
SoftMC 2005 Preliminary Version

XRT– Exploring Runtime for .NET
Architecture and Applications

Wolfgang Grieskamp Nikolai Tillmann Wolfram Schulte

Microsoft Research, Redmond, USA1

Abstract

XRT– Exploring Runtime – is an exploration framework for programs represented in
Microsoft’s common intermediate language (CIL). Processing .NET managed assemblies,
it provides means for analyzing, rewriting, and executing the rewritten program. Whereas
XRT’s representation of state allows for arbitrary exploration strategies, it is particularly
optimized for transactional exploration, where a transaction may consist of many instruc-
tion steps. XRT supports extensions, and one such extension is a module for symbolic
exploration which captures the complete domain of safe CIL. Current applications of XRT
are in the area of testing, namely parameterized unit testing and state-space exploration for
model-based testing. This paper gives an overview of the architecture of XRT and outlines
the applications.

Key words: CLR model-checking, extensible exploration framework,
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1 Introduction

Recently, there has been increasing interest in the application of model checking
to software. Software model checking technology allows detecting difficult to find
bugs like data races, and verifying that models and/or implementations satisfy cru-
cial temporal properties.

The effectiveness of the model checker for finding bugs typically depends on the
application domain. For instance, SPIN [13] works very well for checking models
of protocols, the SLAM [4] and BLAST projects are successful since they focus on
device drivers, VeriSoft [11] is successful in checking certain software which can’t
be mapped into a model-checker’s input language by re-execution, while Zing [3]
is successful on checking refinements of concurrent object-oriented abstractions.
Specializationfor different application domains seems to be a key for successful
application of software model-checking.
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However, most of the existing model checkers are monolithic, i.e. state repre-
sentation and exploration is highly intertwined and the input language is fixed. The
Bogor project [17] and the Java Pathfinder project [1] are addressing this problem
by providing an open framework which can be specialized for different kinds of
application domains.

XRT is a new state exploration framework that follows similar goals as Bogor
and JPF, using the approach of execution on the virtual machine level as pioneered
by JPF. It supports the full safe (verifiable) intermediate language of the Common
Language Runtime (CLR), CIL, and provides extension points on various levels,
including the instruction set, the state representation, and the exploration strategy.
It has been developed from the beginning together with one particular extension
in mind, namely the unrestricted support of mixedconcrete/symbolic state and ex-
ploration, where logical variables can range over all values appearing in a CIL
program, including objects and arrays.

XRT’s development was motivated mainly by applications in the testing realm.
Together with the theorem prover ZAP developed at MSR [21], it provides the
basis for MUTT, a project around techniques and tools for unit testing, with first
outcomes described in [22]. It also serves as the core for the next version of the
model-based testing tool Spec Explorer [5], as described in [12].

This paper gives a high-level overview of the architecture of XRT for a tech-
nically interested and informed audience. We first outline the core architecture,
then describe the extension for symbolic exploration, and finally sketch the current
applications. Augmenting technical material is found in appendices.

2 Core Architecture

The core of XRT consists of three major subsystems which provide theprogram
model, thestate representation, and theexecution environment. These subsystems
are based on a strict, generic component model, which is also expected to be used
by XRT applications: public functionality is described and exposed by service in-
terfaces, and components using this functionality query implementers via their ser-
vice interface types, ensuring component substitutability.

2.1 Program Model

A program in XRT consists of assemblies. An assembly can be loaded explicitly,
or as a side effect during program execution using standard .NET assembly loading
rules. The elements of assemblies are loaded and instrumented lazily. A method’s
byte code, for example, will not be loaded and rewritten before the method is exe-
cuted the first time. This way, XRT can run on a large code base (like e.g.mscor-
lib.dll, the core assembly of .NET) which is only processed as far as the dynamic
control flow requires.

Meta Data The program model represents meta data in a conventional way: for
each of the elements of an assembly – types, methods, fields, locals – an according
type exists. .NET custom attributes on each of the entities, including an assem-
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bly itself, are available, which is often useful for instrumentation of the processed
program.

Code RepresentationThe basic entity of executable code is a method body, which
is represented as acontrol flow graph, with nodes being basic blocks. Each basic
block ends either in a (sequence of) branch instructions (pointing to other blocks),
in a return instruction, or in an unwind instruction, and has as a specialexception
exit which points to the block being executed if an exception is raised. If an excep-
tion is not handled in a particular block context the exception exit will point to a
block which just contains an unwind instruction.

Instructions are represented by a language we call XIL, which is an abstraction
of CIL. XIL is similar to three-address code and operates on local variables, which
stem from the local variables and parameters in the original program, as well as
from temporaries which have been introduced for evaluation stack locations.

XIL deals with all concepts of safe, verifiable CIL, including addresses for
methods, locals, fields, and array elements. The instruction set is documented in
Appendix A. There is one special XIL instruction which should be mentioned
here since it provides the major extension point:CALLPRIMITIVEp(l), wherep is
a delegate pointing to some meta-level code, andl is a sequence of local variables.
To interpret this instruction, the execution engine calls the delegate as discussed
later.

Flavors and Instruction RewritersA method can have many differentflavors. Fla-
vors allow several code versions – for example, a series of refinements – of the same
method in one XRT exploration session. A flavor defines a pipeline ofinstruction
rewriters which are run on the initial XIL version of the method’s code the first
time the flavor of a given method is requested. Each instruction rewriter takes the
control flow graph of a method body and maps into another one. In the simplest
case, it can just perform some instruction-local substitutions; more sophisticated
rewriters may produce a completely new control graph. The infrastructure supports
rewriters in various ways. For example, a data flow analysis framework is provided
on top of the control flow graph representation which allows analyzing the method
body prior to rewriting.

Method and Type SubstitutionAn alternative to instruction rewriting is method or
type substitution. For method substitution, one can provide a meta-level delegate
which is called when the method is invoked instead of interpreting the method’s in-
structions. This is used for example to substitute native method calls on framework
types likeString . Commonly, the method substitution will invoke the substi-
tuted method’s native implementation using reflection. This is possible for methods
without side-effects which operate on data representations which can be converted
to native form (like e.g. numbers and strings).

Type substitution replaces an entire type, including its heap representation, by
another type which has a compatible signature. This is transparent in the program
model, i.e. when the substituted type or one of its methods is queried, the substitu-
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tion will be delivered, and a substituted class can be base class of a non-substituted
type.

Type substitution can be done either in a declarative way by means of a custom
attribute which states that one type in the set of loaded types is replaced by another,
signature-compatible one. This approach is used when the replacement can be
realized in standard C#/.NET code which is subject of regular execution under
XRT, for example to deal with native type implementations. Type substitution can
also be done in a programmatic way by calling into XRT’s program component,
registering new type representations and individual method call handlers which
have full access to the internals of XRT. Programmatic substitution is often used
to replace types which have a special meaning for exploration, like .NET threads.
AppendixB contains an example of programmatic type substitution for the .NET
framework typeSystem.Random .

2.2 State Representation

XRT’s state encodes a full snapshot of the program’s state, including static data,
heap, and threads with call stacks. XRT distinguishes two state representations.
An active state is a mutable version of the state which allows full reading and
writing access. Acompressedstate (also called collapsed state in the literature) is
an immutable version which allows for fast hashing and comparison. Active states
can be obtained by uncompressing compressed states, and vice versa.

Compression In the current implementation, the compressed state is realized as
an internalized (hash-consed) vector of components. Uncompressing a compressed
state is cheap, since initially the active state is just a wrapper around the compressed
state from which it is derived. Only when components are accessed in the active
state which live in the compressed state, they are fetched from the compressed
state, uncompressed, and cached in the active state. For example, the active state
may process a sequence of method calls on top of the call stack where lower parts
of the call stack stay untouched in the compressed state.

When an active state is compressed, a new compressed state will be created
based upon the delta of the changes performed in the active state compared to the
compressed state from which it was derived. Compression is similar to copying GC
algorithms in that it walks over the reachable object graph of the active state and
relocates reachable objects into the new compressed state. Only at this time, and
only for the active, reachable values, structure sharing needs to be computed; for
unchanged parts, it is taken over from the old compressed state.

Garbage Collection and State SymmetriesThe current state implementation uses a
reference counting mechanism to detect dead objects in a compressed state, which
is approximative because of the potential presence of cycles in object graphs. The
reference count needs to be only maintained during compression. When the hash-
code is computed, or the heaps of a given object type of two compressed states
are compared, reference count information is used to skip dead entries. Provided
the dead objects are at the “end” of the heap (are younger than other objects) this
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heuristic detects some object graph symmetries in an inexpensive way.
Global garbage collection onall living compressed states is used to prevent the

global background, which contains the internalization tables, to grow indefinitely.
It also detects symmetries regarding those state components which can be deter-
ministically ordered. However, it must be only performed occasionally, so that
its cost amortizes over an exploration session. More work needs to be done for
XRT w.r.t. detecting symmetries incrementally and using heuristics for component
ordering, most likely adapting previous work done in this area (e.g. [14,20,18]).

State ExtensionsThe core state provides a way to plug-instate extensions. To that
end, it distinguishes for the encoding of every value whether its representation is
in the core or in the extension. All interpretations on extended values (which can
be of value or reference type) are forwarded to the state extension. Like the state,
an extension has an active and a compressed representation, and the compression
algorithm of the core calls into the extension and is called back as required.

The interfaces to be implemented by a state extension are simpler than those
of the core state, which justifies that custom states are not just implemented by
replacing the entire core state implementation. In particular, the state extension
does not need to deal with threads, call stacks, and addresses of locations, but only
with the representation of values and objects. The major application of the state
extension is currently in adding symbolic state to XRT, as discussed in Section3.

2.3 Execution Environment

The basic facility for executing code is the executor component. Among others, it
provides a method which takes an active state and iterates instruction stepping of
the active thread (including calls and returns) until a suspension point is hit.

Suspensions can be triggered by the delegate of aCALLPRIMITIVEp(l) instruc-
tion, or a method substitution’s delegate; we call these delegatesprimitive call
handlers. When called by the executor, such a handler can return an object which
represents asuspension; in this case the executor will stop iterating and pass the
suspension object to its caller, usually an exploration algorithm.

Suspensions and ExplorationA suspension can act like a choice point in a state
exploration graph. It can capture a compressed state and an enumeration of out-
going transactions. (We use the notion of transaction instead of transition or step
in order to emphasize that a transaction may consist of many logical state tran-
sitions/instruction steps.) The transactions of a suspension are not yet computed
when enumerated. Instead, the suspension provides a computation method for its
transactions which will uncompress the state contained in the suspension and call
the executor to continue execution in the given path until the next suspension is hit.

Suspensions are given by interface types, and many different implementations
may exist in one generic exploration algorithm. The XRT framework provides
standard suspensions representing the activation of a top-level entry point method
(the initial node of an exploration graph), thread scheduling suspension, and others,
and it facilitates the creation of custom suspensions. In AppendixB we show a

5



Grieskamp and Tillmann and Schulte

code sample which, among other things, illustrates the implementation of a custom
suspension.

Re-ExecutionTypically, if a suspension represents a branch point for exploration,
the instruction which causes the suspension should be interpreted again in each
branch under different conditions. To that end, the compressed state provides a
flag on a per-thread basis to let a primitive call handler trigger the re-execution
of its instruction. The active state provides information about the transaction and
the associated suspension in which the current instruction is executed. When the
re-execution flag is set, it is ensured that the transaction seen by the primitive call
handler belongs to the suspension it has created when it was executed the first
time. This way, internal state can be communicated from the initial execution to
the re-execution point. The usage of re-execution is illustrated by the sample in
AppendixB.

3 Symbolic State Extension

One extension of XRT’s core state realizessymbolic state. This allows to represent
values of arbitrary .NET types symbolically. We next outline the design of this
extension. We call XRT plus its symbolic state extension XRTS .

Terms Symbolic values are represented by internalized (hash-consed)terms. There
are the usual terms for ground values, logical variables, object references, object
and array state, unary and binary operations of CIL, “struct” values (free construc-
tors), and so on. Here we only discuss three special forms of terms: type, object
state and domain terms. The whole term language is documented in AppendixC.

XRTS ’ term language includes terms fortypesandtype constraints. Each term
has an associated base type. If the base type is a reference type, the runtime type of
the object it represents might be more specific, and can be symbolic as well.

Object stateis represented by so-calledfield maps, array state by so-calledele-
ment maps. Both representations are adopted from the theorem prover community
[7]. A field map is logically a function mapping object terms to terms represent-
ing the field assignment for the object; similar, an element map is a function from
object terms and index terms into terms for element assignments. The field and
element maps are syntactically defined by a series of updates on initial map values.
See AppendixC for the details.

A domain termrepresents a set of values. Constructors for domain terms are
the empty set, the singleton set, the range set (for numbers), and set union. We use
domain terms in XRTS to represent membership constraints of terms. For example,
if a new logical variable is created whose base type is a reference type, if not oth-
erwise specified, this variable ranges over the object references available for that
base type in the state where the variable is created; and this fact is expressed by a
domain constraint.

Terms are always constructed and analyzed using a so-calledterm manager
which is associated with a solver. The default implementation of the term manager
performs internalization and normalization (including simplification) of terms. The
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solver can override this implementation by adding further normalizations as re-
quired.

Solvers and Assumption SetsA solver is a component in the XRTS framework
whose API exposes the construction ofassumption sets, which represent an ab-
stract set of constraints. Like states, assumptions come in compressed and active
form. Operations on assumptions include term simplification, satisfiability and sub-
sumption check, domain query, and assumption split. The result of each of these
queries can be inconclusive.

Simplification takes a term and rewrites it to a simpler term, which may become
ground this way. Satisfiablity checks whether a given assumption set has a model.
Subsumption checks that one assumption set is subsumed by another (i.e. the set of
models is a subset of the set of models of the other).

A query for a term’s domain is handled as follows. If an explicit domain con-
straint for the term is in the assumption set, it determines the term’s domain. Oth-
erwise, aderiveddomain of the term can be computed for every compound term,
provided the subterms have a domain. Consider, for example, a term which repre-
sents the addition of two logical variables which have range constraints. The de-
rived domain of the addition term can be computed and will range from the sum of
the individual ranges’ starts to the sum of their ends. Derived domains are approxi-
mations of the actual domains, which may be further restricted by other constraint.
Term domains are used for assumption set splitting.

Splitting is performed relative to a term and results in an enumeration of new
assumption sets in which the given term has a more specialized domain. In more
detail: if the domaind is a union, then the resulting assumption set will represent
the left and right operand of the union; ifd is a range, the range will be split in the
middle. For example, lett be a Boolean term with domaint ∈ {0} ∪ {1} where0
and1 representfalseandtrue, respectively. Splitting overt will produce two new
assumption sets, one which containst ∈ {0} and one which containst ∈ {1}. For
each case the solver now has complete knowledge, and can, for example, simplify
terms further based on the split assumption set.

Solvers can be stacked, where one solver makes use of an underlying solver.
XRTS comes with a default solver implementation which supports quick decision
procedures on membership constraints (and thereby equalities and unification) and
supports domains and splitting, and which can leverage an underlying solver for
satisfiablity and subsumption checks. The underlying solvers used in this config-
uration are currently either Simplify [7] or ZAP [21]. If no underlying solver is
present, the default solver will use for satisifiablity checks finite-domain solving
techniques [16], if applicable, and, as the last resort, global search.

Symbolic State and State ExtensionA symbolic state consists of an assumption
set, and a mapping from fields and array types to their current field and element
maps. There is one field map for each instance field, and one element map for each
value type, but only one element map for all arrays with reference types as ele-
ments to allow for covariance. Initially, field and element maps can either be empty
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(closed world), thereby restricting field and element accesses via a logical variable
of a reference type to range only over subsequently created objects, or they can
be represented by logical variables (open world), thereby creating an unbounded
symbolic universe accessible with logical variables of reference types.

A symbolic state can live independently of a XRT core state, so that it can be
used in contexts where no core state is available. Thesymbolic state connector
wires a core state to a symbolic state using XRT’s state extension API. The major
conceptual responsibility of the connector is to deal with compression, and the
synchronization of the object world of the core state with the symbolic state. For
the last point, the core state and the connector work together to realizemigrationof
objects from the core state into the symbolic state, preserving the object’s identity in
the core state. Migration is necessary, for example, when a field update is perfomed
on a logical variable of a reference type. This update could potentially address any
of the objects in the domain of that variable, and we therefore need to migrate all
those objects to the symbolic state. The opposite, migration from the symbolic to
the core state, is not always possible. Only if symbolic objects are ground, they can
be brought back into the concrete state by triggering garbage collection.

Symbolic Exploration Symbolic exploration is realized by an instruction rewriter
(cf. Section2.1) and a custom suspension added to the execution environment
(cf. Section2.3). The rewriter on the one hand substitutes certain instructions by
their symbolic counterparts, for instance unary and binary operators, the is-instance
check, and the lookup of virtual method addresses; on the other hand it introduces
checkpointsbefore instructions with multiple control-flow exits.

XRTS ’ symbolic exploration supports a variety of checkpoints. For example,
for a conditional branch, a checkpoint is created which tests whether the condition
evaluates to true or false in the current assumption set; if the check is inconclu-
sive, symbolic execution creates asymbolic suspension. The resulting transactions
represent a split of the assumption set over the branch condition. Other instances
of checkpoints include type tests, non-null tests, and so on. The complete set of
checkpoints is documented in AppendixD.

Note that satisfiability checks areonly performed at checkpoints; in fact this is
the only place where assumptions can be strengthened during symbolic exploration.

4 Current Applications

We sketch two promising applications of XRT; both of which are in the realm of
testing, and motivated the construction of the framework.

Exploration for Model-Based TestingIn previous years, we have developed a tool
for model-based conformance testing, called Spec Explorer [5], which is now used
on a daily basis by Microsoft product groups mainly to test parts of Windows, and
web service infrastructure. This tool uses state space exploration on the model to
test an implementation for conformance, either offline (by producing a test-suite
from the model exploration) or online (by folding the exploration process with the
conformance check). To realize model exploration, Spec Explorer uses special
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compilation techniques for its modeling language, Spec#.
The next generation of Spec Explorer which is currently being developed is

based on XRT. With XRT, we address our customers’ essential requests for im-
provements, among which are independence of a particular modeling language
(customers want to use C# or VB to write models), and stronger means forsce-
nario controlandmodel composition. Regarding the last point we have developed
a framework of so-calledaction machines[12] which are implemented on top of
XRTS and emphasize the composition aspect. Action machines encode state tran-
sition systems, ranging from abstract state machines, statecharts, scenario/use case
machines, to implementations. Action machines can be composed using combina-
tors for product, conformance (alternating refinement [2]), and action refinement.

The implementation of action machines in XRT benefits from instruction
rewriting and the use of symbolic state as the glue for composition. Each action ma-
chine runs its own internal state explorer, avoiding the explosion of the interleaving
of internal steps. In a composition, action machines synchronize over simultaneous
steps, where a step is labeled by an action given as a term and a set of assumptions.
The product machine of two action machines performs a step if action terms of the
two machines unify and their assumptions sets under the yielding substitution are
satisfiable.

Instruction rewriting is used, for example, in the implementation of scenario
machines. A scenario is represented by a C# or VB program which invokes the
methods of the “actors” of the system like regular method calls, intertwined with
assertions and assumptions about the passed parameters. For exploring the scenario
independently of an actual implementation of the actors, the actor method calls are
abstracted by an instruction rewriter and replaced by suspensions which produce
according steps of the action machine. For details, see [12].

Parameterized Unit TestingParameterized unit tests [22] extend the current indus-
try practice of using closed unit tests defined as parameterless methods. Parameter-
ized unit tests separate two concerns: 1) They specify the external behavior of the
involved methods for all possible test arguments. 2) Test cases can be re-obtained
as traditional closed unit tests by instantiating the parameterized unit tests. In addi-
tion, parameterized unit tests can be interpreted as symbolic summaries of the in-
volved methods’ behavior. These summaries serve as custom rewrite rules, which
allows symbolic execution to scale for arbitrary abstraction levels.

In our prototypical realization, symbolic exploration under XRTS is used to cal-
culate the parameter instantiations which are necessary to cover all paths – within
certain bounds – of the tested implementation. Moreover, symbolic summaries are
created from parameterized unit tests by exploration under XRTS as well, using
a special instruction rewriter to abstract the code appropriately. A call to a sum-
marized method is interpreted as an update on a summarized heap, and the call’s
normal or exceptional result is encoded as a term referring to the summarized heap
and the method’s arguments at the time of the call. XRTS ’s solver is able to leverage
the summaries as rewrite rules on these terms. This allows to use the parameterized
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unit tests of one underlying module as axioms in the parameterized unit tests of
another module. For details, see [22].

5 Discussion

Related Work Model checkers like Spin [13] or Zing [3] use a compilation ap-
proach instead of an interpretation approach as found in JPF [1], Bogor [19] and
XRT, which results in a rather different architecture which is hard to relate. In
general, we believe both approaches, compilation and interpretation, have their ad-
vantages and disadvantages. One advantage of the interpretation approach is its
lower complexity, in particular regarding extensions. On the other hand, compi-
lation might ultimately reach better performance; however, we believe in order to
really exploit this potential, one must compile down to a language like C or C++
which provides full access to the machine model.

JPF [1] has pioneered the approach of exploration on the level of a standard
virtual machine. As JPF targets the JVM and XRT the CLR, the language treated
by XRT is richer, including user-definable value types and addresses for reference
parameters and for methods.

Bogor [19] is closely related to XRT regarding the ambition to provide an exten-
sible framework for state exploration from the beginning, whereas JPF was orig-
inally designed as an explicit state model checker, and only in recent years de-
veloped into a general exploration framework. Bogor and XRT share first design
principles like a strictly componentized architecture where the central modules of
the system can be exchanged by customized implementations. However, if it comes
to the details of the extension points, the systems differ. Bogor uses its own input
language, BIR, which provides a mechanism for defining type extensions whose
signatures are specified in BIR and whose implementation is given in some Java
module. This extension mechanism is comparable to XRT’s programmatic type
substitutions. JPF provides a way to replace one Java type by another Java type,
which is comparable to XRT’s declarative type substitutions. However, both Bo-
gor and JPF do not seem to support a systematic approach to code rewriting, as
given by XRT’s code flavors and instruction rewriter pipelines. We experience that
instruction rewriting is a major extension facility for all of our current applications.

Another difference between Bogor as well as JPF and XRT’s extension mecha-
nisms seems to be the ability of XRT to compute the length of transactions (atomic
computation steps) dynamically. In XRT, a primitive call handler can decide on
base of the current program state whether a suspension/choice point will be cre-
ated. For example, in symbolic exploration a choice point for a branch will only
be created if the branch condition is not determined, i.e. the solver cannot reduce
the condition to either true or false in the current context. In Bogor, the length
of transactions of a thread is fixed by BIR. The ability of dynamically comput-
ing transactions can be considered significant in the context of dynamic reduction
techniques.

JPF’s and Bogor’s implementation of state use state collapsing, as does XRT.
Collapsing became popular with its implementation for Spin. Currently, XRT’s
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implementation of collapsing is not as advanced as JPF’s and Bogor’s as it comes
to detecting state symmetries as described e.g. in [20]. Future work on XRT will
need to deal with this.

Orthogonal to detecting state symmetries is partial-order reduction [6], which
has been investigated in the context of object-oriented concurrent software with
threads and locks e.g. in [10,8]. We have a prototype for full dynamic partial-
order reduction in XRT which extends the work in [9] to stateful exploration and
arbitrary search strategies; however, this prototype requires further investigation
before going to publication.

As it comes to hybrid concrete/symbolic exploration, there is an extension to
JPF which is similar to XRTS [15], and one for Zing is also in preparation. How-
ever, these extension do not tackle full symbolic representation of objects; rather,
objects are enumerated, and only value types can be symbolic. The designers of
Bogor argue that extensions of Bogor with symbolic state are desirable, butmay
require refactoring of their architecture [17]. To the best of our knowledge, XRT
is the first realization of full mixed concrete/symbolic exploration, including the
handling of symbolic objects and arrays, and allowing exploration in the closed as
well as the open object world.

PerformanceBenchmarking is a black art, at least. Nevertheless, more empirical
data is needed to systematically evaluate the performance of XRT and XRTS . At
this point, the current applications suggest that XRT’s performance is very reason-
able at least for the given domains. For example, parameterized unit testing is able
to generate the parameters which provide path coverage for interesting scenarios of
a relative complex and nonorthogonal implementations like hashtables in under 30
seconds. As we will get more applications running on top of XRT, we will have
more opportunities to evaluate the efficiency of XRT under real loads.

Future Work XRT needs further improvements. One important topic is to add
better means for detecting state symmetries, another is to consolidate the dynamic
partial-order reduction technique prototyped in XRT. A further area of interest is
goal-orientedandheuristicsearch, which is of importance for testing as well as
model-checking; to this end we are looking at techniques based on program slicing
and try to extend them using our symbolic computation framework. Finally, we
haven’t yet instantiated XRT for model-checking applications, but plan to do so at
some future point. Currently our major focus is on pushing the applications for
model-based testing and unit testing.
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THROW l RETHROW UNWIND

BRANCHb, l? CALLINDIRECT l?1 ← l2(l) RETURN l?

UNARY l1 ← ⊕l2 BINARY l1 ← l2 ⊗ l3 CALLPRIMITIVEp(l)

NEWOBJECT l ← τ NEWARRAY l1, τ [l2] ISINSTANCE l1 ← l2, τ

LOADEXCEPTION l LOADCONST l ← c LOADLOCALADDR l1 ← l2

LOADFIELDADDR l1 ← l?2.f LOADELEMENTADDR l1 ← l2[l3], τ ? LOADELEMENT l1 ← l2[l3]

STOREELEMENT l1[l2]← l3 LOADMETHODADDR l1 ← l?2.m LOADINDIRECT l1 ← l2

STOREINDIRECT l1 ← l2

Fig. A.1. Non-redundant subset of XIL

A XIL’s Instruction Set

FigureA.1 introduces XIL’s non-redundant instruction set. We writel for a local,
l for a sequence of locals, andl? for a local which is optional in the context of an
instruction. For example, the branch instruction has an optional local; depending
on the value of the local execution continues at the label. If no local given, the jump
is unconditional. We usec to denote a constant value,m to denote a method,f to
denote a field, andτ to denote a .NET type.⊕ and⊗ range over unary and binary
operations.

Figure A.1 omits XIL instructions which can be also expressed using their
address-based counter parts: for example, loading the value of a field can be ex-
pressed by loading the address of the field and then performing an indirect load on
that address. Only for loading and storing array element, separate instructions are
necessary for checking array co-variance. Note that addresses are fundamental in
order to express .NET concepts like delegates and reference parameters.

Loading of static fields and instance field addresses is expressed by the same
load-field-address instruction, where the instance is optional. Note that CIL unifies
the handling of struct (.NET value type) fields with those of object fields by using
struct addresses where object references can occur, which we adapted also for XIL.

Most instructions should go without saying, but some require explanation.
NEWOBJECT l ← τ creates a raw object; a call to the constructor, which is treated
like an instance method, must follow immediately.LOADMETHODADDR l1 ← l?2.m
uses the runtime type of the optionall?2 to perform a virtual method lookup (or
raises an exception ifl?2 is present butnull ); if l?2 is omitted, then the address of the
given method will be taken. Note that a method address is really just the address,
and does not aggregate the receiver object (there is no one-to-one mapping between
.NET delegates and method addresses, but the latter are used to implement the for-
mer). Therefore, onCALLINDIRECT l?1 ← l2(l) the receiver must be supplied as the
first element ofl if the method addressl2 points to an instance method. Taking
the address of an array element or storing an array element performs the follow-
ing checks because of array co-variance, in addition to the usual null-dereference
and index-out-of-bounds checks.LOADELEMENTADDR l1 ← l2[l3], τ ? requires a
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type argumentτ if the array’s element type is a reference type. In this case,
this instruction checks if the array’s element type is equal toτ . If it is not, an
ArrayTypeMismatchException is raised. TheSTOREELEMENT l1[l2] ← l3 in-
struction checks ifl3 is assignable to the array’s element type. If it is not, an
ArrayTypeMismatchException is raised.

When an exception is raised, either explicitly by theTHROW instruction or as
a side effect of another instruction, the exception object is stored as the current
exception in the state, and control flow continues with the exception exit block
of the current block in the control flow graph. The instructionLOADEXCEPTION l
retrieves the current exception object (ornull if there is no current exception) and
stores it inl. This instruction is usually followed by a type check onl, followed by
a RETHROW instruction when the type check fails. The current exception is reset to
null when a method is left normally with theRETURN instruction. If a method is
left with theUNWIND instruction, the current exception will be raised in the caller.

The instructionCALLPRIMITIVEp(l) is the extension point of XIL. Herep de-
notes a delegate (in the XRT framework, i.e. on the meta level) which is called by
the instruction stepper for interpreting this instruction.

Compared to source languages like C#, simplifications in the type system of
XIL apply; these simplifications arise from the way CIL instructions interact with
the memory and the evaluation stack. Types like booleans, characters, and signed
and unsigned integers up to 32 bits are collapsed into one type,int32. Accordingly
the other primitive types are collapsed intoint64 anddouble. Arithmetic instruc-
tions like addition always operate on the collapsed types. The semantics of the
original types is preserved by according widening and narrowing conversions. In
CIL, these conversions are mostly implicit in load and store instructions; in XIL
the conversions are always explicit instructions.

We say two types arerepresentation compatibleif they either map to the same
collapsed primitive type (int32, int64, or double), or if they are both of the same
“struct” type, or if they are both reference types, or if they are both address types
which refer to representation compatible locations, or if they are both method ad-
dresses with representation compatible signatures. XIL– which originates from
safe, verified CIL– ensures the following static typing assumptions:

• if a field address is selected from an object or struct, this field actually exists;
• if a virtual method address is loaded, the method actually exists;
• if an element address is selected, the object is actually an array;
• only representation compatible values are moved from one location to another;
• if a method is called indirectly, the addressed method’s signature is representa-

tion compatible with the arguments and result provided by the call.

B Sample: Exploring Random Choice

We give a code sample which shows how to write a simple explorer of random
selections in an arbitrary .NET program. FigureB.1 shows how to perform a type
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partial class RandomChoiceExplorer : ApplicationBase {
IMethodImplementation Setup() {

IProgram program = this .GetRequiredService<IProgram>();
IAssembly assembly =

program.LoadAssemblyFrom( this .Configuration.ProgramName);
IMethodFlavor methodFlavor = program.CreateExecutionFlavor();
ISubstitutedType randType = program.SystemAssemblies.MSCorLib

.SubstituteType("System.Random");
randType.DefineMethod(

"System.Random.Next(System.Int32,System.Int32)",
methodFlavor, new PrimitiveCall.Handler( this .Handle));

return assembly.EntryPoint.GetImplementation(methodFlavor);
}
ISuspension Handle(IActiveState state, ILocal[] locals) {

ILocal result = locals[0]; ILocal inst = locals[1];
ILocal min = locals[2]; ILocal max = locals[3];
if (!state.GetAndClearCurrentThreadReExecution()) {

// called first time
int minValue = state.GetInt32(state.GetLocal(min));
int maxValue = state.GetInt32(state.GetLocal(max));
state.SetCurrentThreadReExecution();
return new RandomChoice(

state.TransactionContext,state.Compress(),
state.CurrentThread,minValue,maxValue);

} else {
// called in re-execution mode
RandomChoice rc =

(RandomChoice)state.TransactionContext.Suspension;
state.SetLocal(result,state.MakeInt32(

rc.min + state.TransactionContext.Index));
return null ;

}
}
class RandomChoice : SuspensionBase {

int min;
RandomChoice(Transaction context, ICompressedState cstate,

int currentThread, int min, int max)
: base (context,cstate,currentThread,max-min+1) {
this .min = min;

}
override public ISuspension ComputeTransaction( int index) {

IActiveState astate =
this .State.Uncompress( this .CurrentThread);

return this .Executor.RunUntilNextSuspension(
astate, new Transaction( this ,index));

} } }

Fig. B.1. Random Choice Explorer: type substitution and custom suspension

substitution, how to write a primitive call handler which uses re-execution, and how
to define a custom suspension. FigureB.2 shows code which performs a simplis-
tic state space exploration. The sample is complete and doesn’t omit any details
needed to make it run.

The classRandomChoiceExplorer in Figure B.1 derives from an XRT
class ApplicationBase which facilitates the construction of applications.
This class provides command line parsing and a standard setup of the compo-
nents of XRT, and since it is a component itself, allows querying services using
GetRequiredService , and theConfiguration object available to each
component.

The methodSetup in FigureB.1performs the type substitution and returns the
top-level entry point of the program being explored. After querying theIProgram
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partial class RandomChoiceExplorer {
static void Main(string[] args) {

RandomChoiceExplorer x = new RandomChoiceExplorer();
x.InstallFromConfiguration("xrtrand", args);
x.Explore(x.Setup());

}
void Explore(IMethodImplementation entryPoint) {

Dictionary<ICompressedState,bool> visited =
new Dictionary<ICompressedState,bool>();

Queue<Transaction> frontier = new Queue<Transaction>();
ICompressedState initialState =

this .GetRequiredService<IStateProvider>.InitialState;
IExecutor executor =

this .GetRequiredService<IExecutorFactory>
.CreateExecutor();

ISuspension susp =
executor.Activate(initialState,Values.MainThread,

entryPoint, null );
do {

visited[susp.State] = true ;
bool terminal = true ;
foreach (Transaction t in susp.Transactions) {

frontier.Enqueue(t); terminal = false ;
}
if (terminal && !(susp is ITerminationSuspension))

Console.WriteLine("deadlock!");
susp = null ;
while (frontier.Count > 0) {

Transaction next = frontier.Dequeue();
ISuspension s =

next.Suspension.ComputeTransaction(next.Index);
if (!visited.ContainsKey(s.State)) {

susp = s; break ;
}

}
} while (susp != null );

} }

Fig. B.2. Random Choice Explorer: main entry point and exploration algorithm

component which provides the program model,Setup loads the program assem-
bly. It then performs a type substitution forSystem.Random . The only method
we are going to define in the substitutedSystem.Random is int Next(int
min, int max) . The original method delivers a random value in the rangemin
to max.

The method Handle is the primitive call handler which substitutes
System.Random.Next . It determines whether it is executed the first time,
and in this case creates a suspension which represents the choice point for ran-
dom selection. Otherwise it calculates the value to deliver for the random choice
in the current transaction and stores it in theresult parameter. The property
state.TransactionContext returns the transaction in which context this
call handler is executed. A transaction is given by the suspension which has created
it, and an index identifying a particular transaction outgoing from that suspension.
In the simple case of the random choice, we can just use the index to calculate the
result value.

The classRandomChoice realizes the custom suspension. It derives from
SuspensionBase , which implements the interfaceISuspension . The
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t ::= x | o | i | τ variables, objects, integers, types

| ⊕ t | t1 ⊗ t2 unary and binary

| τ(t) | t1 � t2 | mt typing, subtyping, method selection

| [:= t]f | t1[t2 := t3]f | t1[t2]f field maps

| {t} | t1 . . t2 | t1 ∪ t2 | θ(|t|) | {:= t}f | t1 ∈ t2 domains

Fig. C.1. Representative subset of the term language

base class constructor is passed the current transaction context, the compressed
state, the current thread, and the number of transactions. For illustration pur-
poses, we have overridden one of the methods ofSuspensionBase , namely
ComputeTransaction , though the overridden version does exactly the same
as in the base class: it uncompresses the state of the suspension and then calls an
auxiliary method of the executor which runs the instruction stepper until the next
suspension is hit.

In Figure B.2 we define the entry point of the sample program, as well as
the exploration algorithm. This algorithm is independent of the actual problem
at hand, i.e. works with any kind of suspensions configured. It uses the method
executor.Activate to create an initial activation suspension for the entry
point method of the loaded program. It then performs a breadth-first exploration.
During exploration, it performs a simple deadlock check by only allowing a special
suspension which represents thread termination to be terminal. The termination
suspension is created by the executor upon return from a top-level method of the
current thread.

C Terms

The grammar of the term language is given in FigureC.1. This grammar omits
terms for numeric values other than integers, “struct” values, and arrays. These
omitted terms do not bring conceptual surprises. Also, we simplified field map
domains. In the following we discuss some aspects of the term representation which
might not be obvious.τ represents a typevalue, i.e. a ground term representing a
type. τ(t) denotes the runtime type of the object given byt. t1 � t2 represents a
subtype assertion, wheret1 andt2 are terms denoting types. The method designator
termmt, wheremdenotes a method name, represents theaddressof m in the typet;
whenm is a virtual method,mt represents a virtual method lookup. This is used to
represent a symbolic result of theLOADMETHODADDR l1 ← l2.m instruction. We say
thatmτ is thenormalmethod designator term ofm if τ is the declaring type ofm.

We take a closer look at field map terms. A field map logically represents a
mapping from objects to field assignments. This mapping is syntactically given by
a series of updates on an initial field map. If we have aclosed world, the initial field
map is denoted by the term[:= t]f . In this field map, every object has the assigned
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valuet, which usually represents the default value of the according type of the field.
In anopen world, the initial field map is a free logical variable.

Updates on field maps are described by termst1[t2 := t3]f , wheret1 is the field
map,t2 the object, andt3 the assigned value. Selections on field maps are given as
t1[t2]f , wheret1 is the field map andt2 is the object. We will omit thef index where
it is clear from the context. We can reduce selections under certain conditions. Let
m be a field map. Consider the termm[o1 := t1][o2 := t2][o1], whereo1 6= o2.
This reduces tot1. Compare withm[o1 := t1][x := t2][o1], wherex is an unbound
variable. This selection term cannot be reduced since the update onx can address
any object, includingo1.

Domain terms are represented by singletons,{t}, ranges,t1 . . t2, union,t1 ∪ t2,
projectionθ(|t|), membership,t1 ∈ t2, and field map domains, written{:= t}.

A field map domain represents a set of field maps by a domain of their assigned
values. Consider the singleton domain{t}; then the field map domain{:= {t}}
could be the domain of any field map in which every contained object has the
assigned valuet.

Projections are a specialized form of set comprehension which is used in de-
rived domain calculations. Here,θ is a function mapping terms into terms. The
reduction rules for projections are

θ(|{t}|) = {θ(t)}
θ(|t1 ∪ t2|) = θ(|t1|) ∪ θ(|t2|)
( [ ])(|{:= t}|) = t.

where the operator( [ ]) denotes arbitrary object field selection.
We sketch the computation of derived domains. They are essential for our abil-

ity to split assumption sets, e.g. to resolve virtual method calls with symbolic target
receivers. Recall that domains representapproximationsof the actual value of a
term, which might be further restricted by other constraints in the assumption store.

In FigureC.2, dom(t) delivers the domain of a term, which is either explicitly
given in the assumption set, or derived bydomd(t). The derived domain computa-
tion proceeds as follows:

• If a variable term does not have an explicit assumption about its domain, we
create a new variable which represents the domain and add this to the assumption
set.

• If a term denotes a constant value, then the derived domain is the singleton of the
value.

• For binary and unary terms, the derived domain is constructed taking the domain
of the sub-terms and the semantics of the according operator into account.

• Determining the derived domain of the subtype relation is overapproximated by
simply saying that it can befalseor true, here denoted by 0 or 1.

• For runtime type denoting terms, the derived domain is computed by mapping
the runtime type to the result of the domain computation of the embedded term,
i.e. assume the assumption store containsx ∈ {o1} ∪ {o2}, thendomd(τ(x)) =
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dom(t) = if the assumption set contains(t ∈ D) then D else domd(t)
domd(x) = x′ wherex′ is fresh andx ∈ X′ is added to the assumption set

domd(o) = {o}
domd(i) = {i}
domd(τ) = {τ}
domd(⊕ t) = derive domain fromdom(t) and semantics of⊕
domd(t1 ⊗ t2) = derive domain fromdom(ti) and semantics of⊗
domd(t1 � t2) = 0 . . 1
domd(τ(t)) = (λ σ.τ(σ))(|dom(t)|)
domd(mt) = (λ σ.mσ)(|dom(t)|)
domd([:= t]) = {:= {t}}
domd(t1[t2 := t3]) = dom(t1) ∪ {:= {t3}}
domd(t1[t2]) = ( [ ])(|dom(t1)|)

Fig. C.2. Derived domain computation

{τ(o1)} ∪ {τ(o2)}.
• The derived domain of a method designator is similarly computed by mapping

the method designator to the elements of the domain of the embedded term,
i.e. assume the assumption store containsx ∈ {τ1} ∪ {τ2}, thendomd(mx) =
{mτ1} ∪ {mτ2}.

• Derived field map domains are constructed from the initial field map value and
subsequently assigned values. Selecting an element from a field map is then
realized using a projection term, for instancedomd([:= t1][t2 := t3][t2]) = {t1}∪
{t3}.

D Instruction Rewriting for Symbolic Exploration

In this section, we illustrate how symbolic exploration is realized in XRTS using
instruction rewriting on XIL as defined in AppendixA. XRTS usesprimitive calls
to introduce new instructions. New instructions are either checkpoint or replace-
ment instructions. We adorn new instructions with the suffixS to distinguish them
from the original XIL instruction set.

D.1 Checkpoint Instructions

The purpose of checkpoint instructions is to concretize symbolic values just as
much as necessary to allow often implicit control-flow decisions to be made. For
example, loading an instance field with anull receiver will raise an exception.
Thus, if a symbolic receiver value can benull , this case must be split from the non-
null case, where – although the precise receiver object may still remain unknown –
a symbolic term representing the access can always be constructed sucessfully.

Case splits are realized using the suspension mechanism of XRT as follows.
When a checkpoint instruction is executed, it creates a particular term which rep-
resents the value on which the case split depends. It then uses assumption split
over that term (which in turn uses term domains as described in AppendixC) to
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GROUNDS l1 ← l2 CHECKNULLS l1 ← l2 CHECKRANGES l1 ← l2, l3
CHECKNONNEGS l1 ← l2 CHECKUNARYS l1 ← ⊕l2 CHECKBINARYS l1, l2 ← l3 ⊗ l4
CHECKELEMENTTYPES l1, l?2, τ

?

Fig. D.1. Checkpoint instructions

UNARYS l1 ← ⊕l2 BINARYS l1 ← l2 ⊗ l3
LOADMETHODADDRS l1 ← l2.m ISINSTANCES l1 ← l2, τ

Fig. D.2. Replacement instructions performing symbolic computations

RETHROW UNWIND RETURN l?

CALLPRIMITIVEp(l) NEWOBJECT l ← τ LOADEXCEPTION l

LOADCONST l ← c LOADLOCALADDR l1 ← l2 LOADINDIRECT l1 ← l2
STOREINDIRECT l1 ← l2 BRANCHb,− LOADFIELDADDR l1 ← −.f

LOADMETHODADDR l ← −.m

Fig. D.3. Instructions unaffected by XRTS instruction rewriter. Note that some instructions
are versions with absent optional locals.

original instruction new instructions

THROW l CHECKNULLS l∗ ← l; THROW l∗

BRANCHb, l GROUNDS l∗ ← l; BRANCHb, l∗

CALLINDIRECT l?1 ← l2(l) GROUNDS l∗ ← l2; CALLINDIRECT l?1 ← l∗(l)
NEWARRAY l1, τ [l2] CHECKNONNEGS l∗ ← l2; NEWARRAY l1, τ [l∗]
LOADFIELDADDR l1 ← l2.f CHECKNULLS l∗ ← l2; LOADFIELDADDR l1 ← l∗.f

LOADELEMENTADDR l1 ← l2[l3], τ ? CHECKNULLS l∗1 ← l2; CHECKRANGES l∗2 ← l3, l∗1
CHECKELEMENTTYPES l∗2,−, τ ?

LOADELEMENTADDR l1 ← l∗1[l
∗
2],

LOADELEMENT l1 ← l2[l3] CHECKNULLS l∗1 ← l2; CHECKRANGES l∗2 ← l3, l∗1
LOADELEMENT l1 ← l∗1[l

∗
2]

STOREELEMENT l1[l2]← l3 CHECKNULLS l∗1 ← l1; CHECKRANGES l∗2 ← l2, l∗1
CHECKELEMENTTYPES l∗1, l3,−
STOREELEMENT l∗1[l

∗
2]← l3

Fig. D.4. Instruction rewriting introducing checkpoints.

original instruction new instructions

UNARY l1 ← ⊕l2 CHECKUNARYS l∗ ← ⊕l2; UNARYS l1 ← ⊕l∗

BINARY l1 ← l2 ⊗ l3 CHECKBINARYS l∗1, l∗2 ← l2 ⊗ l3; BINARYS l1 ← l∗1 ⊗ l∗2
ISINSTANCE l1 ← l2, τ ISINSTANCES l1 ← l2, τ

LOADMETHODADDR l1 ← l2.m CHECKNULLS l∗ ← l2; LOADMETHODADDRS l1 ← l∗.m

Fig. D.5. Instruction rewriting introducing checkpoints and replacing instructions.

enumerate all the different assumption sets under which control flow could con-
tinue, filtering out those which are infeasible. We consider an assumption set as
feasible for the split if it is either satisfiable or if satisfiablity is inconclusive. The
checkpoint instruction creates a symbolic suspension whose outgoing transactions
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represent the different assumptions under which control flow could continue. This
process is lazy such that the assumptions and feasibilty checks are generated the
time the next transaction is queried from the suspension.

FigureD.1 shows the checkpoint instructions. The semantics is as follows:

• GROUNDS l1 ← l2 enumerates over all possible ground values ofl2 and places
them inl1.

• CHECKNULLS l1 ← l2 enumerates over all solutions ofl2 = null . If the equation
holds, it placesnull in l1; otherwise it copies the value ofl2 into l1.

• CHECKRANGES l1 ← l2, l3 enumerates over the solutions of the equation0 ≤ l2 <
len, where len is a term representing the length of the array object inl3. If the
constraint holds,l2 is copied intol1; otherwise−1 is placed inl1.

• CHECKNONNEGS l1 ← l2 enumerates over the solutions of the equation0 ≤ l2. In
case the constraint holds,l2 is copied intol1; otherwise−1 is placed inl1.

• The instructionsCHECKUNARYS l1 ← ⊕l2 andCHECKBINARYS l1, l2 ← l3 ⊗ l4
check conditions specific for the particular operations. Consider for example the
division l3/l4; all solutions of the equation0 = l4 will be enumerated. If the
equation holds,0 is stored inl2; otherwise,l3, l4 are copied intol1, l2.

• CHECKELEMENTTYPES l1, l?2, τ
? performs checks necessary because of array co-

variance. l1 indicates the array,l?2 can indicate a value to be stored in the
array, andτ ? can indicate the exact element type of the array. There are
three cases. Case 1:l1 is null ; nothing happens. Case 2:l1 is not null
and l2 is present. Ifl2 is not not assignable to the element type of the ar-
ray l1, an ArrayTypeMismatchException is raised. Case 3:l1 is not null
and τ is present. If the element type of the arrayl1 is not equal toτ ,
ArrayTypeMismatchException is raised.

D.2 Replacement Instructions

FigureD.2shows new instructions which will serve as replacements for instructions
which perform concrete computations. If all arguments are concrete, the replace-
ment instructions will perform concrete computations as well; however, if some
arguments are symbolic, these instructions construct new symbolic terms repre-
senting the result of the computation.

XRTS employs an instruction rewriter to modify or replace instructions. Each
instruction is transformed according to one of the following three cases:

• The instructions listed in FigureD.3 remain unchanged.
• FigureD.4 illustrates how checkpoint instructions are inserted as guards before

certain instructions, such that the instruction operates on arguments preprocessed
by the checkpoint. In the process, auxiliary locals of the forml∗ are introduced.

• The remaining instructions are replaced entirely. See FigureD.5 for details.
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