
Modeling Arbitrator Delay-Area Dependencies in Customizable Instruction

Set Processors

Siew-Kei Lam

Centre for High Performance

Embedded Systems,

Nanyang Technological

University, Singapore

(assklam@ntu.edu.sg)

Mohammed Shoaib

Indian Institute of Technology,

Madras, India

(ee03b111@ee.iitm.ac.in)

Thambipillai Srikanthan

Centre for High Performance

Embedded Systems,

Nanyang Technological

University, Singapore

(astsrikan@ntu.edu.sg)

Abstract

Instruction set customization is becoming a preferred

approach for accelerating high-speed demanding

applications. In this paper, we present performance

and delay-area product estimation models to
accelerate the design of custom instructions on the

Nios II configurable processor platform. The proposed

models outline the performance bandwidth and delay-

area product to enable profitable selection on the type

and number of custom instructions, without the need to
undertake time-consuming hardware synthesis in the

design exploration stage. The models exhibit a high

degree of accuracy as they incorporate the

architectural dependencies of the arbitrator logic

between the Nios II processor and custom hardware.

Experimental results reveal that the area-time
implications of the arbitrator logic with respect to the

number of custom instructions can significantly affect

the system’s performance and area utilization.

1. Introduction

General-purpose processors tend to suffer from

performance when executing non-standard operations

that are not supported by the instruction set. On the

other hand, full hardware implementations necessitate

lengthy design time that increases the TTM (Time-To-

Market) pressure. In recent years, configurable

processors [1][2][3][4] have emerged to bridge the full

hardware and processor based implementation gap in

the SoC (System-on-a-Chip) design continuum. The

fundamental premise of configurable processors is that

they can be modified or extended to address specific

design issues by changing the processor’s feature set

without prohibitive cost and lengthy development time.

In order to support post-manufacturing configurability,

commercial RISPs (Reconfigurable Instruction Set

Processors) [5] such as the Altera Nios [6] and Xilinx

Microblaze [7] platforms have been introduced. A

RISP facilitates critical parts of the application to be

implemented on a reconfigurable fabric using a

specialized instruction set.

Despite the advantages of configurable processors

and RISPs, selecting custom instructions from a large

number of possible candidates still remains an open

issue [2]. Existing methodologies for custom

instruction selection that incorporates a hardware

synthesis flow in the design exploration process such

as that proposed in [8] can become too time

consuming. Others methods such as [9] aims to

expedite the custom instruction selection process by

modeling the performance gain of the custom

instruction candidates, but fail to consider the inherent

micro-architectural dependencies resulting from the

generation of custom logic in RISPs.

In this paper, we introduce accurate performance

and delay-area product estimation models that can be

used to effectively select custom instructions for the

Altera Nios II platform. We will show that the area-

time implications of the arbitrator logic are substantial

enough to affect the overall system performance and

area utilization. Unlike previous works, the proposed

models incorporate the architectural dependencies of

the arbitrator logic between the Nios II processor and

custom logic.

In the next section, we will provide an introduction

to the Nios II platform. Section 3 illustrates an example

of the Nios II system development flow that has been

modified to include model-based custom instruction

selection. Section 4 describes the proposed

performance estimation model that incorporates the

arbitrator’s dependencies on the number of custom

instructions. In the next section, the delay-area product

estimation model is introduced with an example to

justify its significance for area-time trade-off study.

Finally, the paper concludes with some considerations

for future directions.

Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA’06)
0-7695-2500-8/05 $20.00 © 2005 IEEE

2. The Nios II Configurable Processor

Platform

The Nios II configurable processor platform used to

derive the estimation models consists of the Altera

Stratix II EP2S60F672-C5ES device and can cater up

to 256 custom instructions. As shown in Figure 1, the

custom instruction logic connects directly to the Nios

II ALU (Arithmetic Logic Unit). There are different

custom instruction architectures available to suit the

application’s requirements. The architectures range

from simple, single-cycle combinatorial architectures

to extended variable-length, multi-cycle custom

instruction architectures. The most common type of

implementation is the single-cycle combinatorial

architecture that allows for custom logic realizations

with two inputs and one output port.

Figure 1: The Nios II configurable processor
architecture

The Nios II platform utilizes the Avalon bus module

to interface the Nios II processor with the custom

logic, and other peripherals as shown in Figure 2.

Figure 2: The Avalon bus module

 The module is a configurable bus architecture that

is auto-generated to fit the interconnection needs of the

designer’s peripherals. The Avalon bus module

consists of the control, data and address signals, and

arbitration logic that are connected to the peripheral

components. In this paper, we will show that the delay

and area of the arbitration logic grows deterministically

with the number of custom instructions, which

facilitates the design of accurate models.

3. Modified Development Flow

Figure 3 describes the Nios II system development

flow with emphasis on instruction set customization.

The process to analyze the system requirements have

been modified to include two tasks: 1) Profiling to

identify critical portions of the application, and 2)

Model-based custom instruction selection. In the latter,

the proposed estimation models can be employed to

provide more reliable design exploration for selecting

custom instructions in order to meet the application

requirements.

Profiling

Application

Custom Instruction

Selection
Custom

Logic

Application

Requirements

Analyze

System

Requirements

Define and

Generate System

NIOS II

Cores &

Standard

Peripherals

Hardware

Development

Flow

Software

Development

Flow

Verification

Figure 3: Modified NIOS II development flow

Next, the Nios II processor, required peripherals

and custom logic are defined and automatically

generated. The resulting system becomes the target

platform for the hardware and software development

flow. These development flows may undergo several

iterations until the system has been successfully

verified. In addition, it may be necessary to predefine

and generate a new system with different choices of

custom instruction logic in order to meet the

application’s requirements. This will incur iterations

(denoted by the dashed line) that significantly increase

the design time. The modified flow aims to reduced

such iterations by providing more reliable custom

instruction selection through accurate estimation

models early in the design phase.

Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA’06)
0-7695-2500-8/05 $20.00 © 2005 IEEE

4. Proposed Performance Estimation

Models

This section describes the proposed performance

estimation model. It is noteworthy that the models

were derived from experimentation based on

unconstrained designs. Although more optimal

solutions can be realized by setting tighter constraints

for the synthesis process, this would lead to substantial

expansion in the area utilization. Moreover, our

attempt to formulate a model for constrained designs is

hampered by the difficulty in obtaining deterministic

results. As such, the proposed models are well suited

for early design considerations to reduce subsequent

optimization efforts (i.e. during the hardware

development flow in Figure 3). This is justified by the

fact that constraint settings are usually application

dependent, and constrained-based design exploration

can be a time-consuming process.

4.1. Modeling the Arbitrator Delay

Dependencies

Nios II

Processor

A
rb

itra
to

r L
o

g
ic

Custom Logic 1

Custom Logic 2

Custom Logic 3

3232

32

32

8

Chip select
32 32

Chip select

8

:

And1

And2

And32

:

And1

And2

And32

:

And1

And2

And32

Results from

custom logic

32
32

32
32

Result

Data b

Data a

:

:

:

Or1

Or2

Or32

Figure 4: The arbitrator logic

The arbitrator dependencies on the number of

custom instructions were first studied. Figure 4 shows

the overview of the arbitrator between the Nios II

processor and the custom logic, and a schematic

diagram of the arbitrator logic for a three custom logic

implementation.

The arbitrator employs a complemented BCD

coding using the chip select signals to select the

required custom logic result. It is evident that the

complexity of the arbitrator will grow with the number

of custom instructions. For example, as the number of

custom instructions increases, the number of Nor gates

which serve as the BCD decoder will increase along

with number of And gates and Or gate levels. Hence,

although the arbitrator logic hierarchy remains the

same (i.e. Nor-And-Or) with the increase of custom

logic, the number of gates will grow accordingly,

introducing combinatorial and routing delays through

the arbitrator. The critical path through the arbitrator

was experimentally obtained and was found to follow a

deterministic pattern with increasing number of custom

instructions as shown in Figure 5. It is noteworthy that

the delay through the arbitrator can significantly affect

the maximum clock frequency of the system.

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

1 2 3 4 5 6 7 8 9 10 11

Number of Custom Instructions

B
e
s
t

C
a
s
e
 -

 D
e
la

y
 (

n
s
)

Arbitrator (Sim) Aribitrator (Est)

6.2

6.4

6.6

6.8

7.0

7.2

7.4

7.6

1 2 3 4 5 6 7 8 9 10 11

Number of Custom Instructions

W
o

rs
t

C
a
s
e
 -

 D
e
la

y
 (

n
s
)

Arbitrator (Sim) Aribitrator (Est)

Figure 5: Simulated (dotted lines) and
modeled arbitrator delay with number of

custom instructions

The variation in the delay observed from Figure 5 is

step-wise predictable due to the regular increase in the

arbitrator’s logic with the number of custom

instructions. In addition, the height of the step reduces

due to the marginal delay incurred in the arbitrator

hierarchy with increasing number of custom logic.

Equations (1) and (2) describe the proposed delay

models of the arbitrator with respect to the number of

custom instructions (c). When compared to the

simulated results in Figure 5, the models exhibit an

average percentage error of only 0.1232% and

Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA’06)
0-7695-2500-8/05 $20.00 © 2005 IEEE

0.3476% for the best and worst case respectively. In

addition, the maximum percentage error for the

arbitrator delay model is only 1.414% and 2.041% for

the best and worst case.

≥−−+

<
==

=

n

m

best
arb

nm

n

TnsdelayarbitratorcaseBest

1

1))1(04.025.0(70.3

170.3

)(

 (1)

≥+

<
==

=

−
n

m

m

worst
arb

n

n

TnsdelayarbitratorcaseWorst

1

1245.6

145.6

)(

 (2)

2log2 −= cn (3)

4.2. Performance Estimation Model

Based on the arbitrator delay model, we introduce a

performance estimation model that provides an

indication of the speedup achieved over the full Nios II

processor implementation, when custom instructions

are introduced. The proposed performance estimation

model P is shown in equation (4), where

proccyclesClock)(and hwproccyclesClock +)(is the

number of clock cycles when the entire application is

implemented on the Nios II processor, and when

custom instructions are introduced respectively.

hwprochwproc

procproc

TcyclesClock

TcyclesClock
P

++ ×
×

=
)(

)(
 (4)

procT is the clock delay when no custom

instructions are introduced and can be potentially very

low (i.e. 7.22 ns). hwprocT + is the clock delay when

custom instructions are introduced and is limited by the

arbitrator and the custom logic delays as described in

(5), where arbT can be calculated from (1) and (2), and

hwT denotes the longest critical path of the custom

instructions.

()hwarbprochwproc TTTT +=+ ,max (5)

It is noteworthy that although hwproccyclesClock +)(

is generally lower than proccyclesClock)(, the clock

frequency that can be applied after introducing custom

instructions (i.e.
hwprocT +

1
) is restricted by the

arbitrator delay and critical path of the custom logic.

Hence, in general, we find that prochwproc TT ≥+ . The

proposed performance estimation model P therefore

provides a more effective means for selecting

profitable custom instructions by taking into

consideration the reduced clock cycles and maximum

clock frequency that can be applied.

4.3. Validating the Proposed Performance

Estimation Model

In order to validate the proposed performance

model, a test program was written with up to two

million custom instruction execution calls. This is a

reasonable number in data-intensive applications such

as image processing. For example, if every pixel in a

1024x768 image necessitates only one custom

instruction call, this would already incur close to 0.8

million calls for a single image frame processing. In

order to validate the models with respect to the number

of custom instruction, each custom logic were made

identical to that shown in Figure 6.

+

32

32

Data a

Data b

32

Left

Shifter

5
Constant 1

X
32

Constant 2
5

32

Constant 3
32

Result

Area: 24 ALUTs

Critical path: 4.418 ns

Figure 6: Custom logic implementation

The delay introduced by the arbitrator due to the

critical path and arbitrator delay is significant and

becomes a performance bottleneck, which restricts the

maximum clock frequency that can be applied. For

example, a full Nios II processor implementation can

be clocked at 138.5 MHz, while the maximum

frequency that is applied for increasing number of

custom instructions varies as shown in Figure 7. The

limitation in the operation frequency of the customized

architecture introduced by the delay through the

arbitrator can be observed to be dependant on the

number of custom instructions as we maintained all the

custom logic to be of the same type.

Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA’06)
0-7695-2500-8/05 $20.00 © 2005 IEEE

100

105

110

115

120

125

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Custom Instructions

M
a
x
im

u
m

 F
re

q
u

e
n

c
y
 (

M
H

z
)

Simulated Average

Figure 7: Simulated (dotted line) and average
maximum operating frequency with number of

custom instructions

By substituting procT = 7.22 ns, and the maximum

operating frequency obtained in Figure 7 in equation

(4), the performance estimates of the system can be

obtained. Figure 8 shows the computed best and worst-

case performance estimation model, and the actual

simulated result (dotted line). We observe the expected

performance falls well within the proposed bandwidth.

It is noteworthy, that the simulated results will vary for

different data sets, but it is guaranteed that they will

always fall within the performance bandwidth. In

addition, the average simulated performance (non-

dotted line) exhibits a similar pattern to the proposed

model, further justifying the accuracy of the proposed

model.

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of Custom Instructions

P
e
rf

o
rm

a
n

c
e

Best Case Worst Case Simulated Average

Figure 8: Validating the performance model

The proposed performance models can be easily

extended to multi-cycle custom instruction

architectures as it is based only on the number of clock

cycles and clock delay, where the estimated clock

delay can be derived using (5).

5. Modeling the Arbitrator Delay-Area

Dependencies

In cases where area-time trade-offs are of concern,

the delay-area product provides a more effective metric

for custom instruction selection. To illustrate the

significance of delay-area product in design

exploration, we use an example to evaluate the

feasibility of employing extended custom instruction

architecture on the Nios II platform.

Figure 9: Extended custom instruction
implementation

Figure 9 shows the extended custom instruction

architecture that allows for a single custom logic block

to output results for different operations through

multiplexers. The choice of using extended custom

instruction implementation over the combinatorial

architecture may be motivated by the area gain that can

be obtained. As shown in the area comparison plot in

Figure 10, the area of the multiplexer is lower than the

arbitrator for different number of custom instructions.

It is also evident that the area incurred by the

multiplexer and arbitrator is substantial when

compared to the area utilization of the custom logic in

Figure 6.

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9 10 11 12

Number of Custom Instructions

A
re

a
 (

A
L

U
T

)

Arbitrator Multiplexer Custom Logic

Figure 10: Area comparison between the
arbitrator and multiplexer (estimated area of

custom logic is also shown)

Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA’06)
0-7695-2500-8/05 $20.00 © 2005 IEEE

0

500

1000

1500

2000

2500

3000

2 3 4 5 6 7 8 9 10 11 12

Number of Custom Instructions

D
e
la

y
-A

re
a
 P

ro
d

u
c
t

Arbitrator Multiplexer

Figure 11: Delay-area product comparison
between the arbitrator and multiplexer

However, the delay-area product comparison shown

in Figure 11 reveals that the combinatorial

implementation provides the best area-time trade-offs,

and could therefore be a better choice for custom

instruction implementation. The proposed delay-area

product estimation models are shown in (6) and (7),

where c is the number of custom instructions.

)12(40 −=− cproductareadelaycaseBest (6)

)1(150 −=− cproductareadelaycaseWorst (7)

Figure 12 shows the best case and worst-case delay-

area product of the arbitrator with increasing number

of custom instructions. The simulated values of the

delay-area product are shown in dotted lines, which

increase in a near-linear fashion for higher orders of

custom instructions.

0

200

400

600

800

1000

1200

1400

1600

1800

2 3 4 5 6 7 8 9 10 11 12

Number of Custom Instructions

D
e
la

y
-A

re
a
 P

ro
d

u
c
t

Worst Case (Sim) Worst Case (Est) Best Case (Sim) Best Case (Est)

Figure 12: Delay-area product of arbitrator
with number of custom instructions

6. Conclusion

We have proposed accurate estimation models to

facilitate efficient custom instruction selection for the

Nios II configurable processor platform. The models

incorporate the arbitrator’s dependencies, which have

been shown to be significant enough to affect the

overall system’s performance and area utilization. An

analysis of the arbitrator reveals that the critical path

increases deterministically with increasing number of

custom instructions. The performance estimation

model takes into consideration, the reduced clock

cycles and maximum operating frequency when

custom instructions are incorporated. In addition,

delay-area product estimation model was proposed to

facilitate area-time trade-off based design exploration.

The proposed models provide for rapid analysis in the

custom instruction selection process. Finally, the

proposed models are being explored to further improve

their accuracy for highly constrained designs by taking

into account other inherent micro-architectural

constraints and dependencies in RISPs.

7. References

1. Dutt, N., Choi, K.: Configurable Processors for

Embedded Computing, Computer, Vol. 36, No. 1, 2003,

120-123

2. Henkel, J.: Closing the SoC Design Gap, IEEE

Computer, Vol. 36, No. 9, 2003, 119-121.

3. Xtensa Microprocessor: http://www.tensilica.com

4. ARCtangent Processor: http://www.arc.com

5. Barat, F., Lauwereins, R., Deconinck, G.:

Reconfigurable Instruction Set Processors from a

Hardware/Software Perspective, IEEE Transactions on

Software Engineering, Vol. 28, No. 9 (2002) 847-862

6. Altera Nios Soft Core Embedded Processor:

http://www.altera.com

7. Xilinx Platform FPGAs: http://www.xilinx.com

8. Fei Sun, Ravi, S., Raghunathan, A., Jha, N.K., “Custom-

Instruction Synthesis for Extensible-Processor

Platforms”, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 23, No.

2, February 2004, pp. 216-228.

9. Jason Cong, Yiping Fan, Guoling Han and Zhiru Zhang,

"Application-Specific Instruction Generation for

Configurable Processor Architectures", International

Symposium on Field Programmable Gate Arrays,

February 2005, pp. 99-106.

Proceedings of the Third IEEE International Workshop on Electronic Design, Test and Applications (DELTA’06)
0-7695-2500-8/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

