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Abstract
We present the GT-IIR language recognition system submitted
to the 2005 NIST Language Recognition Evaluation. Different
from conventional frame-based feature extraction, our system
adopts a collection of broad output scores from different
language recognition systems to form utterance-level score
distribution feature vectors over all competing languages, and
build vector-based spoken language recognizers by fusing two
distinct verifiers, one based on a simple linear discriminant
function (LDF) and the other on a complex artificial neural
network (ANN), to make final language recognition decisions.
The diverse error patterns exhibited in individual LDF and
ANN systems facilitate smaller overall verification errors in the
combined system than those obtained in separate systems.

1. Introduction
NIST (National Institute of Standards and Technology) has
coordinated evaluations of automatic language recognition
technologies in 1996, 2003 and, recently, in 2005 to promote
spoken language recognition research. Several techniques have
achieved recent successes. The most popular framework is
parallel phone recognition followed by language model (P-
PRLM) [1]. It uses multiple sets of phone models to decode
spoken utterances into phone sequences, and builds one set of
phone language model (LM) for each P-PRLM tokenizer-target
language pair. The P-PRLM scores are computed from
language scores and the language with the maximum
combination score is determined to be the recognized language.
Another recently proposed approach is to use bag-of-sounds
(BOS) models of phone-like units, such as acoustic segment
units [2], to convert utterances into text-like documents. Then
vector-based techniques, such as Gaussian mixture model
(GMM) and support vector machine (SVM), can easily be
adopted for language recognition [2] [3] [4].

The GT-IIR language recognition system submitted to the
2005 NIST language recognition evaluation (LRE) grows out
of a collaborative effort between Georgia Institute of
Technology (GT) and Institute for Infocomm Research (IIR).
The system takes advantage of recent advances in P-PRLM and
BOS frameworks and uses their corresponding models to
obtain scores for all target languages, and concatenate them to
form utterance-level score vector as front end feature, and train
vector-based classifiers to perform spoken language
recognition. Such feature vectors represent score distribution
over all competing classes, and have been demonstrated to be
effective in isolated word recognition, especially when

discriminative training techniques are incorporated into
building the corresponding classifiers [5] [6]. Two distinct
vector-based classifiers are considered. One is based on linear
discriminant function (LDF) [7] and the other on artificial
neural network (ANN) [8].

The LDF classifiers used in our system are obtained based
on minimum classification error (MCE) [9] training, which has
achieved a great success in automatic speech recognition. Our
motivation for using MCE is to enhance the separation between
LDF models of a target language and their competing
languages. This is critical when there are only relatively few
parameters used in a classifier, such as LDF. On the other hand
the ANN classifiers are more complex in structure than the
LDF ones, and can potentially cause over-fitting problems
when there are not enough training samples.

Keeping in mind the advantages and shortcomings of each
classifier, we are motivated to investigate new directions in
fusing confidence scores generated by multiple classifiers to
make final language recognition decisions. In our system, the
combination verifier is formed with a simple linear weighting
of confidence scores of LDF and ANN classifiers. The diverse
error patterns exhibited in individual LDF and ANN systems
result in smaller overall verification errors in the combined
system than those obtained in separate systems.

2. NIST Language Recognition Evaluation
2005

GT and IIR co-operated together and contributed the GT-IIR
system in NIST language recognition evaluation 2005.
According to the evaluation specification [10], the system to be
evaluated must determine whether or not the speech is from the
target language/dialect given a test segment of speech and a
target language/dialect. The target languages and dialects
include American English, Indian-accented English, Hindi,
Japanese, Korean, Mainland Mandarin, Taiwanese Mandarin,
Spanish and Tamil.

The speech segments contain three nominal durations of
speech, namely 3 seconds, 10 seconds and 30 seconds. The
performance of a detection system is measured by a detection
cost function Cdet formulated for the ith language as

CDet(i) =CMissPMiss(i)1Target Tagret
1 x

+ NI E CFaIseAIarn PFalseAIarm(i)INonTagret(j) (1 PTagret)
j.i
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where N is the number of languages and PTarget=PNonTarget=0.5.
The final evaluation score is the average over all target
languages.

3. System Description
We submitted three sets of results to the 2005 NIST LRE. The
first system is for primary language recognition, and the second
and third are for dialect detection. We obtained models for 16
languages/dialects in the training stage. They are Arabic, Farsi,
French, German, Hindi, Japanese, Korean, Tamil, Vietnamese,
3 English dialects, 2 Mandarin dialects and 2 Spanish dialects.
A 16-language/dialect training database consists of the Indian
English dialect data from the IIR-LID [11] database and the
other 15 languages/dialects from the CallFriend corpus [12].

A block diagram of the overall system is shown in Figure 1.
We used two sets of score distribution features to represent
each utterance. First a set of 112 scores are computed with the
P-PRLM method, and then another set of 120 scores are
evaluated with the BOS approach. These scores are
concatenated to form a 232-dimension feature vector that is fed
into the back end system, which is composed of several
components. In the first stage, a confidence score is computed
for each language in the ANN and LDF component verifiers.
These scores are fused in the Fusion Module. Finally, a
TRUE/FALSE verification decision is made and an individual
confidence score is generated for each target language in the
Decision Module. We now describe each module in detail in
the following subsections.
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Figure 1: System block diagram for the GT-IIR system.

3.1. Score Distribution Feature Vector

Instead of using frame-based vectors as the front end features in
most conventional LID systems, we extract utterance-based
score vectors generated by P-PRLM and BOS models.

Seven phone recognizers were built: English, Korean,
Mandarin, Japanese, Hindi, Spanish and German. English
phonemes are trained from IIR-LID [11] corpus. Korean
phonemes are trained from LDC Korean corpus
(LDC2003S03). Mandarin phonemes are trained from the MAT
corpus [13]. Other phonemes are trained from OGI-TS corpus
[14]. 39-dimensional MFCC features are extracted from each
frame. Utterance based cepstral mean subtraction is applied to
the MFCC features to remove channel distortion. Each
phoneme in the languages are modeled with a HMM of 3-state.

First, the 16-language/dialect training database is tokenized
into a collection of text-like phone sequences from each of the
7 tokenizers. We compute P-PRLM scores based on the
resulting phone sequences. This way, we train up to 3-gram
phone LM for each P-PRLM tokenizer-target language pair,
resulting in 16*7=112 LMs. For each input utterance, 112

interpolated scores were derived to form a vector. In this way,
all training utterances can be represented by a collection of
112-dimension score vectors.

Next, BOS scores were evaluated. The BOS method uses a
universal sound recognizer to tokenize an utterance into a
phone sequence, which is then converted into a count vector,
known as BOS vector [2]. The universal sound inventory is a
combined phoneme set from 6 languages: English, Mandarin,
Japanese, Hindi, Spanish and German, a subset of the 7
languages above. There are 258 phonemes in total. For each
phone sequence generated from the universal sound tokenizer,
we count the occurrence of bi-phones. A phone sequence is
then represented as a vector of bi-phone occurrence with
66,564 = 258 X258 elements. A SVM is used to partition the
high dimensional vector space. As SVM is a 2-way classifier,
we train pair-wise SVM classifiers for the 16 target languages,
resulting in 16*15/2=120 SVM classifiers. The linear kernel is
adopted when using SVM-light tool.

Finally, the above two sets of scores for each utterance, a
vector of 112 dimensions obtained from the P-PRLM and a
vector of 120 dimensions from the BOS methods, were
concatenated to form the feature vector of 232 dimensions, x,
for our back end system.

3.2. ANN Verifier

We trained a single feed-forward multilayer perceptron using a
back-propagation procedure [8]. The network was structured to
have 232 input layer nodes and 100 hidden layer nodes. The
output layer has 16 nodes, one for each of the 16 target
languages/dialects described above. A soft-max function was
imposed at the output of the neural network so that output
values gj(x), j=1 ...16, simulate the a posteriori probability of
each language/dialect given the input vectors. Hence the jth
output value gives us a confidence measure about the
language/dialect] characterizing the input x. In case of multiple
outputs for a language (with multiple dialects), the dialect with
the maximum output values was the selected language.

3.3. MCE Optimized LDF Verifier

Similar to the ANN verifier, 16 sets of LDFs were trained, one
for each of the 16 languages and dialects. We performed
discriminative training to minimize the average of the false-
alarm rate FAi and false rejection rate FRi, i=1,...,16. A smooth
approximation of the empirical error counts was imposed and a
generalized probabilistic descent (GPD) [9] algorithm was used
to update the classifier weights w in the (k+])st iteration as

-16 16

W
k

W - VWFAi +Z VW FRi

The first step for this approximation is picking a linear
discriminant function gi(x,w) and an anti-discriminant function
Gi(x,w) for each language

gj(x,w) w x+W0,i 1.16

Gi (x,w) = log Eexp(qgi (x,w))

The misclassification measure d(xw) =-g(x,w)+±(x,w) leads
to approximating the class loss function as

l(X,w)= 1
1±+exp(-aid (x,w)±/A)
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The false-alarm rates FAi and false-rejection rates FRi for
the ith language can now be expressed as

FA4= 1 Z (l-1i(x,w)) 'FRf= ' 1i(x,w)

3.4. Language Confidence Scores

Two verifiers, one based on ANN and the other on LDF, were
used to compute a pair of confidence scores for each of these
16 languages and dialects. Note that only 7 out of the 12
primary languages were of interest in LRE05. The remaining 5
languages were used to model the class 'others' given that the
systems can potentially be challenged by languages other than
the listed ones. In fact, in the LRE05 test set, only German was
included as 'others'. In the meantime, only 2 out of 3 English
dialects, and both Mandarin dialects were of interest.

If we were to design a language identification system,
picking the largest score among the competing ones would be
the best procedure to follow. However, since a verification
system requires a TRUE/FALSE decision for each target
language, we need to calculate a relative confidence score,
sj(x), representing the odds of each language. Hence, for every
target language j, we compute the language confidence score:

sj(x) = gj(x)-olo Eexp(gi(x)71) j = 1...7, i= 1.8 (1)

For dialect identification, the language confidence score
was calculated as the difference between the target and non-
target dialect outputs, i.e.

s,(x) = g,(x) - gj(x),i, j = 1,2.
After we computed the two scores for each language, they

were then combined to make the final verification decision.

3.5. Fusion

The ANN described above requires a total of (232+1)*100
+(100+1)*16=23476 parameters to train, and the classification
hyper-planes are nonlinear. Having that many parameters to
estimate caused a potential over-fitting problem for the ANN-
based scoring system. We obtained no errors even for the 3-
second systems in only a few iterations with only very limited
training data. In the meantime, LDFs require only a total of
(232+1)*16 = 3728 parameters to be trained, and the
classification hyper-planes are linear. In contrast to the ANN,
having fewer parameters prevented LDFs from modeling the
data too well. These observations motivated us to develop
theoretically well-defined schemes for fusing the scores from
several verifiers, e.g., ANN and LDF.

In this study we fuse the two scores as shown in Figure 2.
The two plots on the left are the distributions of the ANN and
LDF confidence scores on some development set for target
Mandarin, and the collectively non-target (a.k.a. imposter)
languages, respectively. These plots make it clear that there is
a language-specific threshold rj for each ANN or LDF classifier
that minimizes Cdet. If such thresholds were known, we could
add it to all scores to yield the minimum possible Cdet. By this
score-shifting, not only the overall thresholds are set to 0
(hence the probability distributions are centered), but most
importantly, Cdet is minimized for each language.

These plots also reveal the fact that each classifier has a
bias towards either more false-rejection or false-alarm errors,
even when the minimum Cdet is achieved. The ANN verifier is

biased towards making more false-rejection errors, while the
LDF verifiers tend to produce more false-acceptance errors.

Furthermore, the ANN verifier has a longer error tail than
the LDF verifier. Whenever these different two classifiers have
a different error pattern, a well-adjusted fusion scheme
provides us with the advantage of being able to remove such
biases.

After computing these language-specific thresholds in each
component we evaluate the fused confidence score as:

Fused LDF LDF) (2)
s w (S ANN _ ,ANN )+w(SLDF
In our current study, we set both wl, and w2, equal to 1/2 for

convenience. A performance improvement will be gained if
these weights are trained as well.

Figure 2: The probability distributions of the ANN and
LDF confidence scores on development set. The score
distributions are very different, and each verifier has its
own bias towards making either more false-acceptance or
more false-rejection errors.

4. Experiments
In this section, we report our experiments on the 30-second
primary evaluation data set. Similar conclusions can be drawn
from the 10- and 3-second primary evaluation sets and all the
dialect evaluation sets.

4.1. Comparison of the Classifiers

In Figure 3 we compare the performance of ANN, LDF and the
fusion systems on the 30-second primary evaluation set. With
much less parameters, the LDF system obtained comparable
result as ANN. The advantage of the fusion of ANN and LDF
was clearly shown. With the decision strategy described in
Section 3, we can compensate for the disadvantages of ANN
and LDF, and obtain a better overall verifier.

4.2. Estimation of the Thresholds

In addition to minimizing CDet for each individual classifier,
centering the scores in individual verifiers makes it possible to
safely combine scores from different systems. For this purpose,
we constructed several validation sets from the 1996 and 2003
evaluation test sets to serve as development sets for threshold
estimation. The composition of these validation sets is
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summarized in Table 1. In particular, the data for target
languages are the same but the 'unknown' language data differ,
and were used to ensure proper handling of "other" languages.
In order to set a specific language as 'unknown', we mask the
corresponding output of ANN and LDF for that language. The
'unknown' language data are highlighted in Table 1 for clarity.
The proportion of the target/unknown language data was
chosen in a wide range to assure the threshold robustness.

Figure 3: Performance comparison of the ANN, LDF and

fusion systems on the 30 second primary evaluation set.

Table 1: Four validation sets are constructed to calculate

the language-specific thresholds for each of the component

classifiers, ANN and LDF. The validation sets have different

amounts of 'unknown' language data to be able to handle the

unknown 2005 evaluation data.

Set #1 Set #2 Set #3 Set #4
EnglishO3 EnglishO3 EnglishO3 EnglishO3
Hindi03 Hindi03 Hindi03 Hindi 03
Japanese96 Japanese96 Japanese96 Japanese96
Korean03 Korean03 Korean03 Korean03
Mandafin96 Mandarin96 Mandafin96 Mandarin96
SpanishO3 SpanishO3 SpanishO3 SpanishO3
TarnilO3 TarnilO3 TarnilO3 TamilO3
PRussianO3 RUssian3 Russian3 RussianO3
gAraicO3 RFrenchO3 MietnameseO3 Arabic96

GermanOi3f FasORM Fars96
FROOM9

16.08% 22.33% 22.32% 27.71%
'unknown' 'unknown' 'unknown' 'unknown'
Language Language Language Language

NIST's Matlab-based DET curve plotting functions [15]

can be used to find the language-specific thresholds rj for

which the average of false-acceptance and false-rejection rates

can be minimized. We calculated these thresholds ri for each of

the 7 primary target languages and for each component ANN

and LDF classifiers. This resulted in 4 threshold values per

language, one for each validation set. We noticed that these

thresholds did not show much variability even though the

'unknown' language data include different language data from

different evaluation sets. For example, the 4 thresholds for the

Mandarin language were found to be 0.2411, 0.2319, 0.2359

and 0.2389 in the LDF-based system and 0.0497, 0.1295,
0.0863 and 0.0913 in the ANN-based system. Taking the
averages, we determined the thresholds r to be 01.2369 and
0.0897 for the LDF and the ANN systems, respectively.

4.3. Robustness of Threshold Setting
In order to investigate the robustness issue of threshold setting
further, we designed 4 more validation sets, in which there
were 6.82%, 32.33%, 36.54% and 5 1.28% 'unknown language'
data. Combined with the 4 validation sets described in Section
4.2, we can get the averaged thresholds for the first 4, 6 and the
whole 8 validation sets. Using these averaged thresholds, 3
fusion systems were built for the NIST LRE05 30 second
evaluation set. The performance summary is shown in Figure 4.
We can see that the three DET curves were nearly overlapped
with each other. It shows our threshold selection method is
robust. This is due to the fact that the confidence scores defined
in Eq. (1) can well model the separation of target and non-
target languages.

Figure 4: Performance of fusion systems with averaged

thresholds obtained from 4, 6 and 8 validation sets.

4.4. High Confidence Trials

The usage of the confidence score, defined in Eqs. (1) and (2),

was proven to be quite reasonable in high-confidence trials.

Such trials were defined by limiting verification decisions

using only 50% of the "true" decision trials with the highest

confidence scores, and 50% of the "false" decision trials with

the lowest scores. As shown in Figure 5, the performance of

high-confidence trials achieved an equal error rate (EER) of

about 4%, which was improved significantly over that of about

an EER of 12% obtained with verification trials on all data.

In the 2005 NIST LRE systems, only two sites

demonstrated such a performance improvement [16]. We

believe that good high-confidence trials rely on a proper

definition of confidence scores. For example, the value of the

score difference, defined in Eq. (1), serves as a good indicator

whether a correct classification decision can be made and how

far it is from the decision boundary. Hence, a relatively large

value usually implies a high confidence. It also shows that

discriminative training of verification systems based on

maximizing this difference, as in MCE training [9], is

equivalent to minimizing the number of low-confidence trails,
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and therefore enhancing the performance of systems focusing
on high-confidence trials

Figure 5: High-confidence trials for the 30-second primary
evaluation set.

5. Summary and Future Work
We have presented the GT-IIR language recognition system
designed for the 2005 NIST LRE. Instead of using the scores

computed from the P-PRLM and BOS systems directly to
make language recognition decisions, we used the scores from
them for all competing languages to serve as input features to
train the LDF and ANN verifiers, and fuse the output
verification scores to make final decisions. Both the LDF and
ANN classifiers can be obtained with discriminative training.
For the LDF verifier with a small number of parameters we

achieved a performance comparable with that of the ANN
verifier, which is much more complex than the LDF verifier.
We have also shown that the distribution of confidence scores

from the ANN and LDF verifiers exhibited large diversity,
which is ideal for score fusion. Experiments have
demonstrated the fused system achieved a better performance
than systems based on the individual LDF and ANN
classifiers.

Discriminative classifier design also demonstrated a

distinct advantage for systems based on high-confidence trials.
By maximizing the separation between the models of the target
and competing languages, the number of high-confidence trials
is significantly increased and equivalently the performance of
verification systems based on high-confidence trials is thus
significantly improved.

The success of fusion in this study also encourages us to
seek more verifiers with different error patterns from the ANN
and LDF verifiers, and incorporate them into the current
framework to reduce the overall verification error rates.

One potential area for improvement is to design language
recognition systems that optimize multiple objectives for all the
languages simultaneously. We have proposed an iterative
constrained optimization algorithm that can be extended to
meet the above requirements [17]. Another improvement is to
move from maximizing the performance of a single operating
point on the DET curves to optimizing the overall behavior of
the DET curves. Recent studies on receiver operating
characteristic (ROC) optimization, such as minimizing the area

under the ROC curve, have shown new promising directions.
One such framework, called ensemble classifier design [18], is
an ideal way to extend the success of learning single
discriminative classifier to training multiple discriminative
classifiers that can cover a wide range of operating conditions
in order to meet new verification requirements.
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