications above.  

Type: char(1):  “P” for Places in the Place table, “S” for Stations in the Station table 

Returns: 
ObjectTable ( 

        objID bigint not null primary key , -- ID of the object,… 

         -- if type is “S”, it is the Station.stationNumber  

-- if type is “T”, it is the Place.HtmID 



   

 Or empty table if error.  

Example use: 
select *   -- find Colorado places. 

from Place     

where HtmID in 

 (select objID  

  from fHtmRegionObjects('RECT LATLON 37 -109.55  41 -102.05','P')) 

Errors:  

 regionSpec syntax error, returns empty table., see fHtmRegionError() 

fHtmRegionError(regionSpec) 
Returns “OK” if a valid regionSpec, else returns syntax error message.  

 

Parameters: 

regionSpec: nvarchar(max) not null see syntax for region specifications above. 

Returns: 

nvarchar(max) not null  diagnostic message 

Example use: 
 Declare @diagnostic nvarchar(max) 

 Select @ diagnostic =  

dbo.fHtmRegionError('CIRCLE J2000 195 0') 

Errors: None. 

 

 



   

HTM Covers: Compute HtmID Ranges for a Region  
This suite of routines, given a region specification, returns a table of trixels. The trixels cover the specified 

region. The trixels are described by a start-stop HTM pair. All points within the trixel are between the start-

stop of the 21-deep HTM pair; in fact, they are in the closed interval [Htm_Start, Htm_Stop]. 

The resulting table has the definition: 

 TrixelTable(Htm_Start bigint, Htm_Stop bigint) 

Simple regions can be described as standard geometric shapes (circle, rectangle) giving the parameters. But 

typically, regions are described by using the linear syntax described above. Because the enumeration of 

HtmIDs tends to form locally connected intervals, the interface unifies these contiguous triangles as one 

large trixel.   

fHtmCoverRegion (regionSpec) 
Given a string describing a region, fHtmRegionCover () returns the trixel table covering that region.  

Parameters: 

regionSpec: nvarchar(max) not null  see syntax for region specifications above.  

Returns: 
TrixelTable(Htm_Start bigint, Htm_Stop bigint)    

Example use: 
  

 Select * from fHtmCoverRegion('CIRCLE J2000 195 0 1') 

Errors:  

 In case of error, returns the empty table. Use fHtmRegionError(RegionString) to get diagnostic. 

 



   

fHtmCoverCircleLatLon(lat, lon, radiusArcMin) 
Given a (latitude, longitude) point and a radius in arc minutes, fHtmCoverCircleLatLon () returns the trixel 

table covering that circle.  

Parameters: 

Lat:  float not null latitude in degrees.   

It is converted to the range [-90 ... 90]  

Lon: float not null longitude in degrees.   

radiusArcMin: float not null circle’s radius in 

arc minutes. 

Radius should be positive and less than 180 degrees, i.e., 10800 minutes of arc.  

Returns: 
TrixelTable(Htm_Start bigint, Htm_Stop bigint)    

Example use: 
 Select * from fHtmCoverCircleLatLon(195,0,1) 

Errors: None: 

fHtmCoverCircleEq(ra, dec, radiusArcMin) 
Given a J2000 ra, dec point and a radius in arc minutes, fHtmCoverCircleEq () returns the trixel table 

covering that circle.  

Parameters: 

Ra:  float not null right ascension in degrees.   

It is converted to a [0 … 360)  

Dec: float not null declination in degrees.   

It is converted to the range [-90 ... 90] 

radiusArcMin: float not null circle’s radius in arcminutes. 

Radius should be positive and less than 180 degrees, i.e., 10800 minutes of arc. 

Returns: 
TrixelTable(Htm_Start bigint, Htm_Stop bigint)    

Example use: 
 Select * from fHtmCoverCircleEq(195,0,1) 

Errors: None: 

fHtmCoverCircleXyz(x, y, z, radiusArcMin) 
Given a string describing a region, fHtmCoverCircleXyz() returns the trixel table covering that circle.  

Parameters: 

x:  float not null   vector to galaxy center 

y:  float not null   vector normal to x in galactic plane 

z:  float not null   vector normal to galactic plane 

radiusArcMin: float not null circle’s radius in arc minutes.  

xyz will be normalized to 1. (0,0,0) is converted to the North Pole: (0,0,1). 

Radius is range limited to [0…10800] 

Returns: 
TrixelTable(Htm_Start bigint, Htm_Stop bigint)    

Example use: 
 Select * from fHtmCoverCircleXyz(1,0,0,1) 

Errors: None: 



   

Installing the HTM Code 

1. Install the SQL Server 2005 samples by following the instructions in the Installing Samples topic 

in SQL Server Books Online. By default the sample will be installed in drive:\Program 

Files\Microsoft SQL Server\90\Samples\Engine\Programmability\CLR\Spatial\, where drive is the 

system drive. 

 

2. Compile the provided solution by using Visual Studio 2005 or the Microsoft .NET Framwork 

SDK 2.0 using a command similar to the following in a .NET Framework SDK command prompt: 
 

msbuild /property:configuration=debug CS\Spatial.sln 

 

3. Attach the Spatial database in the data directory by using SQL Server Management Studio or by 

executing the Scripts\AttachSpatialDatabase.bat command file in a command 

prompt window if you have not done so already. 
 

4. Execute the spHtmCsharp.sql script in SQL Server Management Studio, or by executing a 

command similar to the following in a command prompt window: 

 
sqlcmd -S "(local)" -d Spatial -E -i "C:\Program Files\Microsoft 

SQL 

Server\90\Samples\Engine\Programmability\CLR\Spatial\Scripts\spHt

mCsharp.sql" 

 

This script requires SQL Server 2005 be the default database server on the local system. This command is 

part of the contents of Scripts\BuildSpatialDatabase.bat. It does not work with SQL Server 2000 

or earlier versions. The  spHtmCsharp.sql script enables the common language runtime (CLR), drops 

any existing HTM assembly and replaces it with the current assembly 

(CS\Spatial\bin\debug\Spatial.dll), and then defines all the HTM functions in that assembly.   

Compiling, Modifying, and Debugging the HTM Code   
The C:\HtmCsharp\htm.sln is a C# database project. You should be able to use the “deploy” and the 

“debug” features and breakpoints will just work.    



   

Table of HTM Depths And Approximate Areas 

 

The library here defaults to 21-deep HTM keys (the first level divides the sphere into 

eight faces, and each subsequent level divides the speherical triangle into four sub-

triangles.) The table below indicates that a 21-deep trixel is fairly small. The code can be 

modified to go 31-deep deep before the 64-bit representation runs out of bits, but the 

floating point representation and transcendental functions lose precision near level 25 .  

 

Table 1:  Each HTM level subdivdies the sphere. For each level, this table shows the area 

in square degrees, arc minutes, arc seconds, and meters. The Trixel colum shows some 

characteristic sizes: the default 21-deep trixels is about .3 arc second
2
. The USGS data has 

about ½ object per 12-deep trixel.  

Area Objects/Trixel HTM 

depth degees
2
 minute

2
 area sec

2
 earth meters

2
 trixel SDSS  USGS  

sphere 41253 148,510,800 534,638,880,000 5.E+14    

0 5157 18,563,850 66,829,860,000 6E+13  3E+8  

1 1289 4,640,963 16,707,465,000 2E+13  8E+7  

2 322 1,160,241 4,176,866,250 4E+12  2E+7  

3 81 290,060 1,044,216,563 1E+12  5E+6  

4 20 72,515 261,054,141 2E+11  1E+6 30,000 

5 5 18,129 65,263,535 6E+10  3E+5 7,500 

6 1 4,532 16,315,884 2E+10 1 deg
2
 73242 1,875 

7 3E-1 1,133 4,078,971 4E+9  18311 468 

8 8E-2 283 1,019,743 1E+9  4578 117 

9 2E-2 71 254,936 2E+8  1144 29 

10 5E-3 18 63,734 6E+7  286 7 

11 1E-3 4 15,933 2E+7  72 2 

12 3E-4 1 3,983 4E+6 1 amin
2
 18 0.5 

13 8E-5 3E-1 996 943816  4 0.1 

14 2E-5 7E-2 249 235954  1  

15 5E-6 2E-2 62 58989  0.3  

16 1E-6 4E-3 16 14747  .  

17 3E-7 1E-3 4 3687    

18 8E-8 3E-4 1 922    

19 2E-8 7E-5 2E-1 230 1 asec
2
   

20 5E-9 2E-5 6E-2 58 1 km
2
   

21 1E-9 4E-6 2E-2 14    

22 3E-10 1E-6 4E-3 4    

23 7E-11 3E-7 9E-4 1 1 m
2
   

24 2E-11 7E-8 2E-4 2E-1    

25 5E-12 2E-8 6E-5 6E-2    

26 1E-12 4E-9 1E-5 1E-2    

 

 


