
wasp: a platform for prototyping ubiquitous computing devices

Steve Hodges and Shahram Izadi, Microsoft Research Cambridge
Simon Han, UCLA Networked & Embedded Systems Laboratory

{shodges, shahrami}@microsoft.com; simonhan@gmail.com

20th April 2006

The importance of prototyping

Prototyping is a powerful way of assessing the value of ubiquitous computing applications, deciding
if they warrant further development, and understanding how best to do this. Indeed, putting
prototypes in the hands of ‘real users’ is increasingly important in assessing their potential impact
and relevance. Prototypes can be developed to many different levels of sophistication, but typically
early prototypes are quite basic, and as the concept is refined so too is the prototype. Experience
shows that each successive level of refinement requires considerably more effort than the previous.
Unfortunately, today’s ‘real users’ have very high expectations of technology. This means that they
increasingly expect even prototypes to be refined and robust, and without this they often find it hard
to evaluate them fairly. Our experience shows that only when a prototype is sufficiently well
developed do users see past its prototypical nature, and only then do the real insights about how it
can be used become apparent. Of course, developing prototypes to this level of refinement is difficult
and time-consuming. This especially applies to the development of the embedded hardware which is
often integral to ubiquitous computing applications, due to the electronic and industrial design
requirements that accompany software development.

wasp, a new platform for prototyping ubiquitous computing devices

We are currently developing a new embedded system development platform, called wasp, which
facilitates the effective and efficient prototyping of both hardware and firmware for ubiquitous
computing applications. wasp (the wireless actuator and sensor platform) is specifically designed to
accelerate the development of reliable, compact, physically robust wireless prototypes with good
battery lifetime. There are many other prototyping tools for ubiquitous computing hardware, but in
the authors’ experience, these do not meet all of the above criteria, and the resulting prototypes are
typically unsuitable for full-scale user trials of the technology that they demonstrate.

From a hardware point of view, wasp is based around a series of small modules that can be connected
together physically and electrically (via a high-speed daisy-chained serial bus) to form a particular
complete embedded device. The ‘base’ module contains an ARM7 microcontroller1 with a USB
interface, real time clock, and power regulation (including a lithium-ion battery charger). Input,
output and communications devices are incorporated via additional ‘peripheral’ modules – this helps
manage the complexity of both the hardware and the firmware, because each peripheral to the main
processor has a simple and well-defined interface. Example peripherals under development are a
GSM/GPRS modem, Bluetooth, basic I/O for LEDs, servos, buzzers etc., GPS and a VGA camera.2
If a new type of peripheral is required for a specific application, then a suitable module must be
developed – but because the interface is well-defined this is a relatively simple, self-contained task.

In addition to hardware support, wasp also provides a powerful environment for development of
embedded firmware. The basis of this is a lightweight event-based (i.e. co-operative) kernel called
wasp-OS. In many ways, wasp-OS is similar to TinyOS, which has become very popular in the
wireless sensor network community, although it supports a number of additional features and is
written entirely in ANSI C. wasp-OS includes a tiered hardware abstraction layer which allows
performance-sensitive applications direct access to the hardware, but also provides a reasonably
high-level API to hardware such as timers and I2C, SPI and UART interfaces. Note that wasp-OS
does not directly support protocols such as TCP/IP or Bluetooth which keeps the kernel light-weight

1 We are currently concentrating on the ARM7, but wasp could be based around any microcontroller.

2 Each module is one of a number of different sizes, but they are designed to connect together physically in a
space-efficient manner.

and simple. Instead, these are supported through the use of peripherals that themselves have
processors embedded; for example the GPRS modem module contains a microcontroller that runs a
TCP/IP stack.

A prototype ubiquitous computing device built around wasp will therefore consist of a number of
hardware ‘peripheral’ modules connected to a ‘base’ processor module. The processor on the base
module runs an embedded C application in conjunction with wasp-OS.

Development and debugging using wasp

wasp also provides significant firmware development and debugging support. Since both wasp-OS
and the code for the application itself are written entirely in ANSI C, it is possible to compile them
for x86 (using Visual Studio, for example), and run them under Windows (as a single Windows
process). This makes it possible to leverage the range of powerful debugging capabilities available in
a PC development environment for embedded application development. Of course, a completely
different binary will eventually be deployed in the embedded hardware – so there are several aspects
of operation that cannot be tested in this manner (such as real-time performance). But in the authors’
experience, a large number of errors in embedded system development are of a much simpler nature,
and the ability to avoid a time-consuming compile-download-test cycle combined with virtually
unlimited use of tools such as breakpoints3 is incredibly powerful.

The other major issue when running a wasp application on the PC (rather than the embedded target)
is that the peripheral modules will not be directly available. To overcome this, a different HAL must
be used. The most straightforward approach is to use a HAL that re-directs peripheral access to a
simulator for each peripheral. These simulators can run on the PC as separate Windows applications,
or can be combined into a single Windows app. The simulation can have a UI (e.g. simulated LEDs
that ‘light up’, or simulated push-buttons that can be clicked on), or can be completely embedded
(e.g. a simulated flash memory). This approach allows embedded application development to proceed
before any hardware is available. However, since many embedded peripheral devices communicate
using RS232, I2C or SPI, it is possible to connect them directly to a PC.4 In this case, a modified
HAL is used to access the real hardware peripherals, which enables a further step of validation in the
debugging process.

Following migration of the application from a desktop to the embedded hardware, the wasp base
module may itself be connected to a PC via USB. This results in a serial port connection to the wasp
CPU. We plan to add a simple command-line interface to wasp-OS which will allow the real-time
operation of the embedded target to be monitored and controlled very simply using this serial
interface. It may be possible to extend this command-line interface to support simple scripting, which
would make it easier for non-experts to control various aspects of operation. We are also
investigating ways in which information may be communicated automatically between a wasp device
and desktop applications such as Macromedia Flash.

Summary

In summary, wasp is a complete platform for prototyping ubiquitous computing devices effectively
and efficiently. It supports a development process that naturally integrates hardware and firmware,
and leverages powerful, established debugging tools and practices common to desktop application
development. wasp is very-much work-in-progress, but we hope that over time it will prove valuable
in a wide range of ubiquitous computing applications.

3 Embedded microcontroller development environments often limit the number of simultaneous breakpoints.

4 Many devices to convert USB to RS232, I2C and SPI are readily commercially available.

