
Discriminative Models for Spoken Language Understanding

Ye-Yi Wang and Alex Acero

Microsoft Research, Redmond, Washington, USA
{yeyiwang,alexac}@microsoft.com

Abstract
This paper studies several discriminative models for spoken
language understanding (SLU). While all of them fall into the
conditional model framework, different optimization criteria
lead to conditional random fields, perceptron, minimum
classification error and large margin models. The paper
discusses the relationship amongst these models and compares
them in terms of accuracy, training speed and robustness.
Index Terms: discriminative training, conditional random fields
(CRFs), large margin (LM) training, MCE, perceptron, spoken
language understanding (SLU).

1. Introduction
SLU addresses the problem of extracting semantic meaning
conveyed in a user’s utterance in a specific domain. A domain is
often defined with frame-like structures, as the simplified
example shown in Figure 1 for the Air Travel Information
System (ATIS) domain [1]. The task of SLU is to map a user’s
utterance into a semantic representation, which is an
instantiation of the semantic frames. An example of semantic
representation is shown in Figure 2 for the utterance “Show me
the flights departing from Seattle arriving at Washington D.C.”
or “Flights from Seattle to Washington D.C. please.”

< frame name=“ShowFlight”>
 < slot name=“DCity” filler=“City”/>
 < slot name=“ACity” filler=“City”/>
< /frame>
< frame name=“GroundTrans” >
 < slot name=“City” filler=“City”/>
< /frame>

Figure 1. Simplified semantic frames in the ATIS domain. A frame
represents a command (the name of the frame) in the domain and the
slots associated with the command. The filler attribute of a slot
specifies the semantic object that can fill a slot. For example, a string
covered by the “City” rule in a context-free grammar (CFG) can be the
filler of the ACity (ArriveCity) or the DCity (DepartCity) slot.

 < ShowFlight”>
 < DCity> Seattle< /DCity>
 <ACity>Washington D.C.< /ACity>
 < /ShowFlight>
Figure 2. Semantic representation is an instantiation of the semantic
frames in Figure 1.

 SLU is traditionally solved with a knowledge-based
approach. In the past decade many data-driven generative
statistical models have been proposed for the problem [2].
Among them a HMM/CFG composite model [2] integrates
knowledge-based approach in a statistical learning framework,
which uses CFG rules to define the slot fillers and hidden
Markov models (HMMs) to disambiguate command and slots in

an utterance. The CFG rules may be obtained from a domain-
independent library (e.g., for date and time expressions), or from
a domain specific database (e.g., city and airport names.) The
topology of the HMMs is determined by the domain defined by
semantic frames. The inclusion of the prior knowledge in the
statistical model compensates for the dearth of labeled data for
model training. The HMM/CFG composite model achieves the
understanding accuracy at the same level as the best performing
semantic parsing system based on a manually developed
grammar in ATIS evaluation [3].
 The prior knowledge about a domain is similarly exploited
in discriminative conditional models for further improving the
understanding accuracy. We have shown that discriminative
power and the capability of incorporating overlapping features
in conditional random fields (CRFs) [4] has resulted in more
than 20% slot error rate reduction for SLU over the generative
HMM/CFG composite model [5].
 We have recently investigated other discriminative models
in the same log-linear framework to tackle the problem,
including perceptron [6], minimum classification error (MCE)
[7] and large margin (LM) [8]. This paper discusses the
relationship amongst these models, compares their performance
in terms of accuracy, training speed and robustness to data
sparseness.
 The paper is organized as follows. Section 2 lays down the
conditional model framework for SLU. Section 3 introduces the
different optimization criteria that result in CRFs, perceptron,
MCE and LM models. Section 4 compares the models with
experimental results, and Section 5 concludes the paper.

2. Conditional Models for SLU
We convert the SLU problem into a sequential labeling problem
that assign a domain-related tag to each word in an utterance.
For example, the semantic representation in Figure 2 can be
recovered from the following label sequence:
 “Flights/SF.DCity.pre from/SF.DCity.pre Seattle/SF.DCity.start
to/SF.ACity.pre Washington/SF.ACity.start D.C./SF.ACity.cont
please/SF.post”
 Here the prefix “SF” in the labels indicates that the
utterance is a “ShowFlight” command. “SF.DCity.pre” indicates
that the word is a preamble for a DCity slot. “SF.ACity.start”
represents the first word of an ACity slot filler, “SF.ACity.cont”
represents continuation of an ongoing ACity slot, and “SF.post”
is a post-command state that labels all the words after the last
slot. Each label here corresponds to a state of the model, so
“states” and “labels” will be used interchangeably. The model
imposes a couple of constraints on state transitions, namely a
preamble state must be followed by itself or by its
corresponding slot’s start state; and any state must be followed
by a state in the same command (with the same prefix.)

International Conference on Spoken Language Processing, pp. 1766-1769, ISCA, Pittsburgh, PA, USA, 2006

 Formally, the problem can be formulated as assigning a
state sequence 1s

τ to an observation o with τ words with the
help of a CFG parser that identifies all possible matches of CFG
rules for slot fillers, as illustrated in Figure 3. In this example,
the model needs to label “two” as the “SF.NumOfTickets.start”
(slot not shown in the simplified frames in Figure 1)
“Washington” as “SF.ACity.start,” “D.C.” as “SF.ACity.cont,”
and the remaining words as the appropriate preambles. To do so,
the model has to resolve several types of ambiguities:
1. Filler/non-filler ambiguity, e.g., “two” can be the filler of a

NumOfTickets slot, or the preamble of the ACity slot.
2. CFG ambiguity, e.g., “Washington” can be CFG-covered

as either a City or a State.
3. Segmentation ambiguity, e.g., “[Washington] [D.C.]” for

two Cities (or a State and a City) vs. “[Washington D.C.]”
represents a single City.

4. Semantic label ambiguity, e.g., “Washington D.C.” can fill
either an “ACity” or a “DCity” slot.

Figure 3. A CFG parser identifies all possible matches of CFG rules
for slot fillers.

The desired state sequence 1s
τ should have maximum posterior

probability 1()p sτ λ| ;o according to model λ . Here undirected
conditional graphical models are used for the posterior. They are
of the following form:

()1 1
1() exp ()

()
p s s

z
τ τλ λ

λ
| ; = ⋅ , .

;
o f o

o
 (1)

where 1()f osτ , is a vector of features that are functions of state
sequence and observation; λ is a vector of parameters that are
the weights for the features; and ()

1 1() exp ()o f osz sτ
τλ λ; = ⋅ ,∑

normalizes the distribution over all possible state sequences. For
computational tractability, it is often assumed that 1s

τ forms a
Markov chain and each element feature kf in f is a function that
only depends on two adjacent states, so

 (1) ()
1

1

1()= exp ()
()

t t
k k

k t
p s f s s t

z

τ
τ λ λ

λ
−

=

⎛ ⎞| ; , , ,⎜ ⎟; ⎝ ⎠
∑ ∑o o

o
 (2)

The features we use for SLU in the conditional model include:
1. Command prior features capture the likelihood a command

being issued by a user, e.g.,

(1) ()

()

ShowFlight ()

1 if =0 Prefix() SF
 =

0 otherwise

PR t t

t

f s s t

t s

− , , ,

⎧ ∧ =⎪
⎨
⎪⎩

o

 (3)

2. State Transition features capture the ordering of different
slots in a command, e.g.,

(1) ()

(1)

()

SF.DCity,SF.ACity
()

1 if {SF.DCity.start, SF.DCity.cont}
 = {SF.ACity.pre, SF.ACity.start}

0 otherwise

oTR t t

t

t

f s s t

s
s

−

−

, , ,

⎧ ∈
⎪ ∧ ∈⎨
⎪
⎩

 (4)

3. Unigram and bigram features capture the co-occurrence of
words with preamble/post-command states, e.g.,

(1) ()
SF.DCity.pre,from

()

(1) ()
SF.DCity.pre,departing,from

(1) ()

()

1 if =SF.DCity.pre = from;
 =

0 otherwise

()

1 if = =SF
 =

UG t t

t t

BG t t

t t

f s s t

s

f s s t

s s

−

−

−

, , ,

⎧ ∧⎪
⎨
⎪⎩

, , ,

o

o

o

1

.DCity.pre
= departing = from

0 otherwise

t t−

⎧
⎪ ∧ ∧⎨
⎪
⎩

o o

 (5)

We include
1 2,

BG
s w wf in the model only for those bigrams

1 2w w that co-occur with state s in a labeled training example.
4. Previous slot’s context features with window size k capture

the dependency of a slot’s interpretation on the preamble of
the preceding slot, e.g.,

(1) ()

(1)

()

SF.ACity,SF.DTime,
()

1 if {SF.ACity.start, SF.ACity.cont}
{SF.DTime.start, SF.DTime.pre}

(SF.ACity, , 1,)

0 otherwise

PC t t

t

t

w
f s s t

s
s
w t k

−

−

, , ,

∈
∧ ∈

=
∧ ∈Θ −

o

o

⎧
⎪
⎪
⎨
⎪
⎪⎩

 (6)

Here (SF.ACity, , 1,)t kΘ −o represents a word set that
contains up to k words, which are not covered by any CFG
rules, and which appear in front of the longest phrases covered
by the CFG rule for the slot SF.ACity. The utility of the features
can be illustrated with utterances “Flights from Seattle to
Boston at 3 pm” and “Flights from Seattle arriving in Boston at
3 pm.” In the first utterance, “3 pm” is a DTime (Departure
Time), while it is an ATime (Arrival Time) in the second one.
The state transition features are not able to distinguish the two
cases, since the state sequences before “3 pm” are exactly same.
Only features like

SF.ACity,SF.DTime,arriving
PCf or

SF.ACity,SF.DTime,to
PCf can

help distinguish the two different cases.
5. CFG chunk coverage features for preamble/post-command

words capture the likelihood that a word covered by a CFG
rule may not be part of a slot filler, e.g.,

1 (1) ()

()

()

ShowFlight,City
()

1 if Prefix() SF
 covers(City,) IsFiller()

0 otherwise

CC t t

t

t t

f s s t

s
s

− , , ,

⎧ =
⎪= ∧ ∧ ¬⎨
⎪
⎩

o

o
 (7)

Here IsFiller(s) indicates state s is a slot filler state – either
a start state or a continuation state. The feature is activated when
non-filler labeled to is covered by the City rule.
6. CFG chunk coverage features for slot boundaries prevent

errors like segmenting “Washington D.C.” into two
different slots. They are activated when a slot boundary is
covered by a CFG rule, e.g.,

2 (1) ()

()
1

(1) ()

ShowFlight,City
()

1 Prefix() SF covers(City,)
 isFiller() isFillerStart()

0 otherwise

CC t t

t t
t

t t

f s s t

s
s s

−

−
−

, , ,

⎧ = ∧
⎪= ∧ ∧⎨
⎪
⎩

o

o (8)

3. Discriminative Training
Each feature kf in the previous section is associated with a
weight kλ in Eq. (2). The parameters of the model can be
optimized according to different objective functions, which
yield the following discriminative training methods.

3.1. Conditional Random Fields (CRFs)

CRFs [4] maximize log posterior probability of training set label
sequences given the observation:

() ()

() ()
o

s o

o o(1) ()

1

log | ;

, , , log
i

k

i i
i

t t
k k i i i i

i f t

L P

f s s t Zλ

λ λ

λ −

=

=

= −

∑

∑∑ ∑
 (9)

Here o s,i i are the observation and the label sequence of the i-th
training example. Eq. (9) can be optimized with gradient-based
optimization like stochastic gradient decent . Its gradient is

() ()

() ()l o

o

o

 oE

(1) ()

1

(1) ()
|

, , ,

, , ,
i

i
t t

k i i i
i tk

t t
k iP

i

L
f s s t

f l l t

λ
λ

−

=

−

∂
=

∂
⎡ ⎤− ⎢ ⎥⎣ ⎦

∑∑

∑
 (10)

which is the difference between the counts of feature kf from the
labeled state-sequence/observation pairs and its expected count
over all possible state-sequences given the observations alone.
The expected count can be obtained with a forward-backward
like dynamic programming algorithm.
 Because ()L λ is a convex function, a global optimum
exists for the function. This property only holds for CRFs
among the discriminative algorithms that we study in this paper.

3.2. Perceptron

Given training data pair o s,i i , if the Viterbi state sequence
vi for oi is different from s ,i perceptron learning [6] updates

kλ by adding the difference of the feature counts between label
sequence si and vi : () ()s o v o' , , , , .k k k i i k i if t f tλ λ= + −
 Perceptron learning can be viewed as using the difference
of the log posterior probability between the reference state
sequence and the Viterbi state sequence of mislabeled samples
as the optimization objective function:
 () () ()

o v
v

s o v o
:

' log | ; log | ;max
i i

i i i
i

L P Pλ λ λ
≠

= −∑ (11)

 The gradient of this function is the count difference used
in perceptron parameter update. Therefore perceptron training is
an online gradient-based optimization for Eq. (11). In this case,
there is no need of dynamic programming for the expected
feature counts. This speeds up model training significantly.

3.3. Minimum Classification Error (MCE)

MCE [7] directly minimizes the sequence label errors. Given
training data o s,i i , a mislabeling measure is defined as

 () () ()
v s

v o s olog | ; log | ;max
i

i i id P Pλ λ λ
≠

= − (12)

which is the log posterior difference between the best incorrect
state sequence and the correct reference state sequence. It is
positive when the best incorrect sequence has higher posterior,

negative otherwise. A loss function then maps the mislabeling
measure to a 0-1 continuum. Often a sigmoid function is used:

()
()()

1
''

1 exp
L

d
λ

α λ δ
=

+ − +
 (13)

The gradient of the loss function is

 () ()()() ()() ()2''
1 d d

k k

L d
ee α λ δ α λ δλ λ

λ λ
α − + − +

−∂ ∂
∂ ∂

+= (14)

Here ()()() ()()
2

1 d dee α λ δ α λ δα − + − +
−

+ is a scaling factor that

reduces the influence of an example when its mislabeling
measure is far away from δ (often set to 0) – in this case it is
likely that the example is an outlier. This effectively makes the
learning focus on the decision boundary, and requires a good
initial parameterization – otherwise a large portion of training
data may be treated as outliers. We pre-train the model with
CRFs or perceptron before MCE training. In Eq. (14), other
than the scaling factor, () kd λ λ∂ ∂ is very similar to the

negative gradient of ()'L λ in perceptron learning, except that
perceptron does not learn from correctly labeled data (corrective
learning in ASR) while MCE keeps pulling probability mass
from the posterior of the best incorrect state sequence to that of
the correct sequence. The negation is due to the fact that the
objective function needs to be maximized for perceptron but
minimized for MCE.

3.4. Large Margin (LM)

The margin around the decision boundary for a sample o s,i i is
the log posterior difference between the correct state sequence
and the best incorrect state sequence:

() ()
v s

s o s o v o(,) log | ; log | ;max
i

i i i i im P Pλ λ
≠

= − (15)

The objective function in LM training is the minimum margin
across all training samples [8]:

()
()

()
s ,o

s ,o
: 0

''' min
i i

i i
i m

L mλ
>

= (16)

Rather than fitting the model to training data, LM training draws
a decision boundary that has the largest minimum margin to the
training examples. That makes the model more robust when the
training data is limited.

In Eq. (16), examples with negative margin (i.e., examples
that are mislabeled by the model) are treated as outliers and do
not contribute to model optimization. This constraint can be
relaxed with the introduction of a slate variable. In this paper we
simply discard the examples with negative margins – this then
requires that the initial model makes as few mistakes on the
training data as possible. For that reason, we pre-train the model
with CRFs or perceptron training before LM training.

To speedup training, LM learns from examples with margins
smaller than a threshold instead of only learning from the
example with the minimum positive margin.

4. Experimental Results
The ATIS 3 category A training set (~1700 utterances), as well
the 1993 test (470 utterances, with 1702 slots) and development
(410 utterances) sets are manually annotated for the experiment.
Stochastic Gradient Decent (SGD) [9] is used for optimization.
The development set are used to tune the training parameters
and for stopping criteria for model training. The annotation

contains sufficient semantic information to achieve near perfect
database query results when SQL queries are generated from the
annotation. The only few “errors” of query results are due to
either reference mistakes or the misplacement of category D test
utterances (interpretation depends on discourse) in category A.

4.1. SLU Accuracy

Table 1 compares the SLU slot error rate with different feature
sets across different models. All feature sets include 6 command
prior, 1377 state transition, and 14433 unigram features. FSet1
also includes 290 previous slot’s context feature with window
size 1, and 156 chunk coverage features for preamble/post-
command words. FSet2 includes additional chunk coverage
features for slot boundaries, which share the weights with the
chunk coverage features for preamble/post-command words.
FSet3 adds on top of FSet2 58191 bigram features and uses
previous slot’s context feature with window size 2. A detailed
study of the impacts of different features can be found in [5].
Both MCE and LM training are initialized in two ways – 40
iterations of perceptron training and 250 iterations of CRF
training. At these iterations the initialization training methods
accomplish close-to-optimal accuracy on the development set.
The differences of slot error rates are not significant across
different training methods except for perceptron learning, which
has significantly higher error rates with FSet1 and FSet3, and
perceptron-initialized MCE on FSet1. All the discriminative
models significantly reduce the 5.0% slot error rate achieved by
the generative HMM/CFG composite model.
 While MCE and LM training improve the initial model
trained with perceptron, they make little improvement over the
initial model trained with CRFs.

Table 1. SLU slot ins-del-sub error rates.

Model FSet 1 FSet 2 FSet 3
CRFs 4.00% 4.11% 3.88%

Perceptron 4.35% 3.94% 4.47%
Ptron/MCE 4.35% 3.94% 4.17%
CRF/MCE 3.94% 4.11% 3.88%
Ptron./LM 4.17% 4.11% 4.11%
CRFs/LM 4.05% 4.11% 3.88%

4.2. Training Speed

Table 2 compares the training speeds of different algorithms.
Perceptron takes much fewer iterations and much less time per
iteration than CRFs. Since initialization takes most of the
training time for MCE and LM, perceptron initialized MCE and
LM training are also much faster than CRF-initialized training.
MCE converges faster than LM after perceptron initialization.
This may due to the fact that all data participate in MCE
training, while only those with small positive margins
participate in LM training.

Table 2. FSet2 training time per iteration, number of
iterations for convergence and total training time.

Model Time/Iter. Iteration Total Time
CRFs 4.8s 320 26 min.

Perceptron 1.5s 40 1 min.
Ptron/MCE 1.9s 40+10 1.6 min.
CRFs/MCE 4.6s 250+30 22 min.
Ptron/LM 1.8s 40+60 3 min.
CRFs/LM 4.2s 250+30 20 min.

4.3. Robustness to Data Sparseness

Table 3 compares the accuracy of different models when only
part of the data is used for model training. CRFs and CRF-
initialized MCE/LM models are more robust to data sparseness
than perceptron and perceptron-initialized MCE/LM models.

Table 3. FSet2 Slot error rates of models trained with different
amount of data.

Model ¼ Data ½ Data ¾ Data All Data
CRFs 5.64% 4.23% 4.17% 4.11%

Perceptron 7.17% 5.82% 5.23% 3.94%
Ptron/MCE 6.05% 5.52% 5.52% 3.94%
CRFs/MCE 5.88% 4.41% 4.17% 4.11%
Ptron/LM 6.64% 5.52% 3.82% 4.11%
CRFs/LM 5.93% 4.41% 4.17% 4.11%

5. Conclusions
We have introduced different discriminative training criteria for
conditional models for SLU, and compared CRFs, perceptron,
MCE and LM models in terms of accuracy, training speed and
robustness to data sparseness. All the discriminative models
accomplished similar accuracy except for perceptron, which has
significantly higher error rates. CRFs are also more robust when
less training data is available. However, perceptron and
perceptron-initialized MCE and LM models are much faster to
train, and the accuracy gap becomes smaller when more data are
available. It is a good tradeoff to use perceptron-initialized
MCE or LM if training speed is crucial for an application, or a
large amount of training data is available.

6. References
[1] Price, P. Evaluation of Spoken Language System: the ATIS

domain. DARPA Speech and Natural Language Workshop.
1990. Hidden Valley, PA.

[2] Wang, Y.-Y., L. Deng, and A. Acero, Spoken Language
Understanding. IEEE Signal Processing Magazine, 2005.
22(5): p. 16-31.

[3] Ward, W. Recent Improvements in the CMU Spoken
Language Understanding System. Human Language
Technology Workshop. 1994. Plainsboro, NJ.

[4] Lafferty, J., A. McCallum, and F. Pereira. Conditional
Random Fields: Probabilistic Models for Segmenting and
Labeling Sequence Data. ICML 2001.

[5] Wang, Y.-Y., et al. Combining Statistical and Knowledge-
based Spoken Language Understanding in Conditional
Models. COLING/ACL 2006.

[6] Collins, M. Discriminative Training Methods for Hidden
Markov Models: Theory and Experiments with Perceptron
Algorithms. EMNLP 2002.

[7] Juang, B.-H. and S. Katagiri, Discriminative Learning for
Minimum Error Classification. IEEE Transaction on Signal
Processing, 1992. 40(12): p. 3043-3054.

[8] Li, X., H. Jiang, and C. Liu. Large Margin HMMs for
Speech Recognition. ICASSP. 2005. Philadelphia, PA.

[9] Kushner, H.J. and G.G. Yin, Stochastic Approximation
Algorithms and Applications. 1997: Springer-Verlag.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

