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Abstract

We describe a probabilistic approach to content se-
lection for meeting summarization. We use skip-
chain Conditional Random Fields (CRF) to model
non-local pragmatic dependencies between paired
utterances such as QUESTION-ANSWER that typi-
cally appear together in summaries, and show that
these models outperform linear-chain CRFs and
Bayesian models in the task. We also discuss dif-
ferent approaches for ranking all utterances in a se-
quence using CRFs. Our best performing system
achieves 91.3% of human performance when evalu-
ated with the Pyramid evaluation metric, which rep-
resents a 3.9% absolute increase compared to our
most competitive non-sequential classifier.

1 Introduction
Summarization of meetings faces many challenges
not found in texts, i.e., high word error rates, ab-
sence of punctuation, and sometimes lack of gram-
maticality and coherent ordering. On the other
hand, meetings present a rich source of structural
and pragmatic information that makes summariza-
tion of multi-party speech quite unique. In par-
ticular, our analyses of patterns in the verbal ex-
change between participants found that adjacency
pairs (AP), a concept drawn from the conver-
sational analysis literature (Schegloff and Sacks,
1973), have particular relevance to summarization.
APs are pairs of utterances such as QUESTION-
ANSWER or OFFER-ACCEPT, in which the second
utterance is said to be conditionally relevant on the
first. We show that there is a strong correlation be-
tween the two elements of an AP in summariza-
tion, and that one is unlikely to be included if the
other element is not present in the summary.

Most current statistical sequence models in nat-
ural language processing (NLP), such as hidden
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Markov models (HMMs) (Rabiner, 1989), are lin-
ear chains that only encode local dependencies
between utterances to be labeled. In multi-party
speech, the two elements of an AP are gener-
ally arbitrarily distant, and such models can only
poorly account for dependencies underlying APs
in summarization. We use instead skip-chain se-
quence models (Sutton and McCallum, 2004),
which allow us to explicitly model dependencies
between distant utterances, and turn out to be par-
ticularly effective in the summarization task.

In this paper, we compare two types of network
structures—linear-chain and skip-chain—and two
types of network semantics—Bayesian Networks
(BNs) and Conditional Random Fields (CRFs).
We discuss the problem of estimating the class
posterior probability of each utterance in a se-
quence in order to extract the N most proba-
ble ones, and show that the cost assigned by a
CRF to each utterance needs to be locally nor-
malized in order to outperform BNs. After ana-
lyzing the predictive power of a large set of dura-
tional, acoustical, lexical, structural, and informa-
tion retrieval features, we perform feature selec-
tion to have a competitive set of predictors to test
the different models. Empirical evaluations using
two standard summarization metrics—the Pyra-
mid method (Nenkova and Passonneau, 2004b)
and ROUGE (Lin, 2004)—show that the best
performing system is a CRF incorporating both
order-2 Markov dependencies and skip-chain de-
pendencies, which achieves 91.3% of human per-
formance in Pyramid score, and outperforms our
best-performing non-sequential model by 3.9%.

2 Corpus
The work presented here was applied to the ICSI
Meeting Corpus (Janin et al., 2003), a corpus
of “naturally-occurring” meetings, i.e. meetings
that would have taken place anyway. Their style
is quite informal, and topics are primarily con-
cerned with speech, natural language, artificial
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intelligence, and networking research. The cor-
pus contains 75 meetings, which are 60 minutes
long on average, and involve a number of partic-
ipants ranging from 3 to 10 (6 on average). The
total number of unique speakers is 60, includ-
ing 26 non-native English speakers. Experiments
in this paper are based either on human ortho-
graphic transcriptions or automatic speech recog-
nition output, which were available for all meet-
ings. For automatic recognition, we used the ICSI-
SRI-UW speech recognition system (Mirghafori
et al., 2004), a state-of-the-art conversational tele-
phone speech (CTS) recognizer whose language
and acoustic models were adapted to the meeting
domain. It achieves 34.8% WER on the ICSI cor-
pus, which is indicative of the difficulty involved
in processing meetings automatically.

We also used additional annotation that has
been developed to support higher-level analyses of
meeting structure, in particular the ICSI Meeting
Recorder Dialog act (MRDA) corpus (Shriberg et
al., 2004). Dialog act (DA) labels describe the
pragmatic function of utterances, e.g. a STATE-
MENT or a BACKCHANNEL. This auxiliary cor-
pus consists of over 180,000 human-annotated
dialog act labels (κ = .8), for which so-called
adjacency pair (AP) relations (e.g., APOLOGY-
DOWNPLAY) were also labeled. This latter anno-
tation was used to train an AP classifier that is in-
strumental in automatically determining the struc-
ture of our sequence models. Note that, in the case
of three or more speakers, adjacency pair is ad-
mittedly an unfortunate term, since labeled APs
are generally not adjacent (e.g., see Table 1), but
we will nevertheless use the same terminology to
enforce consistency with previous work.

To train and evaluate our summarizer, we used
a corpus of extractive summaries produced at the
University of Edinburgh (Murray et al., 2005). For
each of the 75 meetings, human judges were asked
to select transcription utterances segmented by DA
to include in summaries, resulting in an average
compression ratio of 6.26% (though no strict limit
was imposed). Inter-labeler agreement was mea-
sured using six meetings that were summarized by
multiple coders (average κ = .323). While this
level of agreement is quite low, this situation is
not uncommon to summarization, since there may
be many good summaries for a given document;
a main challenge lies in using evaluation schemes
that properly accounts for this diversity.

3 Content selection

State sequence Markov models such as hidden
Markov models (Rabiner, 1989) have been highly
successful in many speech and natural language
processing applications, including summarization.
Following an intuition that the probability of a
given sentence may be locally conditioned on the
previous one, Conroy (2004) built a HMM-based
summarizer that consistently ranked among the
top systems in recent Document Understanding
Conference (DUC) evaluations.

Inter-sentential influences become more com-
plex in the case of dialogues or correspondences,
especially when they involve multiple parties.
In the case of summarization of conversational
speech, Zechner (2002) found, for instance, that
a simple technique consisting of linking together
questions and answers in summaries—and thus
preventing the selection of orphan questions or
answers—significantly improved their readability
according to various human summary evaluations.
In email summarization (Rambow et al., 2004),
Shrestha and McKeown (2004) obtained good per-
formance in automatic detection of questions and
answers, which can help produce summaries that
highlight or focus on the question and answer ex-
change. In a combined chat and email summariza-
tion task, a technique (Zhou and Hovy, 2005) con-
sisting of identifying APs and appending any rele-
vant responses to topic initiating messages was in-
strumental in outperforming two competitive sum-
marization baselines.

The need to model pragmatic influences, such
as between a question and an answer, is also preva-
lent in meeting summarization. In fact, question-
answer pairs are not the only discourse relations
that we need to preserve in order to create co-
herent summaries, and, as we will see, most in-
stances of APs would need to be preserved to-
gether, either inside or outside the summary. Ta-
ble 1 displays an AP construction with one state-
ment (A part) and three respondents (B parts).
This example illustrates that the number of turns
between constituents of APs is variable and thus
difficult to model with standard sequence models.
This example also illustrates some of the predic-
tors investigated in this paper. First, many speak-
ers respond to A’s utterance, which is generally a
strong indicator that the A utterance should be in-
cluded. Secondly, while APs are generally char-
acterized in terms of pre-defined dialog acts, such
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Time Speaker AP Transcript
1480.85-1493.91 1 A are - are those d- delays adjustable? see a lot of people who actually build stuff

with human computer interfaces understand that delay, and - and so when you -
by the time you click it it’ll be right on because it’ll go back in time to put the -

1489.71-1489.94 2 yeah.
1493.95-1495.41 3 B yeah, uh, not in this case.
1494.31-1495.83 2 B it could do that, couldn’t it.
1495.1-1497.07 4 B we could program that pretty easily , couldn’t we?

Table 1: Snippet of a meeting displaying an AP construction, where a question (A) initiates three responses (B). Sentences in
italic are not present in the reference summary.

as OFFER-ACCEPT, we found that the type of di-
alog act has much less importance than the ex-
istence of the AP connection itself (APs in the
data represent a great variety of DA pairs, includ-
ing many that are not characterized as APs in the
litterature—e.g., STATEMENT-STATEMENT in the
table). Since DAs seem to matter less than adja-
cency pairs, the aim will be to build techniques to
automatically identify such relations and exploit
them in utterance selection.

In the current work, we use skip-chain sequence
models (Sutton and McCallum, 2004) to repre-
sent dependencies between both contiguous ut-
terances and paired utterances appearing in the
same AP constructions. The graphical represen-
tations of skip-chain models, such as the CRF rep-
resented in Figure 1, are composed of two types of
edges: linear-chain and skip-chain edges. The lat-
ter edges model AP links, which we represent as
a set of (s, d) index pairs (note that no more than
one AP may share the same second element d).

The intuition that the summarization labels (−1
or 1) are highly correlated with APs is confirmed
in Table 2. While contiguous labels yt−1 and yt

seem to seldom influence each other, the correla-
tion between AP elements ys and yd is particularly
strong, and they have a tendency to be either both
included or both excluded. Note that the second
table is not symmetric, because the data allows an
A part to be linked to multiple B parts, but not
vice-versa. While counts in Table 2 reflect hu-
man labels, we only use automatically predicted
(s, d) pairs in the experiments of the remaining
part of this paper. To find these pairs automati-
cally, we trained a non-sequential log-linear model
that achieves a .902 accuracy (Galley et al., 2004).

4 Skip-Chain Sequence Models

In this paper, we investigate conditional models
for paired sequences of observations and labels. In
the case of utterance selection, the observation se-
quence x = x1:T = (x1, . . . , xT ) represents local

Statement

x1 x2 x3 x4 x5

BackChannel Statement Statement Statement

y1 y2 y3 y4 y5

Figure 1: A skip-chain CRF with pragmatic-level links.

Linear-chain edges yt = 1 yt = −1
yt−1 = 1 529 7742
yt−1 = −1 7742 116040
Skip-chain edges yd = 1 yd = −1
ys = 1 6792 2191
ys = −1 1479 121591

Table 2: Contingency tables: while the correlation between
adjacent labels yt−1 and yt is not significant (χ2 = 2.3,
p > .05), empirical evidence clearly shows that ys and yd

influence each other (χ2 = 78948, p < .001).

summarization predictors (see Section 6), and the
binary sequence y = y1:T = (y1, . . . , yT ) (where
yt ∈ {−1, 1}) determines which utterances must
be included in the summary. In a discriminative
framework, we concentrate our modeling effort on
estimating p(y|x) from data, and do not explicitly
model the prior probability p(x), since x is fixed
during testing anyway.

Many probabilistic approaches to modeling se-
quences have relied on directed graphical mod-
els, also known as Bayesian networks (BN),1 in
particular hidden Markov models (Rabiner, 1989)
and conditional Markov models (McCallum et al.,
2000). However, prominent recent approaches
have focused on undirected graphical models, in
particular conditional random fields (CRF) (Laf-
ferty et al., 2001), and provided state-of-the-art
performance in many NLP tasks. In our work, we
will provide empirical results for state sequence
models of both semantics, and we will now de-

1In the existing literature, sequence models that satisfy the
Markovian condition—i.e., the state of the system at time t
depend only on its immediate past t− k:t− 1 (typically just
t− 1)—are generally termed dynamic Bayesian networks
(DBN). Since the particular models under investigation, i.e.
skip-chain models, do not have this property, we will simply
refer to them as Bayesian networks.
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scribe skip-chain models for both BNs and CRFs.
In a BN, the probability of the sequence y fac-

torizes as a product of probabilities of local predic-
tions yt conditioned on their parents π(yt) (Equa-
tion 1). In a CRF, the probability of the sequence y
factorizes according to a set of clique potentials
{Φc}c∈C , where C is represents the cliques of the
underlying graphical model (Equation 2).

pBN(y|x) =
T∏

i=1

pBN(yt|x, π(yt)) (1)

pCRF(y|x) ∝
∏
c∈C

Φc(xc,yc) (2)

We parameterize these BNs and CRFs as log-
linear models, and factorize both BN’s local pre-
diction probabilities and CRF’s clique potentials
using two types of feature functions. Linear-chain
feature functions fj(yt−k:t,x, t) represent local
dependencies that are consistent with an order-k
Markov assumption. For instance, one such func-
tion could be a predicate that is true if and only if
yt−1 = 1, yt = −1, and (xt−1, xt) indicates that
both utterances are produced by the same speaker.
Given a set of skip edges S = {(st, t)} specifying
source and destination indices, skip-chain feature
functions gj(yst , yt,x, st, t) exploit dependencies
between variables that are arbitrarily distant in
the chain. For instance, the finding that OFFER-
REJECT pairs are often linked in summaries might
be encoded as a skip-chain feature predicate that
is true if and only if yst = 1, yt = 1, and the first
word of the t-th utterance is “no”.

Log-linear models for skip-chain sequence
models are defined in terms of weights {λk} and
{µk}, one for each feature function. In the case of
BNs, we write:

log pBN(yt|x, π(yt)) ∝
J∑

j=1

λjfj(x,yt−k:t, t) +
J ′∑

j=1

µjgj(x, yst , yt, st, t)

We can reduce a particular skip-chain CRF to rep-
resent only the set of cliques along (yt−1, yt) adja-
cency edges and (yst , yt) skip edges, resulting in
only two potential functions:

log ΦLIN(x,yt−k:t, t) =
J∑

j=1

λjfj(x,yt−k:t, t)

log ΦSKIP(x, yst , yt, t) =
J ′∑

j=1

µjgj(x, yst , yt, st, t)

4.1 Inference and Parameter Estimation

Our CRF and BN models were designed us-
ing MALLET (McCallum, 2002), which provides
tools for training log-linear models with L-BFGS
optimization techniques and maximize the log-
likelihood of our training dataD = (x(i),y(i))

N

i=1,
and provides probabilistic inference algorithms for
linear-chain BNs and CRFs.

Most previous work with CRFs containing non-
local dependencies used approximate probabilis-
tic inference techniques, including TRP (Sutton
and McCallum, 2004) and Gibbs sampling (Finkel
et al., 2005). Approximation is needed when
the junction tree of a graphical model is associ-
ated with prohibitively large cliques. For exam-
ple, the worse case reported in (Sutton and Mc-
Callum, 2004) is a clique of 61 nodes. In the
case of skip-chain models representing APs, the
inference problem is somewhat simpler: loops in
the graph are relatively short, 98% of AP edges
span no more than 5 time slices, and the maximum
clique size in the entire data is 5. While exact in-
ference might be possible in our case, we used the
simpler approach of adapting standard inference
algorithms for linear-chain models.

Specifically, to account for skip-edges, we used
a technique inspired by (Sha and Pereira, 2003),
in which multiple state dependencies, such as an
order-2 Markov model, are encoded using auxil-
iary tags. For instance, an order-2 Markov model
is parameterized using state triples yt−2:t, and each
possible triple is converted to a label zt = yt−2:t.
Using these auxiliary labels only, we can then
use the standard forward-backward algorithm for
computing marginal distributions in linear-chain
CRFs, and Viterbi decoding in linear-chain CRFs
and BNs. The only requirement is to ensure that
a transition between zt and zt+1 is forbidden if
the sub-states yt−1:t common to both states differ,
i.e., is assigned an infinite cost. This approach can
be extended to the case of skip-chain transitions.
For instance, an order-1 Markov model with skip-
edges can be constructed using zt = (yst , yt−1, yt)
triples, where the first element yst represents the
label at the source of the skip-edge. Similarly to
the case of order-2 Markov models, we need to
ensure that only valid sequences of labels are con-
sidered, which is trivial to enforce if we assume
that no skip edge ranges more than a predefined
threshold of k time slices.

While this approach is not exact, it still provides
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competitive performance as we will see in Sec-
tion 8. In future work, we plan to explore more
accurate probabilistic inference techniques.

5 Ranking Utterances by Importance

As we will see in Section 8, using the actual
{−1, 1} label predictions of our BNs and CRFs
leads to significantly sub-optimal results, which
might be explained by the following reasons. First,
our models are optimized to maximize the condi-
tional log-likelihood of the training data, a mea-
sure that does not correlate well with utility mea-
sures generally used in retrieval oriented tasks
such as summarization, especially when faced
with a significant class imbalance (only 6.26%
of reference instances are positive). Second, the
MAP decision rule doesn’t give us the freedom to
select an arbitrary number of sentences in order
to satisfy any constraint on length. Instead of us-
ing actual predictions, it seems more reasonable
to compute the posterior probability of each lo-
cal prediction yt, and extract the N most probable
summary sentences (yr1 , . . . , yrk

), where N may
depend on a length expressed in number of words,
as it is the case in our evaluation in Section 7.

BNs assign probability distributions over entire
sequences by estimating the probability of each in-
dividual instance yt in the sequence (Equation 1),
and seem thus particularly suited for ranking utter-
ances. A first approach is then to rank utterances
according to the cost of predicting yt = 1 at each
time step on the Viterbi path. While these costs
are well-formed (negative log) probabilities in the
case of BNs, they cannot be interpreted as such in
the case of CRFs, and turn out to produce poor re-
sults with CRFs. Indeed, the set of CRF potentials
associated with each time step have no immedi-
ate probabilistic interpretation, and cannot be used
directly to rank sentences. Since BNs and CRFs
are here parameterized as log-linear models and
rely on the same set of feature functions, a second
approach is to use CRF-trained model parameters
to build a BN classifier that assigns a probability
to each yt. Specifically, the CRF model is first
used to generate label predicitons ŷ, from which
the locally-normalized model estimates the cost
of predicting ŷt = 1 given a label history ŷ1:t−1.
This ensures that we have a well-formed probabil-
ity distribution at each time slice, while capitaliz-
ing on the good performance of CRF models.

Lexical features:
· n-grams (n ≤ 3)
· number of words
· number of digits
· number of consecutive repeats

Information retrieval features:
· max/sum/mean frequency of all terms in ut

· max/sum/mean idf score
· max/sum/mean tf ·idf score
· cosine similarity between word vector of ut with cen-

troid of of the meeting
· scores of LSA with 5, 10, 50, 100, 200, 300 concepts

Acoustic features:
· seconds of silence before/during/after the turn
· speech rate
· min/max/mean/median/stddev/onset/outset f0 of utter-

ance t, and of first and last word
· min/max/mean/stddev energy
· .05, .25, .5, .75, .95 quantiles of f0 and energy
· pitch range
· f0 mean absolute slope

Durational and structural features:
· duration of the previous/current/next utterance
· relative position within meeting (i.e., index t)
· relative position within speaker turn
· large number of structural predicates, i.e. “is the previ-

ous utterance of the same speaker?”
· number of APs initiated in yt

Discourse features:
· lexical cohesion score (for topic shifts) (Hearst, 1994)
· first and second word of utterance, if in cue word list
· number of pronouns
· number of fillers and fluency devices (e.g., “uh”, “um”)
· number of backchannel and acknowledgment tokens

(e.g., “uh-huh”, “ok”, “right”)

Table 3: Features for extractive summarization. Unless oth-
erwise mentioned, we refer to features of utterance t whose
label yt we are trying to predict.

6 Features for extractive summarization
We started our analyses with a large collection
of features found to be good predictors in ei-
ther speech (Inoue et al., 2004; Maskey and
Hirschberg, 2005; Murray et al., 2005) or text
summarization (Mani and Maybury, 1999). Our
goal is to build a very competitive feature set that
capitalizes on recent advances in summarization of
both genres. Table 3 lists some important features.

There is strong evidence that lexical cues such
as “significant” and “great” are strong predictors
in many summarization tasks (Edmundson, 1968).
Such cues are admittedly quite genre specific,
so we did not want to commit ourselves to any
specific list, which may not carry over well to
our specific speech domain, and we automatically
selected a list of n-grams (n ≤ 3) using cross-
validation on the training data. More specifically,
we computed the mutual information of each n-
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Transcript:

I think - one thing that makes a difference is this DC offset compensation.
1-13

Did you have a look at meeting digits if they have a them?
14-26

I didn't. No.
27-29

Hmm.
30

No. The DC component is negligible. All mikes have DC removal.
31-41

Yeah.
42

Because there's a sample and hold in the A-to-D.
43-51

And I also, um, did some experiments about normalizing the phase.
52-62

And came up with a web page people can take a look at.
63-75

Model 1 (len=20):

31-41

43-51

Model 2 (len=22):

31-41

52-62

Model 3 (len=24):

52-62

63-75

Peer (len=22):

1-13

43-51

Optimal (len=22):

31-41

52-62

1

1

2

3

4

3

3

2

2

Speaker:

Figure 2: Model, peer, and “optimal” summaries are all extracts taken from the same transcription.

gram with the class variable, and selected for each
n the 200 best scoring n-grams. Other lexical fea-
tures include: the number of digits, which is help-
ful for identifying sections of the meetings where
participants collect data by recording digits; the
number of repeats, which may indicate the kind of
hesitations and disfluencies that negatively corre-
lates with what is included in the summary.

The information retrieval feature set contains
many features that are generally found helpful in
summarization, in particular tf ·idf and scores de-
rived from centroid methods. In particular, we
used the latent semantic analysis (LSA) feature
discussed in (Murray et al., 2005), which attempts
to determine sentence importance through singu-
lar value decomposition, and whose resulting sin-
gular values and singular vectors can be exploited
to associate each utterance a degree of relevance to
one of the top-n concepts of the meetings (where n
represents the number of dimensions in the LSA).
We used the same scoring mechanism as (Mur-
ray et al., 2005), though we extracted features for
many different n values.

Acoustic features extracted with Praat
(Boersma and Weenink, 2006) were normal-
ized by channel and speaker, including many
raw features such as f0 and energy. Structural
features listed in the table are those computed
from the sequence model before decoding, e.g.,
the duration that separates the two elements
of an AP. Finally, discourse features represent
predictors that may substitute to DA labels. While
DA tagging is not directly our concern, it is
presumably helpful to capitalize on discourse
characteristics of utterances involved in adjacency
pairs, since different types of dialog acts may be
unequally likely to appear in a summary.

7 Evaluation
Evaluating summarization is a difficult problem
and there is no broad consensus on how to best
perform this task. Two metrics have become

quite popular in multi-document summarization,
namely the Pyramid method (Nenkova and Pas-
sonneau, 2004b) and ROUGE (Lin, 2004). Pyra-
mid and ROUGE are techniques looking for con-
tent units repeated in different model summaries,
i.e., summary content units (SCUs) such as clauses
and noun phrases for the Pyramid method, and n-
grams for ROUGE. The underlying hypothesis is
that different model sentences, clauses, or phrases
may convey the same meaning, which is a reason-
able assumption when dealing with reference sum-
maries produced by different authors, since it is
quite unlikely that any two abstractors would use
the exact same words to convey the same idea.

Our situation is however quite different, since
all model summaries of a given document are ut-
terance extracts of that same document, as this can
been seen in the excerpt of Figure 2. In our own
annotation of three meetings with SCUs defined
as in (Nenkova and Passonneau, 2004a), we found
that repetitions and reformulation of the same in-
formation are particularly infrequent, and that tex-
tual units that express the same content among
model summaries are generally originating from
the same document sentence (e.g., in the figure,
the first sentence in model 1 and 2 emanate from
the same document sentence). Very short SCUs
(e.g., base noun phrases) sometimes appeared in
different locations of a meeting, but we think it is
problematic to assume that connections between
such short units are indicative of any similarity
of sentential meaning: the contexts are different,
and words may be uttered by different speakers,
which may lead to unrelated or conflicting prag-
matic forces. For instance, an SCU realized as
“DC offset” and “DC component” appears in two
different sentences in the figure, i.e. those iden-
tified as 1-13 and 31-41. However, the two sen-
tences have contradictory meanings, and it would
be unfortunate to increase the score of a peer sum-
mary containing the former sentence because the
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latter is included in some model summaries.
For all these reasons, we believe that sum-

marization evaluation in our case should rely on
the following restrictive matching: two summary
units should be considered equivalent if and only
if they are extracted from the same location in
the original document (e.g., the “DC” appearing
in models 1 and 2 is not the same as the “DC” in
the peer summary, since they are extracted from
different sentences). This constraint on the match-
ing is reflected in our Pyramid evaluation, and we
define an SCU as a word and its document po-
sition, which lets us distinguish (“DC”,11) from
(“DC”,33). While this restriction on SCUs forces
us to disregard scarcely occurring paraphrases and
repetitions of the same information, it provides the
benefit of automated evaluation.

Once all SCUs have been identified, the Pyra-
mid method is applied as in (Nenkova and Passon-
neau, 2004b): we compute a scoreD by adding for
each SCU present in the summary a score equal
to the number of model summaries in which that
SCU appears. The Pyramid score P is computed
by dividing D by the maximum D∗ value that is
obtainable given the constraint on length. For in-
stance, the peer summary in the figure gets a score
D = 9 (since the 9 SCUs in range 43-51 occur in
one model), and the maximum obtainable score is
D∗ = 44 (all SCUs of the optimal summary ap-
pear in exactly two model summaries), hence the
peer summary’s score is P = .204.

While our evaluation scheme is similar to com-
paring the binary predictions of model and peer
summaries—each prediction determining whether
a given transcription word is included or not—
and averaging precision scores over all peer-model
pairs, the Pyramid evaluation differs on an im-
portant point, which makes us prefer the Pyramid
evaluation method: the maximum possible Pyra-
mid score is always guaranteed to be 1, but av-
erage precision scores can become arbitrarily low
as the consensus between summary annotators de-
creases. For instance, the average precision score
of the optimal summary in the figure is PR = 2

3 .2

2Precision scores of the optimal summary compared
against the the three model summaries are .5, 1, and .5, re-
spectively, and hence average 2

3
. We can show that P =

PR/PR∗, where PR∗ is the average precision of the op-
timal summary. Lack of space prevent us from providing a
proof, so we will just show that the equality holds in our ex-
ample: since the peer summary’s precision scores against the
three model summaries are respectively 9

22
, 0, and 0, we have

PR/PR∗ = ( 9
66

)/( 2
3
) = 9

44
= P .

FEATURE Fβ=1

1 utterance duration .246
2 100-dimension LSA .268
3 duration of utterance t− 1 .275
4 time between utterances s and d = t .281
5 IDF mean .284
6 meeting position .286
7 number of APs initiated in t .288
8 duration of utterance t + 1 .288
9 number of fillers .289

10 .25-quantile of energy .290
11 number of lexical repeats .292
12 lexical cohesion score .294
13 f0 mean of last word of utterance t .294
14 LSA 50 dimensions .295
15 utterances (t,t + 1) by same speaker .298
16 speech rate .302
17 “is that” .303
18 “for the” .303
19 (ut−1,ut) by same speaker .305
20 “to try” .305
21 “meetings” .305
22 utterance starts with “and” .306
23 “we have” .306
24 “new” .307
25 utterance starts with “what” .307

Table 4: Forward feature selection.

In the case of the six test meetings, which all have
either 3 or 4 model summaries, the maximum pos-
sible average precision is .6405.

8 Experiments

We follow (Murray et al., 2005) in using the same
six meetings as test data, since each of these meet-
ings has multiple reference summaries. The re-
maining 69 meetings were used for training, which
represent in total more than 103,000 training in-
stances (or DA units), of which 6,464 are posi-
tives (6.24%). The multi-reference test set con-
tains more than 28,000 instances.

The goal of a preliminary experiment was to de-
vise a set of useful predictors from a full set of
1171. We performed feature selection by incre-
mentally growing a log-linear model with order-
0 features f(x, yt) using a forward feature selec-
tion procedure similar to (Berger et al., 1996).
Probably due to the imbalance between positive
and negative samples, we found it more effective
to rank candidate features by gains in F -measure
(through 5-fold cross validation on the entire train-
ing set). The increase in F1 by adding new features
to the model is displayed in Table 4; this greedy
search resulted in a set S of 217 features.

We now analyze the performance of different
sequence models on our test set. The target length
of each summary was set to 12.7% of the number
of words of the full document, which is the aver-
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age on the entire training data (the average on the
test data is 12.9%). In Table 5, we use an order-0
CRF to compare S against all features and various
categorical groupings. Overall, we notice lexical
predictors and statistics derived from them (e.g.
LSA features) represent the most helpful feature
group (.497), though all other features combined
achieve a competitive performance (.476).

Table 6 displays performance for sequence
models incorporating linear-chain features of in-
creasing order k. Its second column indicates
what criterion was used to rank utterances. In the
case of ‘pred’, we used actual model {−1, 1} pre-
dictions, which in all cases generated summaries
much shorted than the allowable length, and pro-
duced poor performance. ‘Costs’ and ‘norm-CRF’
refer to the two ranking criteria presented in Sec-
tion 5, and it is clear that the performance of CRFs
degrades with increasing orders without local nor-
malization. While the contingency counts in Ta-
ble 2 only hinted a limited benefit of linear-chain
features, empirical results show the contrary—
especially for order k = 2. However, the further
increase of k causes overfitting, and skip-chain
features seem a better way to capture non-local
dependencies while keeping the number of model
parameters relatively small. Overall, the addition
of skip-chain edges to linear-chain models provide
noticeable improvement in Pyramid scores. Our
system that performed best on cross-validation
data is an order-2 CRF with skip-chain transitions,
which achieves a Pyramid score of P = .554.

We now assess the significance of our results
by comparing our best system against: (1) a lead
summarizer that always selects the first N utter-
ances to match the predefined length; (2) human
performance, which is obtained by leave-one-out
comparisons among references (Table 7); (3) “op-
timal” summaries generated using the procedure
explained in (Nenkova and Passonneau, 2004b)
by ranking document utterances by the number of
model summaries in which they appear. It ap-
pears that our system is considerably better than
the baseline, and achieves 91.3% of human per-
formance in terms of Pyramid scores, and 83% if
using ASR transcription. This last result is partic-
ularly positive if we consider our strong reliance
on lexical features.

For completeness, we also included standard
ROUGE (1, 2, and L) scores in Table 7, which
were obtained using parameters defined for the

FEATURE SET P
lexical .471
IR .415
lexical + IR .497
acoustic .407
structural/durational .478
acoustic + structural/durational .476
all features .507
selected features (S) .515

Table 5: Pyramid score for each feature set.

MODEL RANKING k = 1 2 3
linear-chain BN pred .241 .267 .269
linear-chain BN costs .512 .519 .525
skip-chain BN costs .543 .549 .542
linear-chain CRF pred .326 .36 .348
linear-chain CRF costs .508 .475 .447
linear-chain CRF norm-CRF .53 .548 .54
skip-chain CRF norm-CRF .541 .554 .559

Table 6: Pyramid scores for different sequence models, where
k stands for the order of linear-chain features. The value in
bold is the performance of the model that was selected after
a 5-fold cross validation on the training data, which obtained
the highest F1 score.

SUMMARIZER P R-1 R-2 R-L
baseline .188 .501 .210 .495
skip-chain CRF (transcript) .554 .715 .442 .709
skip-chain CRF (ASR) .504 .714 .42 .706
human .607 .720 .477 .715
optimal 1 .791 .648 .788

Table 7: Pyramid, and average ROUGE scores for summaries
produces by a baseline (lead summarizer), our best system,
humans, and the optimal summarizer.

DUC-05 evaluation. Since system summaries
have on average approximately the same length
as references, we only report recall measures of
ROUGE (precision and F averages are within ±
.002).3 It may come as a surprise that our best sys-
tem (both with ASR and true words) performs al-
most as well as humans; it seems more reasonable
to conclude that, in our case, ROUGE has trouble
discriminating between systems with moderately
close performance. This seems to confirm our im-
pression that content evaluation in our task should
be based on exact matches.

We performed a last experiment to compare our
best system against Murray et al. (2005), who used
the same test data, but constrained summary sizes
in terms of number of DA units instead of words.
In their experiments, 10% of DAs had to be se-
lected. Our system achieves .91 recall, .5 preci-
sion, and .64 F1 with the same length constraint.

3Human performance with ROUGE was assessed by
cross-validating reference summaries of each meeting (i.e.,
n references for a given meeting resulted in n evaluations
against the other references). We used the same leave-one-
out procedure with other summarizers, in order to get results
comparable to humans.
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The discrepancy between recall and precision is
largely due to the fact that generated summaries
are on average much longer than model summaries
(10% vs. 6.26% of DAs), which explains why our
precision is relatively low in this last evaluation.
The best ROUGE-1 measure reported in (Murray
et al., 2005) is .69 recall, which is significantly
lower than ours according to confidence intervals.

9 Conclusion
An order-2 CRF with skip-chain dependencies de-
rived from the automatic analysis of participant
interaction was shown to outperform linear-chain
BNs and CRFs, despite the incorporation in all
cases of the same competitive set of predictors
resulting from cross-validated feature selection.
Compared to an order-0 CRF model, the absolute
increase in performance is 3.9% (7.5% relative in-
crease), which indicates that it is helpful to use
skip-chain sequence models in the summarization
task. Our best performing system reaches 91.3%
of human performance, and scales relatively well
on automatic speech recognition output.
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