
Draft version. The original paper appeared in EGSR '06 proceedings.

Feature-aware texturing

Ran Gal, Olga Sorkine and Daniel Cohen-Or

School of Computer Science, Tel Aviv University, Israel

Abstract
We present a method for inhomogeneous 2D texture mapping guided by a feature mask, that preserves some
regions of the image, such as foreground objects or other prominent parts. The method is able to arbitrarily warp
a given image while preserving the shape of its features by constraining their deformation to be a similarity
transformation. In particular, our method allows global or local changes to the aspect ratio of the texture without
causing undesirable shearing to the features. The algorithmic core of our method is a particular formulation of
the Laplacian editing technique, suited to accommodate similarity constraints on parts of the domain. The method
is useful in digital imaging, texture design and any other applications involving image warping, where parts of the
image have high familiarity and should retain their shape after modification.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Color, shading, shadowing, and texture

1. Introduction

In 2D texture mapping applications, images are mapped onto
arbitrary 2D shapes to create various special effects; the tex-
ture mapping is essentially a warp of the texture image, with
constraints on the shape of the boundary or possibly the in-
terior of the image as well. Such texture mapping is com-
mon in graphical design and publishing tools, as well as 2D
and 3D modeling and animation applications. Commercial
design tools usually provide a library of predefined warps,
where the user only needs to select the desired mapping type
and possibly tune a few parameters (see Figures 1, 2 for ex-
amples). Another option is to interactively design the texture
map by selecting and transforming points or curves on the
original image; the mapping is computed so as to accommo-
date such user constraints [BN92,LCS95,MJBF02]. It is also
possible to apply free-form deformations with grid-based
controls [SP86, LCS95, MJ96]. Texture manipulation in 2D
is commonly applied by modelers when texturing 3D mod-
els: the texture map often needs to be adjusted and aligned
to match particular features of the 3D surface. Constrained
texture mapping methods have been developed for this pur-
pose [ESG01, L0́1, KSG03], where the user supplies point
correspondences between the texture and the 3D model, and
a suitable mapping is computed automatically.

Figure 1: Top: standard image mapping result. Note the
squeezing of the legs and the stretching of the heads. Bot-
tom: our feature-aware mapping result; the proportions of
the children are preserved.

c

sorkine
Copyright: Blackwell

Gal, Sorkine and Cohen-Or / Feature-aware texturing

(a) original image (b) vertical stretch ×2 (c) arc (d) flag

F1
F2

F3

F4

F5

F6

F7
F9

F8 F10

F11

(e) feature map (f) feature-aware stretch (g) feature-aware arc (h) feature-aware flag

Figure 2: Several common 2D mapping functions. The top row displays the standard mapping result; the bottom row shows the
result of our method, constraining the features to retain their shape while striving to reproduce the input mapping as closely as
possible. The feature map is shown in (e), where the detected connected components are numbered F1, . . . ,F11.

Most image mapping and manipulation techniques treat
the entire texture image homogeneously. When the defor-
mation applied to an image introduces shearing, e.g. in the
simplest situation where the aspect ratio of an image is al-
tered by non-uniform scaling, all the image features are dis-
torted. This may be disturbing when the image contains fea-
tures with highly familiar shape, such as humans, animals,
prominent geometric objects, etc. A typical example of a
simple image transformation is shown in Figure 1, where the
shear and stretch effects distort the images of the children in
a quite unsatisfactory manner.

In this paper, we introduce an inhomogeneous 2D texture
mapping method that is capable of preserving the shape of
masked regions of the texture while warping the image ac-
cording to the user specifications. This feature-aware texture
mapping is guided by a feature mask defined by a rough se-
lection of the features; in the mapping result, these features
will undergo solely a similarity transformation, possibly at
the expense of the background regions in the texture that
are allowed to deform more. Our work is related to the tex-
ture optimization techniques of Balmelli et al. [BTB02] and
Sander et al. [SGSH02], where the texture map is warped to
allow higher pixel budget for the high-frequency details of
the texture image.

At a first glance, it seems that a feature-preserving map-
ping could be achieved by cutting out the features, warping
the rest of the image as desired and then pasting the fea-
tures back and adjusting their orientation and scale. How-
ever, this poses several difficulties: (i) precise segmenta-
tion of the features with correct alpha-mattes for subse-
quent seamless compositing is required; (ii) it is not clear
how to prescribe the similarity transformation of the fea-
tures; (iii) texture synthesis needs to be applied for the holes
that are likely to form around the features; alternatively, the
pasted features could overlap with parts of the warped tex-
ture, causing information loss. The above tasks are quite

complex; moreover, the tuning of such an algorithm would
require significant amount of user interaction. In contrast,
our method does not require a highly accurate matte but
rather a loose selection of the features, which can be done
using standard selection tools. Our technique produces co-
herent, smooth image warps by drawing upon the recent ma-
chinery of differential representations and deformation tech-
niques [ACOL00, IMH05, SMW06, Sor06].

2. Feature-aware mapping

We will first describe our feature-preserving texture map-
ping technique assuming that an input warping function
W : R2 →R2 is given. Assume that the input image is rep-
resented by a regular pixel grid of dimensions m× n. We
denote the grid of the input image by G = (V,E,K), where
V = {v1,v2, . . . ,vN} is the set of node positions (N = mn),
E = {(i, j)} is the set of directed edges between the nodes
and K is the set of quad faces of the grid. Throughout the
discussion we assume that G is a 4-connected quad grid, al-
though the algorithm can be easily extended to any general
meshing of the image. We assume that we know the values
of the input mapping W on all the grid nodes vi.

The user provides a feature mask that marks the parts of
the image whose shape should be preserved. We denote the
mask by M = {m1, . . . ,mN}, such that mi = 1 if pixel i be-
longs to a feature and mi = 0 otherwise. The feature nodes
indices are thus F = {i s.t. mi = 1}. We partition F into
its connected components: F = F1 ∪F2 ∪ . . .∪Fd (see Fig-
ure 2(e)). Our goal is to find a mapping of the original grid
G that is as close as possible to the input warp W and re-
spects the shape of the features specified by the mask M. We
would like to preserve the shape of all the quads contained
in the features, meaning that they should undergo solely a
similarity or rigid transformation. Rigid transformation im-
plies that the size of the features will be preserved, whereas

Gal, Sorkine and Cohen-Or / Feature-aware texturing

input image and its feature mask vertical stretch × 2 underlying grid

Figure 3: Feature-preserving stretching. The mapping preserves the shape of the features at the expense of the background.

a similarity transformation allows varying the size accord-
ing to the warping function W . We leave the choice between
rigid and similarity behavior up to the user.

We first devise a proper shape preserving transformation
for each quad Q = (vi1 ,vi2 ,vi3 ,vi4) that has at least one node
in F . We approximate W (Q) with a rotation/similarity trans-
formation, by taking the linear component of W and extract-
ing the rotation from it by means of the polar decomposi-
tion. Specifically, denote W (Q) = (v′i1 ,v

′
i2 ,v

′
i3 ,v

′
i4); denote by

v = 1
4 ∑

4
k=1 vik the centroid of Q; the centered vertices are

then uik = vik − v (and similarly, u′ik for W (Q)). We can lin-
early approximate the homogeneous part of W on Q by

TW,Q = [u′i1 u′i2 u′i3 u′i4] · [ui1 ui2 ui3 ui4]
∗, (1)

where A∗ denotes the pseudoinverse of matrix A. In fact,
TW,Q is an approximation of the Jacobian of W on Q; if
given the analytical expression of W , we can replace TW,Q
by the Jacobian of W at, say, vi1 . To extract the rigid compo-
nent of TW,Q we perform its singular value decomposition:
TW,Q = UΣV T ; the rigid component of TW,Q is then

RW,Q = VUT . (2)

To devise the feature-preserving mapping, we formulate the
following optimization problem: we would like all the el-
ements outside of F to undergo a transformation as close
as possible to W , and all the elements in F should undergo
solely the rigid (or similarity) component of W . It is conve-
nient to formulate the requirements of this optimization per
quad. If quad Q = (vi1 ,vi2 ,vi3 ,vi4) belongs to a feature (i.e.
it has at least one node in F), we define the following four
equations related to its four edges:

ṽik+1 − ṽik = RW,Q(vik+1)−RW,Q(vik), k = 1, . . . ,4 cyclically (3)

where ṽik are the unknown deformed grid nodes. Similarly,
if Q does not belong to a feature, we add the following four
equations for its edges:

ṽik+1 − ṽik = W (vik+1)−W (vik), k = 1, . . . ,4 cyclically (4)

Overall, we obtain an over-determined system of 4|K| equa-
tions in 2N unknowns, which can be solved in the least
squares sense. Note that the system is separable in the two
coordinates, thus we can solve for x and y separately, with
the system matrix containing N columns. We constrain the
boundary nodes to their positions under W to make the opti-
mization problem well-posed:

ṽi = W (vi), ∀i ∈ ∂G. (5)

Solving for ṽ1, . . . , ṽN will provide us with a mapping that
rigidly preserves the features, including their size. To obtain
a shape-preserving mapping that allows appropriate scaling
of the features, we modify the local transformations RW,Q as
follows. We estimate the average scaling of each connected
feature component Fi under W by observing the singular val-
ues of the transformations TW,Q. For each element Q∈Fi, we
take the smaller singular value of TW,Q, and average those
values over all Q ∈ Fi, obtaining the average scale factor λi.
We chose to average the smaller singular values, because in-
tuitively, if we stretch the image in one direction, the feature
size should remain constant. The target local transformations
of the quads in each Fi are thus updated to be λiRW,Q, and
Eq. (3) is modified accordingly.

2.1. Smoothing the mapping

When the input warp W is largely deforming the geometry
of G, feature shape preservation may be compromised. To
compensate for such situations, we found it useful to apply
weights to Eq. (3) that is responsible for feature preservation:
each side of those equations is multiplied by weight wF (we
use wF = 10). Since we are solving a least-squares system,
this multiplication results in w2

F -magnification of the corre-
sponding error terms in the minimization functional, forc-
ing the optimization to respect the features more, at the ex-
pense of larger deformation of other areas. However, since
the weights are abruptly discontinuous at the feature bound-
aries (weighting of 1 outside the feature and w f � 1 inside),

c

sorkine
copyright: Blackwell

Gal, Sorkine and Cohen-Or / Feature-aware texturing

input image standard swirl feature-aware swirl (rigid) feature-aware swirl (similarity)

Figure 4: End of a storm. Comparison between the standard swirl mapping function and our feature-aware mapping. The rigid
version constrains the size of the features to remain the same while the similarity version allows uniform scaling of the feature.

such solution damages the smoothness of the mapping near
the feature boundary. This can be easily corrected by assign-
ing a more smooth weighting function: we compute a local
distance field to the feature and assign smoothly decreas-
ing weights for the quads in the vicinity of the feature as
functions of the distance field. The equations associated with
those “transition-quads” are of type (3). We chose to use the
following polynomial as the decay function:

f (x) =
2

ρ3 x3− 3
ρ2 x2 +1, (6)

where the constant ρ > 0 controls the extent of the decay; the
weights in the intermediate region around the feature bound-
aries are thus defined as

w(Q) = wF · f (D(Q))+1 · (1− f (D(Q))), (7)

where D(Q) is the value of the distance to the feature at the
center of Q. We set the decay radius ρ to be the the width of
two grid cells; outside of this radius the weights are set to 1.
Observe the effect of the weighting scheme in Figure 3.

3. Interactive texture mapping

We distinguish between two possible modes of our textur-
ing application: input-warp mode (described in the previous
section) and interactive mode. In both modes, the feature re-
gions of the input image are first specified by a feature mask.
In the interactive mode, the user designs the mapping us-
ing the standard controls of image boundary editing and/or
prescription of inner curve transformations. The mapping is
computed taking into account these user-defined constraints
and the feature mask, using a deformation technique based
on differential coordinates. These user’s manipulations are
interpreted by our system as positional constraints on the
grid nodes, i.e. simply

ṽi = ci, i ∈U, (8)

where U is the set of the nodes constrained by the user and
ci are the new positions for those nodes. The mapping of the
free grid nodes is decided by applying the Laplacian editing
optimization [SLCO∗04,IMH05]. The goal of this optimiza-
tion is to create a smooth and as-rigid-as-possible mapping

of the grid shape that respects the user constraints (8). “As-
rigid-as-possible” means that if the user-constraints imply
solely a rigid (or similarity) transformation of the grid shape,
the optimization technique indeed delivers such transforma-
tion; otherwise, the optimization finds a mapping that is lo-
cally as close as possible to being rigid, which is perceived
as an intuitive result [ACOL00]. The optimization involves
solving a sparse linear system of size 2N×2N.

Once the mapping function W is established in the above
manner, we create its feature-preserving approximation ac-
cording to the feature mask, as described in Section 2.

4. Implementation details

The algorithmic core of our feature-sensitive texture map-
ping is the solution of the least-squares optimization ex-
pressed by Eqs. (3-4) and (5). When put together, these equa-
tions form an over-determined linear system of the form:

A(x y) = (bx by), (9)

where x = (x̃1, . . . , x̃N)T are the x coordinates of the de-
formed grid and y = (ỹ1, . . . , ỹN)T are the y coordinates. The
system is separable in the two coordinates, so the system ma-
trix A has N columns. The matrix is very sparse since there
are only two non-zero coefficients in each row. We solve the
system by factoring the normal equations:

AT A(x y) = AT (bx by). (10)

We use the TAUCS library [Tol03] for efficient sparse ma-
trix solvers. Cholesky factorization provides a sparse lower-
triangular matrix L such that

AT A = LLT . (11)

Then, the equations can solved by double back substitution:

Lxtemp = AT bx (12)

LT x = xtemp , (13)

and in the same fashion for the y component. Thus, a sin-
gle factorization serves solving for multiple right-hand sides.
We attribute the construction of the A matrix, the normal
equations matrix and the factorization to the pre-process,
since they only depend on the grid and the feature map

Gal, Sorkine and Cohen-Or / Feature-aware texturing

original texture standard mapping feature-aware

original texture standard mapping feature-aware

Figure 5: Texture mapping of simple 3D objects using standard mapping and our feature-aware technique.

of the input image; the matrix factorization is the most
computationally-intensive part, taking a few seconds for
grids with several tens of thousands of quads. Once the fac-
torization is computed, back substitution is extremely fast
(see Table 1). When varying the input warp function W , we
only need to update the right-hand side of the system (the
bx,by vectors) and perform back-substitution, so the user can
experiment with various mappings in real time. Of course,
manipulation of very large images may slow down due to
the large dimensions of the system matrix; to maintain inter-
active response in this case we define the grid to be slightly
coarser than the pixel grid of the input image, so that the
size of the system remains in the order of 20000− 50000
variables. For example, we can efficiently handle an image
of 1000× 1000 pixels by defining the size of the grid cells
to be 5×5 pixels.

Computing the initial mapping by interactively-placed
user constrains (Section 3) also requires solving a sparse
linear system of size 2N × 2N (see [SLCO∗04, IMH05] for
details). We do this in the same manner: pre-factoring the
system matrix and solely varying the right-hand side of the
system when the user manipulates the boundary constraints.
Since the back-substitution is fast, the manipulation is inter-
active, as demonstrated in the accompanying video.

5. Results and discussion

We have implemented our feature-sensitive texturing sys-
tem on a Pentium 4 3.2GHz computer with 2GB RAM. We
assume that the feature mask comes together with the in-
put image, defined in some external image editing software.

Size Setup Factor Rhs setup Solve
50×100 0.156 0.110 0.015 0

100×100 0.375 0.250 0.031 0.015
100×200 1.141 0.562 0.047 0.031
200×200 2.171 1.407 0.109 0.063

Table 1: Timing statistics (in seconds) for the different parts
of the mapping algorithm. Setup stands for the setup of the
normal equations matrix; Rhs setup denotes the building the
right-hand side of the normal equations and Solve stands for
the back-substitution. Note that the system setup and matrix
factorization is done in a pre-process, once per given image
grid.

For our experiments, we created the feature maps in Pho-
toshop [Pho06] using the standard selection tools (Magic
Wand, Lasso and Magnetic Lasso). The process of fea-
ture selection is quite easy since our feature-aware texturing
needs only a rough binary matte.

We have experimented with various input warping func-
tions that are commonly available in most image editing
packages. We compare the results of unconstrained mapping
with our feature-preserving mapping in Figures 1, 2, 4 and 6.
It can be clearly seen in all the examples that our mapping
preserves the shape of the features while gracefully mim-
icking the input mapping function. The similarity-preserving
mapping allows uniform scaling of the features, and thus it
has more freedom to approximate the input mapping. For
instance, when the input mapping implies enlargement of
the image, the similarity-preserving mapping will allow uni-
form scaling of the features, whereas the rigid mapping will

Gal, Sorkine and Cohen-Or / Feature-aware texturing

Figure 6: Comparison between standard arc warping and our feature-aware mapping. Top: original image; next is the standard
mapping, feature-aware mapping with rigid constraints and similarity constraints.

constrain the features to remain in their original size, thus
introducing more stretch to the background areas. Figure 5
shows several textured 3D shapes using our technique and
compares them to standard homogeneous texture mapping.

In extreme deformation cases, the feature-aware map-
ping may introduce fold-overs, which may result in texture
discontinuity. Preventing self-intersections within the least-
squares optimization is quite difficult; in future work we plan
to explore post-processing relaxations to fix the fold-overs.

We have summarized the timing information in Table 1. It
is evident that all the required operations can be performed
in real time. Some interactive sessions are recorded in the
accompanying video.

6. Conclusion

We have presented a method that allows performing non-
homogeneous texture mapping. Our method is guided by a
feature map that roughly masks the important features in the

Gal, Sorkine and Cohen-Or / Feature-aware texturing

texture image; the mapping produced by our algorithm then
preserves the shape of those features. Our framework is able
to rectify any given texture mapping to preserve the features’
shape, and it can also produce a feature-preserving mapping
that obeys user-defined boundary constraints. The technique
is useful in any application involving texture mapping, im-
age re-scaling and warping; it is generic and can be applied
to any image warping mechanism.

Acknowledgements

The oil painting "End of a storm" is courtesy of Samuel
Simoes. The stars and shells wallpapers are courtesy of Wall-
paper Borders R Us. This work was supported in part by a
grant from the Israeli Ministry of Science.

References

[ACOL00] ALEXA M., COHEN-OR D., LEVIN D.: As-
rigid-as-possible shape interpolation. In Proceedings of
SIGGRAPH (2000), ACM Press, pp. 157–164.

[BN92] BEIER T., NEELY S.: Feature-based image meta-
morphosis. In Proceedings of SIGGRAPH (1992), ACM
Press, pp. 35–42.

[BTB02] BALMELLI L., TAUBIN G., BERNARDINI F.:
Space-optimized texture maps. Computer Graphics Fo-
rum (Proceedings of Eurographics ’02) 21, 3 (2002), 411–
420.

[ESG01] ECKSTEIN I., SURAZHSKY V., GOTSMAN C.:
Texture mapping with hard constraints. Computer Graph-
ics Forum (Proceedings of Eurographics ’01) 20, 3
(2001), 95–104.

[IMH05] IGARASHI T., MOSCOVICH T., HUGHES J. F.:
As-rigid-as-possible shape manipulation. ACM Trans-
actions on Graphics (Proceedings of ACM SIGGRAPH
2005) 24, 3 (2005), 1134–1141.

[KSG03] KRAEVOY V., SHEFFER A., GOTSMAN C.:
Matchmaker: constructing constrained texture maps.
ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH 2003) 22, 3 (2003), 326–333.

[L0́1] LÉVY B.: Constrained texture mapping for polygo-
nal meshes. In Proceedings of SIGGRAPH (2001), ACM
Press, pp. 417–424.

[LCS95] LEE S.-Y., CHWA K.-Y., SHIN S. Y.: Im-
age metamorphosis using snakes and free-form deforma-
tions. In Proceedings of SIGGRAPH (1995), ACM Press,
pp. 439–448.

[MJ96] MACCRACKEN R., JOY K. I.: Free-form defor-
mations with lattices of arbitrary topology. In Proceedings
of SIGGRAPH (1996), ACM Press, pp. 181–188.

[MJBF02] MILLIRON T., JENSEN R. J., BARZEL R.,
FINKELSTEIN A.: A framework for geometric warps

and deformations. ACM Transactions on Graphics 21, 1
(2002), 20–51.

[Pho06] PHOTOSHOP:, 2006. http://www.adobe.
com/.

[SGSH02] SANDER P. V., GORTLER S. J., SNYDER J.,
HOPPE H.: Signal-specialized parametrization. In Pro-
ceedings of the 13th Eurographics Workshop on Render-
ing (2002), Eurographics Association, pp. 87–98.

[SLCO∗04] SORKINE O., LIPMAN Y., COHEN-OR D.,
ALEXA M., RÖSSL C., SEIDEL H.-P.: Laplacian sur-
face editing. In Proceedings of Symposium on Geometry
Processing (2004), pp. 179–188.

[SMW06] SCHAEFER S., MCPHAIL T., WARREN J.: Im-
age deformation using moving least squares. In Proceed-
ings of SIGGRAPH (2006), ACM Press. Accepted for
publication.

[Sor06] SORKINE O.: Differential representations for
mesh processing. Computer Graphics Forum 25, 4
(2006). Presented at Eurographics 2005 as “State-of-the-
art report: Laplacian mesh processing”.

[SP86] SEDERBERG T. W., PARRY S. R.: Free-form de-
formation of solid geometric models. In Proceedings of
SIGGRAPH (1986), ACM Press, pp. 151–160.

[Tol03] TOLEDO S.: TAUCS: A Library of Sparse Linear
Solvers, version 2.2. Tel-Aviv University, Available online
at http://www.tau.ac.il/~stoledo/taucs/,
Sept. 2003.

http://www.adobe.com/
http://www.adobe.com/
http://www.tau.ac.il/~stoledo/taucs/

