
Discovering Likely Method Specifications

Nikolai Tillmann1, Feng Chen2, Wolfram Schulte1

1Microsoft Research, Redmond, WA, USA, {nikolait, schulte}@microsoft.com
2University of Illinois at Urbana-Champaign, Urbana, IL, USA, fengchen@cs.uiuc.edu

March 2006

Technical Report
MSR-TR-2005-146

It is widely accepted that software specifications are of great use for more
rigorous software development. They can be used for formal verification
and automated testing. They are essential for precise program understand-
ing. But despite their usefulness, specifications often do not exist in prac-
tice. This paper describes a new way to automatically infer specifications
from code. Given a modifier method and a set of observer methods, we
first symbolically execute the modifier method to obtain a set of execution
paths. Then, the conditions and final states of the paths are summarized
by observer methods. The result is a likely specification of the modifier
method that is compact and human-understandable. The inferred specifi-
cation can be examined by the user, used as input to program verification
systems, or as input for test generation tools for validation,
We implemented the technique for .NET programs in a tool, called Axiom
Meister. Our preliminary experience has been promising. We were able
to infer concise specifications for base classes of the .NET platform and
found flaws in the design of a new library.

Microsoft Research
Microsoft Corporation
One Microsoft Way

Redmond, WA 98052
http://www.research.microsoft.com

1 Introduction

Specifications play an important role in software verification. In formal verification
the correctness of an implementation is proved or disproved with respect to a specifi-
cation. In automated testing a specification can be used for guiding test generation and
checking the correctness of test executions. Most importantly specifications summa-
rize important properties of an implementation on a higher abstraction level. They are
necessary for program understanding, and facilitate code reviews. However, specifica-
tions often do not exist in practice, whereas code is abundant. Therefore, finding ways
to mine existing code for likely specifications is highly desired if we ever want to make
specifications a first class artifact of software development.

Mechanical specification inference from code can only be as good as the code. A
user can only expect good inferred specifications if the code serves its purpose most
of the time and does not crash too often. Of course, faithfully inferred specifications
would reflect flaws in the implementation. Thus, human-friendly inferred specifica-
tions can even facilitate locating semantic flaws on an abstract level.

Several studies on specification inference have been carried out. The main efforts
can be classified into two categories, static analysis, e.g., [16, 15, 14], and dynamic
analysis, e.g., [13, 19]. The former tries to understand the semantics of the program
by analyzing its structure, i.e., treating the program as a white-box; the latter considers
the implementation as a black box and infers abstract properties by observations of
program runs. In this article we present a new technique of inferring specifications,
trying to combine the strengths of both worlds. We use symbolic execution, a white box
technique, to explore the behaviors of the implementation as thoroughly as possible;
then we apply observational abstraction to summarize explored behaviors into compact
axioms that treat the implementation as a black box.

The technique we describe in this paper focuses on inferring specifications for
classes that implement abstract data types (ADTs). First of all, the methods of the
given class are partitioned (by the developer) into two kinds: modifier methods, which
may modify the state of an object, and observer methods, which inspect the state. To
infer specifications, the user chooses a modifier method and as a set of related observer
methods that abstract from implementation details.

Our technique then tries to find an abstract description of the modifier method in
terms of observer methods. There are three steps.

Firstly, the chosen method is symbolically executed from an arbitrary symbolic
state on arbitrary parameters. (Refer to [17] for more information about the symbolic
execution technique used in our approach.) Symbolic execution attempts to explore
all possible execution paths. Each path is characterized by a set of constraints on the
inputs called the path condition. The inputs include the arguments of the method as
well as the initial state of the heap. The number of paths may be infinite if the method
contains loops or employs recursion. Our approach selects a finite set of execution
paths by unrolling loops and unfolding recursion only a limited number of times. A
path may terminate normally or have an exceptional result. We assume single-threaded,
sequential execution.

Secondly, observer methods are evaluated to find an observational abstraction of
the path conditions. The path conditions usually contain constraints over the heap in

1

which the private fields of the ADT implementation are stored. Specifications must
abstract from such implementation details. Observer methods are used to obtain a
representation of the path conditions on a higher abstraction level. This step yields
many path-specific axioms, each describing the behavior of the method under certain
conditions, in terms of the observer methods.

Thirdly, these axioms are merged (to build comprehensive descriptions of behav-
iors from different cases), simplified (to make the specification more concise) and as
generalized (to eliminate concrete values caused by loop unfolding). The process is
illustrated in Figure 1.

Implementation
General
Axioms

Path Conditions
& States

Path Specific
Axioms

Symbolic
Exploration

Observation
Abstraction

Axiom
Simplification

Figure 1: Overview of the Specification Inference Process

The inferred specifications are highly abstract and can be reviewed by users. Be-
sides, they can be automatically produced as traditional pre/postconditions, ready to
be used by Spec# [7] for program verification, or in the form of parameterized unit
tests [26], which are equivalent universally quantified conditional axioms.

The contributions of our paper are:

• We introduce a new technique for inferring formal specifications automatically.
It uses symbolic execution for the exploration of a modifier method and summa-
rize the results of the exploration using observer methods.

• In certain cases it can detect when not enough observer methods have been pro-
vided to specify the implementation.

• We can represent the inferred specifications as traditional Spec# pre/postcondi-
tions or as parameterized unit tests.

• We present a prototype implementation of our technique, Axiom Meister, which
infers specifications for .NET and finds flaws in class designs.

The rest of this paper is organized as follows. Section 2 presents an illustrative
example describing our algorithm to infer axioms, and gives an overview of symbolic
execution. Section 3 describes the main steps of our technique. Section 4 discusses the
heuristics we have found useful in more detail. Section 5 discusses current limitations
of our implementation. Section 6 contains a brief introduction to Axiom Meister. Sec-
tion 7 presents our initial experience on applying the technique to infer specifications
of some of the .NET base class libraries. Section 8 presents related work. Section 9
discusses future work.

2

2 Overview

We will illustrate our inference technique for an implementation of a bounded set of
nonzero integers (Figure 2). Its public interface contains the method Add, which may
modify the state of the set, and the methods IsFull and Contains, which never
change the state but may be used to observe the state. The elements of the set are
stored in the array repr. An element in the array is zero if it has not yet been assigned
a set element.

public class Set {
int[] repr;
public Set(int maxSize) { repr = new int[maxSize]; }

public void Add(int x) {
if (x == 0) throw new ArgumentException();
int free = -1;
for (int i = 0; i < repr.Length; i++)

if (repr[i] == 0) free = i; // remember index
else if (repr[i] == x) // duplicate

throw new InvalidOperationException();
if (free != -1) repr[free] = x; // success
else // no free slot means we are full

throw new InvalidOperationException();
}

public bool IsFull() {
for (int i = 0; i < repr.Length; i++)

if (repr[i] == 0) return false;
return true;

}

public bool Contains(int x) {
if (x == 0) throw new ArgumentException();
for (int i = 0; i < repr.Length; i++)

if (repr[i] == x) return true;
return false;

}
}

Figure 2: Implementation of a set

Here is a reasonable specification of the Add method using the syntax of Spec#’s
pre- and postconditions [7].

void Add(int x)
requires x!=0 otherwise ArgumentException;
requires !Contains(x) && !IsFull()

otherwise InvalidOperationException;
ensures Contains(x);

Each requires clause specifies a precondition. If the precondition is violated, an
exception of a certain type is thrown. The requires have to be checked sequentially,
e.g., !IsFull() && !Contains(x) will only be checked if x!=0, and so on. Only
if all preconditions hold it is guaranteed that the method will not throw an exception
and that the condition of the ensures clause will hold after the method has returned.

Instead of the Spec# specification, which must be read sequentially, we could also
write an equivalent specification in the form of independent implications, which we
call axioms:

3

• x==0⇒ future(ArgumentException)

• x!=0 ∧ (Contains(x) ∨ IsFull())
⇒ future(InvalidOperationException)

• x!=0 ∧ ¬Contains(x) ∧ ¬IsFull()
⇒ future(Contains(x))

In this example we used the expression future() to wrap conditions that will hold or
exceptions that will be thrown after the method has returned. Later, we will further
formalize such axioms.

It is easy to see that the program and the specification agree:
The Add method first checks that x is not zero, and throws an exception otherwise.

Next, the method iterates through a loop, guaranteeing that x is not stored in the repr
array yet. The expression !Contains(x) checks the same condition. If the element is
already contained, an exception is thrown.

As part of the iteration, Add stores the index of a free slot in the repr array. After
the loop, it checks that a free slot has indeed be found. !IsFull() checks the same
condition. If the set is full, an exception is thrown.

Finally, the element is assigned to the free slot in the repr array, so that Con-
tains(x) returns true.

2.1 Symbolic Exploration

Our automated technique uses symbolic execution [20] to obtain an abstract represen-
tation of the behavior of the program. A detailed description of symbolic execution
of object oriented programs is out of the scope of this paper, and we refer the inter-
ested reader to [17] for more discussion. Here we only briefly illustrate the process by
comparing it to normal execution.

Consider symbolic execution of a given modifier method, here Add. Instead of
supplying normal inputs (e.g., concrete numeric values), symbolic execution supplies
symbols that represent unknown arbitrary values. Symbolic execution proceeds like
normal execution except that the computed values may be terms over the input sym-
bols, employing interpreted functions that correspond to the operations of the machine.
For example, Figure 3 contains such terms arising from the Add method in elliptic
nodes. The terms are built over the input symbols me, representing the implicit instance
argument, and x. The terms employ the interpreted functions !=, ==, <, selection of a
field, and array access.

Symbolic execution records the conditions that decide which execution path is
taken. The conditions are Boolean terms over the input symbols. The path condi-
tion is the conjunction of all individual conditions along a path. For example, when
symbolic execution reaches the first if-statement of the Add method, it will continue
by exploring two execution paths separately. The if-condition is conjoined to the path
condition for the then-path and the negated condition to the path condition of the else-
path. Many branches are implicit, for example, accessing an instance field might raise
an exception if instance is null, or accessing an array element might fail if the index
is out-of-bounds.

4

Not all execution paths are feasible. For example, when the same reference value
is used to access a field twice, the second time will never fail. We use an automatic
theorem prover to prune infeasible path conditions. Figure 3 shows a tree representing
all feasible execution paths of Add up to a certain length. The elliptic nodes contain
the branch conditions encountered. When the path from a node with condition c along
an arc labeled with true is taken, c is conjoined to the path condition; when the arc
labeled false is taken,¬c is conjoined. Arcs belonging to infeasible paths are omitted.
Nodes where only one outgoing arc remains are omitted as well.

Figure 3: Tree representation of feasible execution paths of Set.Add up to a certain
length.

5

The conditions of the form ==null arise from implicit checks performed when
dereferencing fields or accessing array elements. The diamond nodes S2, S8, S15, S16,
S23, and S24 represent execution paths resulting in the exception ArgumentExcep-

tion or InvalidOperationException, and S4 and S6 represent paths terminating
with a null dereference. The rectangular node S14 represents a path resulting in
normal termination of the Add method.

2.2 Discovering Specifications From Paths

For each path, we know under which condition the method produces which result (the
updates on the heap and the result value computed from the inputs along the path).

We could declare this knowledge to be the specification of the modifier method.
However, there are several problems with this approach: While some of the conditions
shown in Figure 3 are simple expression, e.g., x!=0, most are expressions involving
details of the implementation, like the repr array. And even though there are many
different cases with detailed information, it is not even a complete description of the
behavior of the Add method, because exploration stopped iterating through the loop at
some point. While the partial execution tree might be useful for the developer of the
Set class, the information is simply at the wrong level of abstraction for users of the
class; since a specification of the ADT should refer only to its public interface.

We use observational abstraction to transform the information obtained by sym-
bolic execution into a specification, i.e., we will try to cover the implementation-level
conditions of the explored paths with observations that can be made on the level of the
ADT. But before we go to the detailed discussion of the general process, we go through
the steps of our technique for our example.

Consider the paths to S4 and S6. They terminate because of a null dereference,
because either me or me.repr was null. Symbolic execution found these paths be-
cause it started with no assumptions about the me argument or the values of the fields
on the heap. However, C# semantics preclude a call to an instance-method with a null-
reference. Only the constructor of the Set class will initialize the repr field with a
proper array instance. Thus, we can safely ignore the paths S4 and S6.

Consider the path to S2 in Figure 3: If x is zero the method will terminate with an
exception. No further abstraction is necessary, and we can write this (partial) specifi-
cation as follows using Spec# syntax:

requires x!=0 otherwise ArgumentException;

Consider the paths to S15, S23 and S24. They have in common that they terminate
with the same exception. In each path, the last condition establishes that x is equal
to some element of the repr array. Under this condition, Contains(me, x) clearly
returns true. Using this characteristic behavior of Contains, we can summarize the
paths as follows

requires !Contains(x)
otherwise InvalidOperationException;

Consider the path to S8. Along the way it has established that me!=null, me.re-
pr!=null and me.repr.Length==0. It is easy to see that under these conditions

6

the IsFull method returns true. Later, we will obtain this result automatically by
symbolically executing IsFull under the constraint of the path S8. The conditions
along the path to S16 are more involved; they establish the case where the repr array
has length one and its element is nonzero. Again, IsFull returns true under these
conditions. Using this characteristic behavior of IsFull, we can deduce:

requires !IsFull() otherwise InvalidOperationException;

We can combine the last two findings into a single requires clause since they
have the same exception types:

requires !Contains(x) && !IsFull()
otherwise InvalidOperationException;

Finally consider S14, the only normally terminating path. Its path condition implies
that the repr array has size one and contains the value zero. Under these conditions,
IsFull and Contains return false. (Note that we only impose these conditions, but
do not take into account any heap updates that might be performed along this path.)

We can also deduce postconditions. Consider Contains under the path condition
of S14 with the same arguments as Add, but starting with the heap that is the result of
the updates performed along the path to S14. In this path the loop of Add finds an empty
slot in the array in the first loop iteration, and then the method updates me.repr[0]
to x, which will be reflected in the resulting heap. Operating on this resulting heap,
the Contains method returns true: the added element is now contained. Consider
IsFull under the path condition of S14 with the resulting heap. It will also return
true, because the path condition implies that the array has length one, and in the
resulting heap we have me.repr[0]==x where x is not zero according to the path
condition.

After the paths we have seen so far, we are tempted to deduce that the postcondition
for the normal termination of me.Add(x) is Contains(x) && IsFull(). However,
when symbolic execution explores further, which is not shown in Figure 3, we will
quickly find another normal termination path. The path condition of this new path
will imply that x!=0, and the repr array initially has size two and and contains the
value zero in both elements. Under these conditions, IsFull and Contains return
false initially, just like it was the case for S14. But for this new path, IsFull will
remain false even when taking into account state updates since Add only fills up the
first element of the array. Thus, the deduced postcondition will be Contains(x) &&

(IsFull() || !IsFull()), which simplifies to Contains(x), in Spec#:

ensures Contains(x);

Combined, we have deduced the specification of Add which we gave initially.

3 Technique

3.1 Exploration of a Modifier Method

We symbolically explore a finite set of execution paths of the modifier method. Since
the number of execution paths might be infinite in the presence of loops or recursion,
we unroll loops und unfold recursion only a limited number of times.

7

3.2 Observational Abstraction

The building stones of our specifications are observations at the level of the ADT. The
observations we have constructed in our example consisted of a call to an observer
method, e.g., Contains, with certain arguments, e.g., me and x, where me is used for
the implicit instance parameter.

While the tree in Figure 3 makes me explicit, it omits another essential implicit
parameter: the heap. The (updated) heap is also an implicit result of each method. We
view the heap as a mapping of object identifiers to the values of their fields or elements
in the case of an array. The heap is implicitly involved in every access (and update) of
a field or array element.

In the remainder of this paper, we will use the input symbol h for the heap. We will
write all other input symbols in cursive as well.

We extend the universe of function symbols that can be employed in terms by
functions for all observer methods. As a convention, the function symbol of a method
will be written in cursive. For example, a term representing the invocation me.Con-

tains(x) with a particular heap is Contains(h, me, x).
The arguments are not necessarily plain input symbols, but they can be terms them-

selves. Consider for example a class Hashtablewhich associates keys with values and
provides a lookup method get Item. Then we can construct arbitrarily nested terms of
the form getItem(h, me, getItem(h, me, . . .)). We call terms over the extended universe
of function symbols observer terms, as opposed to ordinary terms.

Observer equations are equations over observer terms. A proper observer equa-
tion does not contain any heap-access subterms and does not refer to any heap but the
symbols h, the initial heap, and h′, which denotes the updated heap. An example of a
proper observer equation is getItem(h, me, x) = null.

The set of observer terms and therefore the set of observer equations is infinite.
However, we can only consider finite sets in our analysis.

We discuss our strategies to select path-specific proper observer equations in Sec-
tion 4. Here, we assume that an oracle provides a finite set of proper observer equations
for each considered path of the modifier method. For each path, we call those equations
that do not mention the updated heap h ′ (likely) preconditions, e.g., IsFull(h, me), and
all other remaining equations (likely) postconditions, e.g., IsFull(h ′, me) in Figure 4.
The implication from the preconditions to the postconditions is the (likely) path-specific
axiom. Figure 4 shows the axiom for path S14 in Figure 3.

x �= 0 ∧ ¬IsFull(h, me) ∧ ¬Contains(h, me, x)
⇒ Contains(h′, me, x) ∧ IsFull(h′, me)

Figure 4: A Path-Specific Axiom for Set.Add

3.3 Summarizing Axioms

For each chosen path of the modifier method we compute a likely path-specific axiom.
A human reader prefers a compact description to hundreds of such axioms. Thus the

8

x = 0 ⇒ ArgumentException
x �= 0 ∧ IsFull(h, me) ∧ ¬Contains(h, me, x) ⇒ InvalidOperationException
x �= 0 ∧ ¬IsFull(h, me) ∧ ¬Contains(h, me, x) ⇒ IsFull(h′, me) ∧ Contains(h′, me, x)
x �= 0 ∧ Contains(h, me, x) ⇒ InvalidOperationException
x �= 0 ∧ IsFull(h, me) ∧ ¬Contains(h, me, x) ⇒ InvalidOperationException
x �= 0 ∧ ¬IsFull(h, me) ∧ Contains(h, me, x) ⇒ InvalidOperationException
x �= 0 ∧ Contains(h, me, x) ⇒ InvalidOperationException

Figure 5: All Path-Specific Axioms for Set.Add

x = 0 ⇒ ArgumentException
x �= 0 ∧ (IsFull(h, me) ∨ Contains(h, me, x)) ⇒ InvalidOperationException
x �= 0 ∧ ¬IsFull(h, me) ∧ ¬Contains(h, me, x) ⇒ IsFull(h′, me) ∧ Contains(h′, me, x)

Figure 6: Merged and Simplified Axioms for Set.Add

next step of our specification inference technique is to merge and simplify the path-
specific axioms. This is done as follows:

1. Disjoin preconditions with the same postconditions

2. Simplify merged preconditions

3. Conjoin postconditions with the same preconditions

4. Simplify merged postconditions

This algorithm computes and simplifies the conjunctions of implications; the order
of step 1 and 3 is not strict and can be changed to get equivalent axioms in different
representations.

If a path p terminates with an exception, we usually add a symbol representing the
type of the exception to the postcondition. Section 5 discusses some exceptions to this
rule.

Figure 5 shows all path-specific axioms of Figure 3. Figure 6 shows the equivalent
merged and simplified axioms. Their meanings have been discussed in Section 2.2.

public class Set {
...
public int Count() {
int count=0;
for (int i = 0; i < repr.Length; i++)

if (repr[i] != 0) count++;
return count;

}
}

Figure 7: Implementation of Set.Count

Symbolic execution unrolls loops and unfolds recursion. Sometimes this causes a
series of concrete values into our axioms. Consider for example the interaction between
the modifier method Add and the observer method Count (Figure 7). We can obtain
arbitrarily many paths of the Add method by increasing the number of loop unrollings.

9

As a consequence, our technique infers an arbitrary number of path-specific axioms of
the following form, where α appears as a concrete number.

. . . ∧ Count(h, me) = α ⇒ . . . ∧ Count(h′, me) = α + 1

We generalize this series of path-specific axioms by substitution:

. . . ⇒ . . . ∧ Count(h′, me) = Count(h, me) + 1

We have also implemented the generalization of linear relations over integers. After
successful generalization, the specification can be further merged and simplified.

4 Observational Abstraction

This section discusses our strategies to choose appropriate observer equations and
terms. Developing these strategies is a nontrivial task, and what we describe in this
section is the product of our experience.

4.1 Choosing Observer Terms

Every observer term involves a function symbol representing an observer method, a
heap, and arguments including an argument for the instance parameter. All of these
must be fixed to construct an observer term.

Choosing observer methods. Intuitively, observer methods should be observationally
pure [8], i.e., they should only change the state in such a way that the change is invisible
to any client.

However, not all observationally pure methods are needed to make a comprehensive
observation on the class. For example, many collection classes provide an IsEmpty

method to check the emptiness of the collection, which can also be expressed using
a Size method: IsEmpty() iff Size()==0. It is desirable to choose a minimal and
complete set of observer methods, otherwise redundant axioms may be generated as
discussed in Section 5. However, it is well known that the problem to determine a
minimal basis for an axiomatic specification [12] is undecidable. Therefore we decided
to skip this problem in our current work and instead ask the user to manually designate
the appropriate observer methods for each modifier method. The effort required with
our tool (Figure 9) has been reasonable in our experience.

Our tool also allows the user to include general observer methods, like = null.
They can be defined in separate libraries, and have been found to be useful [13, 19].

Choosing heaps to observe. The objective of our approach is to infer specifications
for the public interfaces of classes. This means that only states that can be observed
by the client are taken into account. Consider a single modifier method. Observer
methods should only be applied before the execution of the modifier method and after
the execution of a particular path p has terminated. Therefore, only the original heap,
identified by the symbol h, or the final heap, identified by h ′, may be chosen. The

10

final heap represents all updates that the modifier method might have performed along
a path.

Choosing arguments. A naive argument selection strategy is to simply choose fresh
symbols for all arguments. However, these symbols would be unrelated to the con-
straints of any path condition of the modifier method. Symbolic execution of the ob-
server method with fresh input symbols would not find a relation to any execution
path of the modifier method. Consider for example the modifier method Hashta-

ble.Add(Key,Value) and an observer method Hashtable.ContainsKey(Key).
Obviously, exploring ContainsKey(key’), where key’ is some symbol unrelated to
the symbol key used in a modifier method invocation Add(key, value), is pointless.
We have found that only those terms which can be constructed from the initial input
symbols of the modifier method should be considered, including derived results of the
modifier method and also of other observer invocations. Of course, arguments must be
chosen in a type-correct manner.

However, this simple strategy is still too liberal. Consider again Hashtable.Add.
In .NET, this method takes two arguments of type object. The two observer methods
ContainsKey and ContainsValue both take one argument, also of type object.
However, analyzing ContainsKey(value)will not produce useful results and should
be avoided.

To address this problem, we introduce the notion of observer term groups, or short
groups in the following. These groups resemble the types inferred by Lackwit [23].
Formal parameters and method results belong the same group with respect to a set of
methods if these methods establish information flow between them.

For instance, the parameters of Hashtable.Add belong to two groups; we call
them KEY and VALUE. The parameter of ContainsKey belongs to the KEY group while
the parameter of ContainsValue belongs to the VALUE group. Our tool currently
requires the user to annotate the parameters and results of methods with grouping in-
formation.

We relate terms and groups as follows. Initially, the input symbols of the modifier
method are related to their respective parameter groups, and a term representing the re-
sult (if any) of the modifier method is related to the result group of the modifier method.
Whenever we select an observer term as described in this subsection, we introduce a
relation from the observer term to the result group of the observer method. We use a
term as an argument of an observer term only if it is related to the corresponding para-
meter’s group. This way, with provided grouping information we are able to construct
observer terms with appropriate arguments.

But this construction process might not terminate: Consider a directed graph where
each node represents a group, and an edge from group A to group B exists iff there
is an observer method with a parameter belonging to A and its result belonging to B.
If this graph is cyclic, our algorithm will derive an infinite number of observer terms.
We avoid this problem by traversing cycles in this graph only a finite number of times,
which results in a finite nesting of observer terms. Our experiences show that single-
level nesting, i.e., Observer(Observer(p)), is sufficient in practice.

11

4.2 Choosing Proper Observer Equations

It is easy to see how observer terms can be reduced to ordinary terms by symbolic
execution: Just unfold the observer method functions. If more than one execution path
is possible, many ordinary terms might be the result. We describe in the following how
we obtain proper observer equations from such reductions.

We reduce an observer term t relative to a path p of the modifier method. We
fix p for the remainder of this subsection. As we discussed before, one needs only
to consider observer terms which refer to initial heap h or the final heap h ′. In this
subsection, we equate h′ with the particular final heap as it was updated by the path
p. The updated heap is usually represented by a term consisting of a chain of updates
of fields and arrays, rooted in the original heap h. Then, we symbolically execute
the observer method under the path condition of p, and thus only those paths of the
observer method will be considered which are consistent with the path condition of p.
Again, we only consider a limited number of execution paths. We ignore execution
paths of observer methods which terminate with an exception, and thus the reduction
may also result in the empty set.

For each execution path of the observer method, we further simplify the resulting
term using the constraints of the path condition. For example, if the resulting term is
x = 0 and the path condition contains x > 0, we reduce the result to false.

If all considered execution paths of the modifier method yield the same reduced
term, we call the resulting term the reduced observer term of t, written as tR.

Given a finite set T of observer terms, we define the basic observer equations as
{t = tR : t ∈ T where tR exists}. This set characterizes the path p of the modifier
method by unambiguous observations. For example, the basic observer equations of
S14 in Figure 3 are:

{ x = 0,

IsFull(h, me) = false, Contains(h, me, x) = false,

Contains(h′, me, x) = true, IsFull(h′, me) = true }
However, the reductions of the observations may refer to fields or arrays in the

heap, and such observations over the internal state of the ADT should not be part of a
specification. Consider for example a different implementation of the Set class and the
Add and Count methods where the number of contained elements is tracked explicitly
in private field count of the class. Then, the observer term Count(h, me) will be
reduced to the field access term me.count.

We substitute internal details by observer terms wherever possible, and construct
the completed observer equations as follows. Initially, our completed observer equa-
tions are the basic observer equations. Then we repeat the following until the set is sat-
urated: For two completed observer equations t = t ′ and u = u′, we add t = t′[u′/u] to
the set of completed observer equations if t ′[u′/u] contains less heap-access subterms
than t.

For example, let h′ be equal to the heap for a path where Add returns successfully,
and let Count(h′, me) reduce to me.count + 1 in the original heap h. Then the com-
pleted observer equations will include the equation Count(h ′, me) = Count(h, me)+1,
which no longer refers to the field count.

12

We finally select those completed observer equations less all tautologies and all
equations which still refer to fields or arrays in a heap. This way, all the remaining
equations are proper observer equations.

5 Limitations

By considering only a finite set of observer terms and execution paths of the modi-
fier method, we might get unsound specifications, i.e., specifications with infeasible
postconditions. Also, the theorem prover employed by our tool is not complete.

We discuss these limitations and other possible concerns in the following.

Insufficient sets of observer methods. In the previous section we mainly discussed
strategies to reduce the number of observer terms in order to reduce the complexity of
specification inference and to achieve concise specifications. Having too few observer
methods is problematic as well, because they may lead to unsound specifications.

Consider the following example, which we found when we applied our tool to a
code base that is currently under development (a refined DOM implementation [3]).
We ran into an inferred specification for the method XElement.RemoveAttribute

that we did not expect.

void RemoveAttribute(XAttribute a)
requires HasAttributes() && a!=null;
ensures false;

Obviously, this axiom is corrupted. Inspection reveals that this is caused by the
choice of observer methods. Concretely, for some paths, RemoveAttribute assumes
that the element contains only one attribute, then after removal, HasAttributes will
be false, while for other paths, it assumes that the element contains more than one
attributes, which makes HasAttributes true after removal. The existing observer
methods of the class XElement cannot distinguish these two cases. Therefore, for the
same preconditions, we may reach two contradictory postconditions. If contradictory
postconditions can be reached for a set of observer methods, we say this set is insuffi-
cient.

By adding an additional observation method, HasMoreThanOneAttr, to the XEle-
ment class, we immediately obtain two consistent axioms, where old(e) denotes the
value of e at the entry of the method.

void RemoveAttribute(XAttribute a)
requires HasAttributes() && a!=null;
ensures old(HasMoreThanOneAttr()) => HasAttributes();
ensures old(!HasMoreThanOneAttr())=>!HasAttributes();

Our tool can detect an insufficient set of observer methods if it causes contradictory
postconditions from two explored execution paths of the modifier method that have
identical preconditions.

Exemplary observations. Our technique considers only an exemplary subset of ex-
ecution paths and observer terms. In particular, our symbolic exploration technique
considers only a certain number of loop unrollings and recursion unfoldings, but the

13

axioms in terms of the observer methods often abstract from that number, pretending
that the number of loop unrollings is irrelevant. But without precise summaries of loops
and recursion, e.g., in the form of annotated loop invariants, we cannot do better.

The generalization step introduces another source of errors, since it postulates gen-
eral relations from exemplary observations using a set of patterns.

Unreachable states and unknown invariants. Some path-specific axioms might have
preconditions which are not enabled in any reachable state.

For example, for the .NET ArrayList implementation the number of elements in
the array list is at most its capacity; a state where the capacity is negative or smaller
than the number of contained elements is unreachable. Symbolic execution of a mod-
ifier like Add will consider all possible initial states, including unreachable states. As
a consequence, we may produce specifications which describe cases that can never
happen in concrete sequences of method calls. These axioms are likely correct but
useless. When the set of observer methods is insufficient this might lead to unsound
specifications as we have discussed.

Ideally, an observer method should be provided which describes when a state is
reachable. Fortunately, our experiments show that this is often not necessary. Explo-
ration from unreachable states often results in violations of contracts with the execution
environment, e.g., null-pointer-dereferences. As has been explained earlier, those cases
are pruned automatically.

Computing the set of reachable states precisely is a hard problem. A good ap-
proximation of reachable states are states in which the class-invariant holds. The class
invariant can be written as a Boolean-valued method that we treat in a special way: if
the invariant does not hold in a state, we prune the state.

Ignoring certain exceptions. Our approach assumes that the implementation is “cor-
rect,” in particular that it is free of defects that will manifest as violations of other
requirements. For example, it should not throw a null dereference exception or other
exceptions of the execution environment. Also, it should not cause other libraries on
which it depends to throw exceptions that it does not catch.

However, symbolic execution starting from an arbitrary heap often finds paths
where such exceptions will be thrown. In “correct” programs, there will be no reach-
able state on which such paths could be applied. Consequently, we simply ignore such
paths and do not generate path-specific axioms for them.

Redundancy. We do not provide an automatic analysis to find an expressive and mini-
mal yet sufficient set of observer methods. This may cause some redundancy in the gen-
erated specifications. For example, IsEmpty() is usually equivalent to Size()==0.
However, redundancy does not affect soundness of the specifications. In fact, some-
times redundant observer methods can even help in program understanding because
they may describe the same behavior in different ways.

Deciding satisfiability. There is an intrinsic limitation in any automatic verification
technique of nontrivial programs: there cannot be an automatic theorem prover for all
domains. Currently, our exploration is conservative for the symbolic exploration: if
the satisfiability of a path condition cannot be decided, symbolic execution proceeds

14

speculatively. Therefore, infeasible paths might be explored. The consequences for the
generated axioms are similar to the ones for unreachable, unpruned states.

Remark. While the limitations discussed above seem severe, in our experience the
generated axioms for well-designed ADTs are comprehensive, concise, sound and ac-
tually describe the implementation.

6 Implementation

We have implemented our technique in a tool called Axiom Meister. It operates on the
methods given in a .NET assembly. Figure 8 shows an overview of the architecture of
the tool.

Observation
Generator

Summarization
Engine

Simplification
Engine

AxiomMeister

XRT Framework

Symbolic Explorer

Automatic Theorem Prover

.Net Programs Axioms

Exploration
Tasks

Explored
Results

Conditions
To Solve

Solved
Results

Exploration
Environment

Explored
Results

Figure 8: Architecture of Axiom Meister

Axiom Meister is built on top of XRT [17], a framework allowing symbolic exe-
cution of .NET programs. XRT represents symbolic states as mappings of locations to
terms plus a path condition over symbolic inputs. XRT can handle not only symbols
for primitive values like integers, but also for objects. It can interpret the instructions
of a .NET method to compute a set of possible successor states for a given state. It uses
Simplify [11] or Zap [6] as automatic theorem provers to decide if a path condition
is infeasible. XRT’s architecture allows Axiom Meister to efficiently explore different
execution paths.

15

Corresponding to the three steps of the inference process, Axiom Meister consists
of three components: the observation generator, the summarization engine, and the
simplification engine. The observation generator manages the exploration process. It
creates exploration tasks for the modifier and observer methods which it hands down to
the XRT framework. From the explored paths it constructs the observation equations,
as discussed in Section 4.1. The simplification engine uses Maude [4].

Axiom Meister is configurable to control the execution path explosion problem:
Besides other options, the user can control the number of loop unrollings and recursion
unfoldings, and the user can control the maximum number of terminating paths that
will be considered. By default, Axiom Meister will terminate the exploration when
every loop has been unrolled three times, which often achieves full branch coverage of
the modifier. And so far we have never needed to explore more than 600 terminating
paths of any modifier methods to create comprehensive axioms.

Axiom Meister can output the inferred specifications as formulas, parameterized
unit tests [26], or as Spec# specifications. More details about the internal representation
of Axiom Meisters axiom representation, how the state is represented symbolically or
how the theorem prover is used can be found in [26].

Axiom Meister can be controlled from the command line and it has a graphical
user interface (Figure 9). The user can choose the modifier method to explore, which
is Hashtable.Add in this example, and appropriate observer methods on the left panel.
The generated axioms are then shown in the right window. It also shows other informa-
tion about the axiom inference, e.g., the modifier exploration tree shown in Figure 3,
and the code coverage of the modifier method and observer methods.

Figure 9: Screenshot of Axiom Meister

16

7 Evaluation

We have applied Axiom Meister on a number of nontrivial implementations, including
several classes of the .NET base class library (BCL), some classes from the public
domain, as well as classes that are currently under development by a Microsoft product
group.

Table 1 shows some of the investigated classes along with the numbers of the cho-
sen modifier and observer methods. The LOC column gives the number of lines of
non-whitespace, non-comment code. Stack, ArrayList and Hashtable are taken
from the BCL; BoundedStack is a modified version of Stack with a bounded size;
LinkedList implements a double linked list with a similar interface as ArrayList
and is taken from [1]; XElement is a class of a refined DOM model [3], which
is currently under development. All implementations are unchanged, except for the
Hashtable: we added an observer method to express as an invariant that fixed the
value of the internal variable bucketLength; this was necessary to improve the per-
formance due to limitations of the used theorem prover.

Class Modifiers Observers LOC Source
Stack 3 3 200 .NET BCL
BoundedStack 2 4 160 Other
ArrayList 7 6 350 .NET BCL
LinkedList 6 4 400 Other
Hashtable 5 4 600 .NET BCL
XElement 2 3 800 MS internal

Table 1: Example Classes for Evaluating Axiom Meister

In addition to the regular observer methods, we also used an additional external
observer method which checks if a value is null.

Table 2 gives the evaluation results of these examples. The first two columns show
the number of explored paths and the time cost to infer specifications for multiple
modifier methods of the class. Both measurements are obviously related to the limits
imposed on symbolic exploration: exploration is set to terminate when every loop is
unrolled three times. The last three columns illustrate the number of merged and sim-
plified axioms generated, the number of sound axioms, and the percentage of methods
for which full branch coverage was achieved during symbolic execution.

Class Paths Time(s) Axioms Sound Coverage
Stack 7 1.78 6 6 100%
BoundedStack 17 0.84 12 12 100%
ArrayList 142 28.78 26 26 100%
LinkedList 59 9.28 16 13 100%
Hashtable 835 276.48 14 14 100%
XElement 42 2.76 14 13 100%

Table 2: Evaluation Results of Axiom Meister

We inspected the inferred specifications by hand to collect the numbers of the last
two columns.

Most BCL classes are relatively self-contained. They provide sufficient observer
methods whereas new classes under development, like XElement, as discussed in Sec-

17

tion 5, often do not. In these examples branch coverage was always achieved. However,
some of the generated axioms are unsound. The unsound axioms for LinkedList are
caused by a missing class invariant, and the unsound axioms for XElement were dis-
cussed in Section 5. After adding an external observer method which expresses the
class invariant, we infer sound axioms only.

8 Related Work

Due to the importance of formal specifications for software development, many ap-
proaches have been proposed to automatically infer specifications. They can be roughly
divided into static analysis and dynamic detection.

8.1 Static Analysis

For reverse engineering Gannod and Cheng [16] proposed to infer detailed specifica-
tions by computing the strongest postconditions. But as mentioned, pre/postconditions
obtained from analyzing the implementation are usually too detailed to understand and
too specific to support program evolution. Gannod and Cheng [15] addressed this de-
ficiency by generalizing the inferred specification, for instance by deleting conjuncts,
or adding disjuncts or implications. This is similar to the merging stage of our tech-
nique. Their approach requires loop bounds and invariants, both of which must be
added manually. There has been some recent progress in inferring invariants using
abstract interpretation. Logozzo [22] infers loop invariants while inferring class in-
variants. The limitation of his approach are the available abstract domains; numerical
domains are best studied. The resulting specifications are expressed in terms of the
fields of classes. Our technique provides a fully automatic process. Although loops
can be handled only partially, in many cases, our loop unrolling has explored enough
behavior to deduce reasonable specifications.

Flanagan and Leino [14] proposed another lightweight verification based tool, na-
med Houdini, to infer ESC/Java annotations from unannotated Java programs. Based
on specific property patterns, Houdini conjectures a large number of possible anno-
tations and then uses ESC/Java to verify or refuse each of them. This way, the false
alarms produced by ESC/Java can be reduced and Houdini becomes quite scalable. But
the ability of this approach is limited by the patterns used. In fact, only simple patterns
are feasible, otherwise too many candidate annotations will be generated, and conse-
quently it will take a long time for ESC/Java to verify complicated properties. Our
technique does not depend on patterns and is able to produce complicated relationship
among values.

Taghdiri [25] uses a counterexample-guidedrefinement process to infer over-appro-
ximate specifications for procedures called in the function being verified. In contrast
to our approach, Taghdiri aims to approximate the behaviors for the procedures within
the caller’s context instead of inferring specifications of the procedure.

There are many other static approaches that infer some properties of programs,
e.g., shape analysis [24] specifies which object graph the program computes, termina-
tion analysis decides which functions can be used as bounds to prove that a program

18

terminates [10]. All these analyses are too abstract for us; we really wanted to have
axioms that describe the precise input/output behavior.

8.2 Dynamic Analysis

Dynamic detection systems discover general properties of a program by learning from
its execution traces.

Daikon [13] discovers Hoare-style assertions and loop invariants of programs. It
uses a set of invariant patterns and instruments the program to check these patterns at
various program points. Daikon has been used for numerous applications, including
test generation [30] and program verification [9]. Its ability is limited by the given pat-
terns, which can be user-defined. We use observer methods instead: they are already
part of the class, and they may carry out complicated computations that are hard to
encode as patterns, e.g., membership checking. Also, Daikon is not well-suited for au-
tomatically inferring conditional invariants. The Java front end of Daikon, Chicory [2],
provides an option to make observations on the execution using pure methods. How-
ever, it only supports pure methods without arguments, which are essentially derived
variables of the class state. Daikon aims at a different goal than our technique. We
focus on inferring pre/postconditions for methods, whereas Daikon infers invariants.

Groce and Visser [18] recently integrated Daikon [13] into JavaPathFinder [27].
The main purpose of their work is to find the cause of a counterexample produced by
the model checker. This is achieved by comparing invariants of executions that lead
to errors and those of similar but correct executions. The invariants are inferred using
Daikon.

Henkel and Diwan [19] have built a tool to discover algebraic specifications for
interfaces of Java classes. Their specifications relate sequences of method invocations.
The tool generates many terms as test cases from the class signature. The results of
these tests are generalized to algebraic specifications. Henkel and Diwan do not support
conditional specifications, which are needed for most examples we tried.

Dynamic invariant detection is often restricted by two facts: (1) the predefined
patterns used to express constraints and (2) code coverage achieved by test runs. Our
technique does not use fixed patterns; instead symbolic exploration builds up terms that
can express arbitrary relationships, such as non-linear integer expressions; as long as
we have enough observations we have no problem summarizing them. We also do not
need a test suite.

Xie and Notkin [29] recently avoid the problem of inferring preconditions by in-
ferring statistical axioms. Using probabilities they infer which axiom holds how often.
But of course, the probabilities are only good with reference to the test set; neverthe-
less, the results look promising. They use the statistical axioms to guide test generation
for common and special cases.

Most of the work on specification mining is targeted at inferring API protocols dy-
namically. Whaley et al. [28] describe a system to extract component interfaces as finite
state machines from execution traces. Other approaches use data mining techniques.
For instance Ammons et al. [5] use a learner to infer nondeterministic state machines
from traces; similarly, Evans and Yang [31] built Terracotta, a tool to generate regular

19

patterns of method invocations from observed runs of the program. Li et al. [21] ap-
ply data mining in the source code to infer programming rules, i.e., usage of related
methods and variables, and then detect potential bugs by locating the violation of these
rules. All these approaches work for different kinds of specifications and our technique
complements them.

9 Future Work

Although this paper focuses on examples of classes implementing ADTs, we believe
that the proposed technique can be adopted to work for cooperating classes, like iter-
ators and their collections, or subjects and their observers. We intend to address these
challenges next.

Other future work includes inferring specifications for sequences of modifier meth-
ods, inferring grouping information using a information-flow analysis, and inferring
class invariants.

Acknowledgements

We thank Wolfgang Grieskamp for many valuable discussions and for his contributions
to the Exploring Runtime, XRT, which is the foundation on which Axiom Meister is
built. We also thank Tao Xie, who participated in the initial discussions that shaped
this work, and Michael D. Ernst for his comments on an early version of this paper. We
thank Colin Campbell and Mike Barnett for proof-reading. The work of Feng Chen
was conducted while being an intern at Microsoft Research.

References

[1] Codeproject. http://www.codeproject.com.

[2] Daikon online manual. http://pag.csail.mit.edu/daikon/download/doc/daikon.html.

[3] Document object model(DOM). http://www.w3.org/DOM/.

[4] Maude. http://maude.cs.uiuc.edu.

[5] G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In Proc. 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 4–16, 2002.

[6] T. Ball, S. Lahiri, and M. Musuvathi. Zap: Automated theorem proving for soft-
ware analysis. Technical Report MSR-TR-2005-137, Microsoft Research, Red-
mond, WA, USA, 2005.

[7] M. Barnett, R. Leino, and W. Schulte. The Spec# programming system: An
overview. In M. Huisman, editor, Construction and Analysis of Safe, Secure,

20

and Interoperable Smart Devices: International Workshop, CASSIS 2004, volume
3362 of LNCS, pages 49–69, 2005.

[8] M. Barnett, D. A. Naumann, W. Schulte, and Q. Sun. 99.44% pure: Useful
abstractions in specifications. In Proc. 6th Workshop on Formal Techniques for
Java-like Programs, June 2004.

[9] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An overview of JML tools and applications. International
Journal on Software Tools for Technology Transfer, 7(3):212–232, June 2005.

[10] A. R. Byron Cook, Andreas Podelski. Abstraction-refinement for termination. In
12th International Static Analysis Symposium(SAS’05), Sept 2005.

[11] D. Detlefs, G. Nelson, and J. Saxe. Simplify: A theorem prover for program
checking. Technical Report HPL-2003-148, HP Labs, Palo Alto, CA, USA, 2003.

[12] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification I. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1985.

[13] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discov-
ering likely program invariants to support program evolution. IEEE Transactions
on Software Engineering, 27(2):99–123, 2001.

[14] C. Flanagan and K. R. M. Leino. Houdini, an annotation assistant for esc/java.
In FME ’01: Proceedings of the International Symposium of Formal Methods
Europe on Formal Methods for Increasing Software Productivity, pages 500–517,
London, UK, 2001.

[15] G. C. Gannod and B. H. C. Cheng. A specification matching based approach to re-
verse engineering. In ICSE ’99: Proceedings of the 21st international conference
on Software engineering, pages 389–398, Los Alamitos, CA, USA, 1999.

[16] G. C. Gannod and B. H. C. Cheng. Strongest postcondition semantics as the
formal basis for reverse engineering. In WCRE ’95: Proceedings of the Second
Working Conference on Reverse Engineering, pages 188–197, July 1995.

[17] W. Grieskamp, N. Tillmann, and W. Schulte. XRT - Exploring Runtime for .NET
- Architecture and Applications. In SoftMC 2005: Workshop on Software Model
Checking, Electronic Notes in Theoretical Computer Science, July 2005.

[18] A. Groce and W. Visser. What went wrong: Explaining counterexamples. In 10th
International SPIN Workshop on Model Checking of Software, pages 121–135,
Portland, Oregon, May 9–10, 2003.

[19] J. Henkel and A. Diwan. Discovering algebraic specifications from Java classes.
In Proc. 17th European Conference on Object-Oriented Programming, pages
431–456, 2003.

[20] J. C. King. Symbolic execution and program testing. Commun. ACM, 19(7):385–
394, 1976.

21

[21] Z. Li and Y. Zhou. PR-Miner: Automatically extracting implicit programming
rules and detecting violations in large software code. In 13th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE’05), Sept 2005.

[22] F. Logozzo. Automatic inference of class invariants. In Proceedings of the 5th
International Conference on Verification, Model Checking and Abstract Interpre-
tation (VMCAI ’04), volume 2937 of Lectures Notes in Computer Science, Jan.
2004.

[23] R. O’Callahan and D. Jackson. Lackwit: a program understanding tool based on
type inference. In ICSE ’97: Proceedings of the 19th international conference on
Software engineering, pages 338–348, New York, NY, USA, 1997.

[24] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst., 24(3):217–298, 2002.

[25] M. Taghdiri. Inferring specifications to detect errors in code. In 19th IEEE Inter-
national Conference on Automated Software Engineering (ASE’04), Sept 2004.

[26] N. Tillmann and W. Schulte. Parameterized unit tests. In Proceedings of the 10th
European Software Engineering Conference held jointly with 13th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,, pages
253–262, 2005.

[27] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Proc.
15th IEEE International Conference on Automated Software Engineering, pages
3–12, 2000.

[28] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of object-oriented
component interfaces. In Proc. the International Symposium on Software Testing
and Analysis, pages 218–228, 2002.

[29] T. Xie and D. Notkin. Automatically identifying special and common unit tests
for object-oriented programs. In Proceedings of the 16th IEEE International Sym-
posium on Software Reliability Engineering (ISSRE 2005), November 2005.

[30] T. Xie and D. Notkin. Tool-assisted unit test generation and selection based on
operational abstractions. Automated Software Engineering Journal, 2006.

[31] J. Yang and D. Evans. Dynamically inferring temporal properties. In Proc.
the ACM-SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, pages 23–28, 2004.

22

