
Appeared in 10th International Workshop on Frontiers in Handwriting Recognition (IWFHR) 10, 2006

Discriminative Writer Adaptation

Martin Szummer Christopher M. Bishop
Microsoft Research, Cambridge, UK

szummer@microsoft.com, cmbishop@microsoft.com

Abstract

We propose a general method for adapting a writer-
independent classifier to an individual writer. We employ
a mixture of experts formulation, where the classifiers are
trained on weighted clusters of writers. The clusters are
determined by which experts classify individual writing
correctly. The method adapts by choosing the appropri-
ate combination of classifiers for a new user. It applies
to any probabilistic discriminative classifier, and adapts
discriminatively without modeling the input feature distri-
bution.

We apply the method to online character recognition.
Specifically, we use a mixture of neural networks as well
as a mixture of logistic regressions. We train the mixture
via conjugate gradient ascent or via the EM algorithm on
192,000 Latin characters of 98 classes and 216 writers,
and show adaptation results for 21 writers.

Keywords: writer-adaptation, mixture of experts, neu-
ral networks, allographs, personalization

1. Introduction
The large variability of handwriting across individ-

uals makes handwriting recognition a challenging prob-
lem. Writer-independent systems trained from examples
require large training sets from many writers to deal with
this variability. In contrast, writer-dependent systems can
be trained on a specific user’s writing to achieve the same
recognition accuracy with orders of magnitude fewer ex-
amples. However, accuracy can be increased further by
leveraging both large multi-writer training sets as well as
a writer-specific set. In this paper we explore how to
adapt a writer-independent recognizer to make it writer-
dependent. Our recognizer can work immediately without
adaptation for a new user, yet adapt gradually as examples
of the user’s handwriting are accumulated.

From an abstract viewpoint, the adaptation problem
can be seen as a learning problem in which the data distri-
bution changes from a generic one modeling data of many
users, to a specific one for a new user. (We typically know
which user an input comes from.) The question is how as-
pects of the generic dataset can be exploited when build-
ing the adapted classifier. One possibility is to cluster the
generic dataset to identify groups of users sharing simi-
lar styles, and then to train a classifier for each group. To

adapt to a new user, we apply the most appropriate clas-
sifier. Another possibility is to train a new classifier for
the new user, but incorporating a prior over its parameters
learned from the generic dataset.

We perform user-adaptation in the domain of online
character recognition. Our focus is on adaptation purely,
without involving any language model as often exploited
during word recognition. Also we do not consider other
types of adaptation, such as adaptation to novel charac-
ter classes or symbols, adaptation to new fonts, or adap-
tation of word lexicons. We consider supervised adapta-
tion where labels are available for the adaptation examples
of the new user. The approach could be extended to un-
supervised adaptation by labeling the examples using the
writer-independent classifier [11].

Our strategy is to build classifiers for groups of users
sharing similar styles, and then to choose the best com-
bination of classifiers for a new user. More precisely,
we learn a mixture of classifiers, where each classifier is
trained on data from some weighted subset of the users.
Thus we exploit knowledge of which data came from
which user. Each classifier can be thought of as an “ex-
pert”, and our model is an instance of mixture of ex-
perts [6]. For a given writer, we choose the experts that
classify his writing well. The choice is robustly based on
the aggregate confidence across all of the user’s charac-
ters, and is not specific to individual input characters. The
mixture model defines a clustering of users, by grouping
users sharing the same experts. Note that this clustering
is discriminative—we do not model the users’ writing in-
put distribution directly, but rather cluster users by classi-
fication confidence. Observe also that the clustering and
classification is performed jointly, in a single stage. The
clustering is probabilistic and assignments can be soft.

The advantage of the discriminative mixture model
is that it is optimized for the classification task we ulti-
mately care about. Thus, the model finds clusters use-
ful for classification purposes, not necessarily clusters of
similar visual styles which could be irrelevant for classi-
fier accuracy. By avoiding to model the potentially high-
dimensional input distribution, the model requires fewer
resources and is more parsimonious. The adaptation can
be based on very few examples from the new user, as
we only need to determine which classifier is most con-
fidently correct for his writing. The architecture is generic
and works with any discriminative probabilistic classi-

fiers, such as logistic regression, neural networks, near-
est neighbor with probabilistic outputs, Gaussian process
classifiers and so on. Classifiers that can take weighted
training examples are especially straightforward, and can
be trained using the equations provided here.

1.1. Related Work

In the past, clustering of characters into allographs or
styles [1, 12] has been done in a separate stage preced-
ing classification. Moreover, typical clustering criteria as-
sume generative models (e.g. mixtures of Gaussians) that
do not match the subsequent classification objective, thus
the resulting clusters may not aid classification. Unfor-
tunately, the clustering also typically ignores information
about which user wrote which examples, so that common-
alities within user styles are not modeled. Nevertheless,
several adaptation systems do use generative clustering
models [5].

Caruana [4] suggests a neural network architecture
that learns several related tasks, in which representations
learned for each task can benefit learning of the others.
In the context of adaptation, one could treat data from
each user as a separate classification task, but these tasks
could all share related representations in the hidden layer
of the neural network. This is a fully discriminative proce-
dure, but to our knowledge, has not been applied to user-
adaptation yet.

The most common adaptation method in the literature
is to train a new classifier for the new user, while basing it
on the multi-writer training set. The multi-writer training
set can a) simply be appended to the new writer training
set, or b) serve as a prior for the new classifier’s param-
eters, possibly by constraining some of them, or c) it can
be used to learn a feature representation. For example,
nearest neighbor classifiers are adapted by starting with
the writer-independent examples as prototypes and then
adding and removing prototypes based on the new user’s
examples [10].

Hidden Markov models are adapted using strategy b).
One trains HMMs for each character on the multi-writer
set, and then reestimates a subset of the HMM parameters
(e.g. the observation means) from the new user set. Al-
ternatively, the multi-writer set can serve to estimate pri-
ors for the HMM to be adapted. When the new writer’s
dataset is small, one can group some of the HMM param-
eters together and do a constrained update of the parame-
ters (e.g. a linear transformation of means as in maximum
likelihood linear regression) [9, 3, 7].

Neural network models can be updated using strategy
c). Guyon et al. [8] reuse the hidden layer representation
gained from the multi-writer training as features for a lin-
ear SVM classifier for the new user. Unfortunately, all
three strategies lump together data from the multi-writer
dataset without modeling which user wrote it.

2. Discriminative Adaptation
Assume we have K classifiers, each good at recogniz-

ing some styles of handwriting. Some of these classifiers
will be applicable to a large number of writers, others may
be employed infrequently. Let πk be the prior probability
of employing classifier k, corresponding to the fraction of
users whose writing it is good at recognizing. For an in-
put x, this classifier will assign a probability P (t | x,θk)
to class label t. Here θk are the parameters of the clas-
sifier. Let us group input items by user, and denote all
inputs from user n by xn = {xni}i, with i indexing indi-
vidual examples. For this data the classifier will assign
the set of labels tn = {tni}i in which the probability
P (tn | xn,θk) =

∏
i P (tni | xni,θk).

A priori we do not know which classifier we should
apply to a user. We can take a weighted average of clas-
sifiers to calculate the marginal probability of labels for a
user’s input, so that

P (tn | xn,θ) =
K∑

k=1

πkP (tn | xn,θk). (1)

This is a mixture of classifiers, where πk are the mix-
ture weights. Such a mixture is commonly referred to as a
mixture of experts [6]. The classifiers are the experts here.
Note that this is a mixture per user, so that the probabil-
ity πk of choosing a particular classifier is multiplied only
once per user, not per input item. For brevity, we have col-
lected the mixture weights and classifier parameters into
θ = {πk,θk}k.

The conditional log likelihood of the label set from N
users is then

L(θ) = log
N∏

n=1

P (tn | xn,θ). (2)

To train the system, we will optimize the parameters of
the classifiers as to maximize this likelihood. We will first
describe how to do the maximization via gradient ascent,
and secondly show how to apply the EM algorithm. Both
methods are introduced for general discriminative classi-
fiers, and later sections 3-4 detail particular instances.

2.1. Gradient Ascent Training

Given a labelled training set, we can maximize the
conditional log likelihood L(θ) by an efficient ascent
technique such as conjugate gradient ascent. For this we
require the derivatives with respect to the parameters πk

and θk. However, the priors πk are non-negative parame-
ters that sum to one. To satisfy automatically these condi-
tions, we reparameterize {πk} in terms of {ηk} as

πk =
eηk∑K

j=1 eηj

, (3)

and then take derivatives with respect to ηk instead.
We will assume that we already know how to train the

individual classifiers by gradient ascent, in other words,

we can compute the gradients ∂
∂θk

log P (tn | xn,θk).
For example, if the classifier is a neural network, we cal-
culate this gradient by backpropagation. Typically, only
classifier k will have any contribution to the gradient with
respect to parameters θk (although we will discuss a case
of parameter-tying across classifiers in section 4). Then
the gradient of the likelihood can be expressed in terms of
the gradients of the individual classifiers by

∂

∂θk
L(θ) =

N∑
n=1

γnk
∂

∂θk
log P (tn | xn,θk), (4)

where

γnk =
πkP (tn | xn,θk)∑
m πmP (tn | xn,θm)

. (5)

Furthermore, the gradient of the mixture parameters is

∂

∂ηk
L(θ) =

N∑
n=1

(γnk − πk). (6)

The γnk have a natural interpretation as posterior prob-
abilities that classifier k is responsible for classifying data
from user n. Intuitively, if the classifier prior πk is smaller
than the posterior γnk we increase likelihood by increas-
ing ηk (hence πk), effectively trying to match prior with
posterior.

We shall note that some care is needed to avoid nu-
merical underflow when calculating γnk. The probabili-
ties P (tn | xn,θk) are products over multiple items for a
user, and frequently underflow unless computed in the log
domain, and unless maxj πjP (tn | xn,θj) is factored out
of the sum.

Finally, we can regularize the problem by adding a
prior on the classifier parameters. A Gaussian prior with
diagonal covariance σ2I on the weights subtracts an extra
term θk/σ2 from the gradient for each k.

2.2. EM Training

The expectation maximization (EM) algorithm [6] is
another method for maximizing likelihood. In our case,
it alternates between determining which classifiers are ap-
plicable to which users, and then maximizing the classi-
fier parameters with respect to those users. It can be em-
ployed whenever we are able to maximize the weighted
likelihood of the individual classifiers.

To derive the EM algorithm, we note that the likeli-
hood would be simple to optimize if we knew what clas-
sifier applied to each user. Hence, we introduce stochastic
latent variables znk, where znk = 1 indicates that classi-
fier k applies to user n, or otherwise znk = 0. A priori,
exactly one classifier applies per user, so that

∑
k znk = 1

for all n. A posteriori, the assignment of classifiers is soft,
i.e. a combination of classifiers per user.

The distribution over the latent variables is given by
the priors as

P (zn|π) =
K∏

k=1

πznk

k , (7)

where zn = {znk}, and π = {πk} .
The joint log likelihood of the labels and stochastic

variables is

log
∏
n

P (tn,zn | xn,θ) = (8a)

log
∏
n

P (tn | xn,zn,θ)P (zn | π) = (8b)

log
∏
n

∏
k

(πkP (tn | xn,θk))znk = (8c)∑
n

∑
k

znk log(πkP (tn | xn,θk)). (8d)

In the EM algorithm, we maximize the observed
“incomplete” data likelihood log

∏
n P (tn|xn,θ) by it-

eratively maximizing the expected complete likelihood
E[log

∏
n P (tn,zn|xn,θ)] where the expectation is with

respect to P (zn|tn,xn,θold), and θold are parameters
from the previous iteration. Denote γnk = E[znk], of-
ten referred to as “responsibilities”, which turn out to be
identical to the posterior probabilities in eq. (5). Then

E[log
∏
n

P (tn,zn|xn,θ)] (9a)

=
∑

n

∑
k

γnk log(πkP (tn | xn,θk)). (9b)

The algorithm now iterates between an M-step and an
E-step as follows:

M-step: maximize over the parameters πk and θk,
keeping the responsibilities γnk fixed. The maximiza-
tion over each classifier’s parameters θk can be done inde-
pendently and reduces to training a single classifier rather
than a mixture, with the difference that the data points are
weighted by γnk, so that for classifier k we find

arg max
θk

∑
n

∑
k

γnk log P (tn|xn,θk). (10)

The maximization over πk simplifies to

πk =
1
N

∑
n

γnk. (11)

E-step: calculate the responsibilities γnk using the pa-
rameters from the M-step. The responsibilities are the
posterior probabilities of classifier k and user n, given by
eq. (5).

The EM algorithm can be started by initializing the
parameters of individual classifiers, setting the responsi-
bilities to be uniform 1/K, and then proceeding with the
E-step.

Both the EM algorithm and the gradient ascent method
apply to a variety of classifiers. We have described the
general case so far, but in sections 3 and 4 we specifically
build a mixture of logistic regressors, and a mixture of
neural networks.

2.3. Classification for a New User

In the above training procedures, we exploited infor-
mation about user identity by seeing how well a classifier
predicts the labels per user. This allowed the classifiers
to specialize on particular users by training on a weighted
set of the data. Effectively, the classifiers clustered the
writers, according to classifiers’ ability to recognize their
handwriting.

When a new user enrols in the system, we can be-
gin by classifying his handwriting by taking an average of
classifiers, according to the prior weights πk. In order to
adapt to the writer, we must obtain some labeled data from
him, possibly by asking him to write a known sample, or
by requesting labels for his writing. Given some labeled
data, we calculate the posterior probabilities γk (eq. (5))
for each classifier and subsequently predict according to
P (t | x, θ) =

∑
k γkP (t | x, θk). Note that we do not

need to train the classifiers at this point, hence we only
require a few bits of information in order to choose the
appropriate weighting of classifiers. Thus, we can adapt
quickly with a few labeled examples from a new user. If
sufficient labeled writer-specific data becomes available,
it may be worth retraining the classifiers, but we do not
try that here.

If very little labeled data is available for a user, the
posterior probabilities are likely to be soft reflecting the
uncertainty of limited information. As more data is ob-
tained, the posteriors typically become deterministic 0 or
1, settling on a particular classifier. For efficiency reasons,
we may restrict the system to only run the classifier with
the highest posterior for the user.

3. Mixture of Logistic Regressors on Syn-
thetic Data

In order to demonstrate the use of conditional mixture
models trained by EM in the context of style personaliza-
tion, we consider a synthetic two-class problem with an
easily visualized two-dimensional feature space. The data
are points sampled from 8 Gaussians, simulating features
of two letters written by four users. The users group into
two styles, such that users within a style produce more
similar features than users in the other style.

For illustration purposes, we will represent one let-
ter class by solid shapes, and the other class by outline
shapes. The two styles are indicated by 3-sided and 4-
sided shapes, and examples from an individual user are
shown as a specific shape such as a square or a diamond.
The classifiers are given the label and the user identity as-
sociated with each example, but must discover the styles.

For simplicity we consider a simple logistic regression
classifier [2] in which the posterior probability is given by

P (t | x,θ) = 1/(1 + e−tθT x), (12)

where x is the input vector (in this case the Cartesian coor-
dinates of the data point in the input space), t = {+1,−1}
is the class label and θ is the parameter vector. A single lo-

Figure 1. Classification task with two classes “solid”
and “outline” (hollow), with examples written by four
users (square, diamond, triangle up, triangle down).
Two users write in a particular style (shown as 3-
sided, i.e. triangles) and the other two share another
style (4-sided, i.e. square/diamond). The styles dif-
fer for the solid class, so that features for the 3-sided
style are to the right of features from the 4-sided. The
styles do not differ for the outline class. The deci-
sion boundary (line) is from a classifier trained with
no adaptation.

Figure 2. Data as in Figure 1, but with two decision
boundaries from a two-classifier mixture trained to au-
tomatically discover two styles (3-sided/4-sided style
information is not given).

gistic regression model is fitted to the data set, and the de-
cision boundary, corresponding to P (t = 1 | x,θ) = 0.5,
is also shown in Figure 1.

Now we train a mixture of two logistic regression
models on the same data set. The resulting pair of de-
cision boundaries is shown in Figure 2. Note that each
component does a better job of separating the two classes
for its own style compared to the single model of Figure 1.
This is confirmed in Figure 3, where we see data from a
new user, and we have shown the decision boundary for

Figure 3. Data from a new user. The classifier for the
3-sided style is most confident at classifying this data
and therefore chosen by the system.

their more probable 3-sided (triangle) style.

4. Mixture of Neural Networks on Hand-
writing Data

Here we apply the adaptation technique to real mul-
ticlass data, namely online handwritten characters. We
choose two-layer neural networks for the experts. The lo-
gistic regression classifiers from the previous section have
decision boundaries linear in the features, which may not
be sufficiently flexible here.

We train the mixture of neural networks by conjugate
gradient ascent. The neural networks employ tanh non-
linearities at the hidden units, and softmax nonlinearities
at the outputs. We will simultaneously optimize all net-
work parameters as well as the mixture probabilities πk.

The classifier responsibilities typically become hard 0
or 1, so that each network is effectively trained on only
a subset of the data. One concern is that the networks
may then not have enough training data and overfit as a
result. We address the problem by first training a single
network, and then initializing the expert networks from its
weights plus some random Gaussian noise to break sym-
metry. Secondly, we stop training the mixture early after
a handful of iterations.

As an optional third method of regularization, we can
also tie networks together to share the first layer. The first
layer can be thought of as a feature extractor, and the same
features may be applicable to different classification tasks.
This scheme is reminiscent of Rich Caruana’s multitask
learning [4], where each user can be seen as a different
task.

4.1. Experimental Results

We employed a training set of 192,000 single online
Latin characters, spanning 98 different classes, includ-
ing upper-case, lower-case and symbols. These were col-
lected from 216 writers. Network prior parameters were
tuned on a validation set of 38,000 characters. Adaptation

Table 1. Classification results. Error(π) denotes the
error using the prior classifier probabilities, whereas
Error(γ) denotes error using the posterior (adapted)
classifier probabilities.

Model Error (π) Error (γ) Bits
Baseline neural net 10.3% – –
4 network mixture 10.2% 9.3% 0.12

16 network mixture 10.2% 9.1% 0.24

was performed by estimating the posterior responsibilities
on an adaptation training set of 21,000 characters for 21
new users, corresponding to an average of 10 labeled ex-
amples per class per user. Finally, the system was tested
on an adaptation test set of 59,000 examples for those 21
users.

The dataset had precomputed features, corresponding
to upper, lower and side contours, as well as Chebyshev
polynomial coefficients, yielding 64 features of roughly
zero mean and unit variance. Our networks all employed
150 hidden units and 98 outputs, totalling almost 25,000
weights each.

We put a weak Gaussian prior on the network weights
with a standard deviation of 31, and stopped training of
the single network after 200 conjugate gradient steps. We
then added Gaussian random noise with standard devia-
tion 0.01 to the weights to initialize a mixture of neural
networks which we trained for another 5 to 20 iterations
on the training set. This step was fairly sensitive to overfit-
ting due to the much larger learning capacity of the mix-
ture. Finally, we estimated the posterior classifier prob-
abilities on the adaptation training set, and tested on the
adaptation test set. The training time was about 3 hours
for the initial baseline training and 2 hours for the mixture
of networks.

The results in Table 1 show good performance with the
baseline neural network of 10.3% error on a 98 class prob-
lem. The personalized mixture of 4 networks improves
on this result by bringing the error down to 9.3% and the
16-network mixture achieves 9.1%. This reflects a 12%
reduction in error from a strong baseline, comparable to
results in [5]. Note that the personalization using poste-
rior mixing coefficients is crucial, as by using the prior
mixture weights on the network we get the column results
given by the Error(π) column, which are very close to the
baseline. The final column shows the sharpness of the pos-
terior mixing coefficients, measured as posterior entropy
in bits.

Examining the per-user results shows that 16 out of 21
subjects show improved error rate compared to the base-
line on the 4-network mixture, and 18 out of 21 subjects
show improvement on the 16-network mixture. The most
common errors involve confusions among letter ’l’, digit
’1’, and bar ’|’, as well as uppercase letter ’O’, lowercase
’o’, digit ’0’, and degree symbol ’◦’ (Table 2). The base-
line and personalized classifiers all have difficulty distin-
guishing these characters.

Table 2. Most common classification errors for a 16-
network mixture, adapted for each of 21 users.

True character Predicted character % of total error
| (bar) l (letter) 7.6%
1 (digit) l (letter) 4.8%
0 (digit) O (letter) 4.6%
- (hyphen) (underscore) 2.8%
l (letter) 1 (digit) 2.1%
+ t 1.9%
q 9 1.7%

5. Discussion and Future Work
We have shown how to build a discriminative mixture

model whose components are standard classifiers. The
mixture can be learned effectively using either gradient
ascent or by the EM algorithm. Personalization requires a
small amount of labeled data from the new user, and im-
proves performance. The system works “out of the box”
without adaptation as well.

In future work, we hope to explore further ways of
personalizing the system. For example, the classifier co-
efficients do not depend on the input the user is writing.
It could be the case that the user has a special input-
dependent style for some letter that would be better han-
dled by another classifier. We also note that the indi-
vidual classifiers can be trained further given the labeled
data, and improve performance over time given many ex-
amples. It would be instructive to examine the clusters
of users formed by the algorithm, to see what users as-
signed to particular classifiers have in common. Finally,
an open question is how to optimize the text that the user
has to write to personalize the system as to gain an optimal
amount of handwriting.

Acknowledgments

I wish to thank Patrick Haluptzok and Michael Revow
for the data set, and Tom Minka for discussions on this
project.

References
[1] C. Bahlmann and H. Burkhardt, ”The writer indepen-

dent online handwriting recognition system frog on hand
and cluster generative statistical dynamic time warping”,
IEEE Trans. Pattern Analysis and Mach. Intell. (PAMI),
26(3):299–310, Mar 2004.

[2] C. M. Bishop, Neural Networks for Pattern Recognition,
Oxford Univ. Press, 1995.

[3] A. Brakensiek, A. Kosmala and G. Rigoll, ”Compar-
ing adaptation techniques for on-line handwriting recog-
nition”, Intl. Conf. on Document Analysis and Recognition
(ICDAR), 2001, pp 486–490.

[4] R. Caruana, ”Multitask Learning”, Machine Learning,
28:41–75, 1997.

[5] S. Connell and A. Jain, ”Writer adaptation for online hand-
writing recognition”, IEEE Trans. Pattern Analysis and
Mach. Intell. (PAMI), 24(3):329–346, March 2002.

[6] M. I. Jordan and R. A. Jacobs, ”Hierarchical Mixtures
of Experts and the EM Algorithm”, Neural Computation,
6:181–214, 1994.

[7] C. Leggetter and P. Woodland, ”Maximum likelihood lin-
ear regression for speaker adaptation of continuous den-
sity HMMs”, Computer Speech and Language, 9:171–185,
1995.

[8] N. Matić, I. Guyon, J. Denker and V. Vapnik, ”Writer-
adaptation for On-line Handwritten Character Recogni-
tion”, Intl. Conf. on Document Analysis and Recognition
(ICDAR), 1993, pp 187–191.

[9] J. Subrahmonia, K. Nathan and M. Perrone, ”Writer depen-
dent recognition of on-line unconstrained handwriting”,
IEEE Intl. Conf. on Acoust. Sp. and Sig. Proc. (ICASSP),
1996, volume 6, pp 3478–3481.

[10] V. Vuori, J. Laaksonen, E. Oja and J. Kangas, ”On-
line adaptation in recognition of handwritten alphanumeric
characters”, Intl. Conf. on Document Analysis and Recog-
nition (ICDAR), 1999, pp 792–795.

[11] V. Vuori, J. Laaksonen, E. Oja and J. Kangas, ”Controlling
on-line adaptation of a prototype-based classifier for hand-
written characters”, Proc. Intl. Conf. on Pattern Recogni-
tion (ICPR), 2000, volume 2, pp 331–334.

[12] L. Vuurpijl and L. Schomaker, ”Coarse writing-style clus-
tering based on simple stroke-related features”, A. Down-
ton and S. Impedovo, editors, Progress in Handwriting
Recognition, pp 29–34. World Scientific, 1997.

