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Subband Likelihood-Maximizing Beamforming for
Speech Recognition in Reverberant Environments
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Abstract—In this paper, we introduce Subband LIkelihood-
MAximizing BEAMforming (S-LIMABEAM), a new micro-
phone-array processing algorithm specifically designed for speech
recognition applications. The proposed algorithm is an extension
of the previously developed LIMABEAM array processing algo-
rithm. Unlike most array processing algorithms which operate
according to some waveform-level objective function, the goal of
LIMABEAM is to find the set of array parameters that maximizes
the likelihood of the correct recognition hypothesis. Optimizing
the array parameters in this manner results in significant improve-
ments in recognition accuracy over conventional array processing
methods when speech is corrupted by additive noise and moderate
levels of reverberation. Despite the success of the LIMABEAM
algorithm in such environments, little improvement was achieved
in highly reverberant environments. In such situations where the
noise is highly correlated to the speech signal and the number of
filter parameters to estimate is large, subband processing has been
used to improve the performance of LMS-type adaptive filtering
algorithms. We use subband processing principles to design a
novel array processing architecture in which select groups of
subbands are processed jointly to maximize the likelihood of
the resulting speech recognition features, as measured by the
recognizer itself. By creating a subband filtering architecture that
explicitly accounts for the manner in which recognition features
are computed, we can effectively apply the LIMABEAM frame-
work to highly reverberant environments. By doing so, we are able
to achieve improvements in word error rate of over 20% compared
to conventional methods in highly reverberant environments.

Index Terms—Adaptive beamforming, microphone array pro-
cessing, speech recognition.

I. INTRODUCTION

THE PERFORMANCE of automatic speech recognition
systems has improved to the point where commercial

applications have been deployed for some small tasks. How-
ever, the benefits of speech-driven interfaces have yet to be
fully realized, due in large part to the significant degradation
in performance these systems exhibit in real-world environ-
ments. Improving speech recognition performance has been
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especially difficult in so-called distant-talking applications, i.e.,
applications in which the use of a close-talking microphone
is either impractical or undesirable, and the microphone must
be placed at some distance from the user. As a result of the
increased distance between the user and the microphone, the
speech signal becomes more susceptible to distortion from
additive noise and reverberation effects which severely degrade
the performance of speech recognition systems.

In these situations, microphone arrays have been used to mit-
igate the effects of this distortion. The corrupt speech signal is
recorded over multiple spatially separated channels which are
then processed jointly in order to spatially filter the soundfield
and produce a cleaner output waveform.

Because traditional beamforming methods do not success-
fully compensate for the negative effects of reverberation on the
speech signal, much recent research has focused on this area.
One obvious approach to dereverberation is to estimate and then
invert the room impulse response. Miyoshi et al. have shown
that if multiple channels are used and the room transfer func-
tions of all channels are known a priori, the exact inverse is pos-
sible to obtain if the transfer functions have no common zeros
[1]. However, concerns about the numerical stability and, hence,
practicality of this method have been raised because of the ex-
tremely large matrix inversions required [2], [3].

Other researchers have taken a matched filter approach to dere-
verberation. In [4], Flanagan et al. measure the transfer function
of the source-to-sensor room response for each microphone and
then use a truncated time-reversed version of this estimate as a
matched-filter for that source–sensor pair. The matched filters
are used in a filter-and-sum manner to process the array signals.
While the authors demonstrate that the matched-filter approach
has theoretical benefits over conventional delay-and-sum beam-
forming in terms of the signal-to-noise ratio (SNR), the matched-
filter approach provides minimal improvement in speech recog-
nition accuracy over delay-and-sum processing [5].

Another class of algorithms attempts to exploit characteris-
tics of the speech signal or room transfer functions to perform
dereverberation. For example, in [6], the kurtosis of the linear
prediction residual of the speech signal is maximized to perform
dereverberation. While the authors reported significant derever-
beration as measured by informal listening tests, little improve-
ment in speech recognition performance was achieved [7]. In
another approach, room transfer functions are decomposed into
minimum phase and all-pass components, and these compo-
nents are processed separately to remove the effects of reverber-
ation [8]. However, even in simulated environments, there were
significant implementation difficulties in applying this method
to continuous speech signals.
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Blind source separation (BSS) can also be interpreted as a mi-
crophone array processing problem, e.g., [9]. In the general BSS
framework, observed signals from multiple sensors are assumed
to be the result of a combination of source signals and some
unknown mixing matrix. Various methods of estimating this
mixing matrix, and thus separating the individual source sig-
nals, have been proposed, e.g., [10]. In [11], an analysis of BSS
for the separation of convolutive mixtures of speech was per-
formed, and it was found that BSS is equivalent to conventional
adaptive beamforming and, therefore, cannot produce signifi-
cant dereverberation. More recently, Buchner et al. showed that
with appropriate changes to the BSS cost function, improved
source separation of convolutive mixtures can be obtained [12].

One thing that unites practically all microphone array pro-
cessing techniques is that they have been designed for speech
enhancement. For speech recognition applications, one of these
techniques is applied to the array signals in order to generate a
enhanced single-channel waveform. The waveform is then input
to the speech recognition system for feature extraction and de-
coding. Implicitly, this approach makes the assumption that gen-
erating an enhanced speech waveform will necessarily result in
improved speech recognition. Such an assumption considers a
human listener and a speech recognizer equivalent and ignores
the manner in which speech recognition systems operate.

Speech recognition systems are statistical pattern classifiers
that operate on a set of features extracted from the waveform.
The hypothesis generated by the recognizer is the word string
that has the maximum likelihood (ML) of generating the ob-
served sequence of features, as measured by the recognizer’s
statistical models. Thus, any processing technique can only be
expected to improve speech recognition performance if it maxi-
mizes, or at least increases, the likelihood of the correct hypoth-
esis over other competing hypotheses. In contrast, the objec-
tive function of conventional microphone array processing algo-
rithms is defined according to some signal level criterion, e.g.,
maximizing the SNR, minimizing the signal waveform error, or
improving the perceptual quality as judged by human listeners.
We believe that this mismatch between the objective criteria
used by the array processing algorithms and that of the speech
recognizer is the fundamental reason why sophisticated array
processing algorithms may fail to produce significant improve-
ments in speech recognition accuracy over far simpler methods,
such as delay-and-sum beamforming [13].

To remedy this problem, we previously proposed a novel
array processing method called LIkelihood-MAximizing
BEAMforming (LIMABEAM). The goal of LIMABEAM is to
find the set of array parameters that maximizes the likelihood
of the correct recognition hypothesis. This is accomplished
by explicitly considering the manner in which speech recog-
nition systems process incoming speech and using pertinent
information from the recognition engine itself to optimize the
parameters of a sample-domain filter-and-sum beamformer.
Exploiting the information contained in the recognizer in this
way allows us to find the array parameters that maximize the
likelihood that the features extracted from the output of the
array will generate the correct recognition hypothesis.

We further suggest that maximizing the likelihood of the fea-
tures input to a speech recognizer can be considered a prim-

itive model of the minimization of distortion in the effective
signal that mediates auditory perception. While current feature
extraction for speech recognition is at best only a very crude ap-
proximation to the complex processing by the human auditory
system, we expect that the successes of our approaches will mo-
tivate further efforts toward the development of other signal pro-
cessing schemes more directly based on optimization of signals
as they are presented to the auditory system.

The LIMABEAM approach has several advantages over other
array processing methods. Most important, LIMABEAM is able
to exploit the vast amount of a priori information about speech
present in a speech recognizer. Speech recognizers are typically
trained on tens, hundreds, or even thousands of hours of speech.
Thus, the speech recognizer is, in essence, a detailed prior sta-
tistical model of speech. LIMABEAM uses this model to en-
sure that signal components important for recognition accuracy
are enhanced without undue emphasis on less important com-
ponents. In contrast, most other array processing algorithms are
largely indifferent to the characteristics of the input signal and
ignore this information. An exception to this is [14], in which
a likelihood maximizing beamformer in the cepstral domain
is proposed which also uses the statistical models of a speech
recognizer. In addition, unlike some classical adaptive beam-
forming methods, no assumptions about the interfering noise are
made, e.g., that it is uncorrelated from the target speech signal
[15]. Finally, the proposed approach requires no a priori knowl-
edge of the room configuration, array geometry, or source-to-
sensor room impulse responses.

Experiments performed showed that LIMABEAM results in
significantly improved speech recognition performance com-
pared to traditional array processing approaches in noisy envi-
ronments with low to moderate reverberation [16], [17]. How-
ever, even though its objective function is significantly different
from conventional adaptive filtering schemes, LIMABEAM is
at its core a gradient-descent-based least-mean-square (LMS)
type of algorithm. As a result, like all LMS algorithms, its rate
of convergence suffers when the input signals are highly corre-
lated and the filter length is long [15]. Unfortunately, both of
these conditions are generally true in highly reverberant envi-
ronments. In addition, as the number of parameters of the beam-
former to be jointly optimized increases, a significant increase
in the amount of adaptation data is required.

The use of a subband filtering has been proposed as a means
of improving the performance of adaptive filtering algorithms
plagued by these problems, for many applications including
acoustic echo cancellation and microphone array processing
e.g., [18]–[20]. In general, developing a subband processing
implementation of a full-band adaptive filtering algorithm is
fairly straightforward. The signal is divided into subbands and
the processing normally performed on the full-band signal
is simply performed on each of the subbands independently.
However, in LIMABEAM, the objective function measures
the likelihood of a sequence of feature vectors against a set of
statistical models. As a result, it is decidedly nontrivial to incor-
porate subband processing into the LIMABEAM framework.

In this paper, we present a new microphone array pro-
cessing algorithm called Subband LIkelihood-MAximizing
BEAMforming (S-LIMABEAM). S-LIMABEAM uses a novel
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subband filtering architecture which explicitly considers how
recognition features are computed [21]. We demonstrate that
an approach which processes all subbands independently, as
is typically done in subband filtering algorithms, is in fact
suboptimal for speech recognition applications. Instead, we
propose to optimize selected groups of subbands jointly. By
incorporating the proposed subband filtering architecture into
the LIMABEAM framework, we are able to achieve significant
improvements in speech recognition accuracy in reverberant
environments.

The remainder of the paper is organized as follows. In Sec-
tion II, we review the LIMABEAM algorithm. In Section III,
we discuss the use of subband filtering for microphone array
processing. In Section IV, we describe the S-LIMABEAM al-
gorithm in detail. The performance of the proposed algorithm is
evaluated through a series of experiments performed on speech
captured in a variety of environments in Section V. Finally, we
present the conclusion in Section VI.

II. LIMABEAM ALGORITHM

In conventional array processing algorithms, array parame-
ters are chosen to optimize the beampattern, minimize signal
distortion, or suppress interferring signals. Objective criteria
such as these focus on the notion of a desired signal. However,
speech recognition is not a signal processing problem, but rather
a pattern classification problem. Sound classes are modeled by
probability distribution functions. The speech waveform is con-
verted into a sequence of feature vectors and the recognizer
then compares these vectors to the statistical class models. The
output is a label corresponding to the sound class or sequence
of sound classes that has the maximum likelihood of generating
the observed feature vectors.

Therefore, in order to improve speech recognition accuracy,
the likelihood of the correct sound class must be maximized,
or at least increased relative to the other (incorrect) classes for
a given input. To do so, both the manner in which information
is input to the recognizer (the feature extraction process) and
the manner in which these features are processed (the decoding
process) must be explicitly considered.

Speech recognition systems operate by finding the word
string most likely to generate the observed sequence of
feature vectors , as measured by the
statistical models of the recognition system. When the speech
is captured by a microphone array, the feature vectors are a
function of both the incoming speech and the array processing
parameters, which we represent as . Recognition hypotheses
are generated according to Bayes optimal classification as

(1)

where the dependence of the feature vectors on is explicitly
shown. The acoustic score is computed using the sta-
tistical models of the recognizer, and the language score
is computed from a language model.

In LIMABEAM, the array parameters are chosen to maxi-
mize the likelihood of the correct transcription of the utterance

that was spoken. This increases the difference between the like-
lihood score of the correct transcription and the scores of com-
peting incorrect hypotheses, and thus increases the probability
that the correct transcription will be hypothesized.

For the time being, let us assume that the correct transcrip-
tion of the utterance, which we notate as , is known. We can
then maximize (1) for the array parameters . Because the tran-
scription is assumed to be known a priori, the language score

can be neglected. The ML estimate of the array pa-
rameters can now be defined as the vector that maximizes the
acoustic log-likelihood of the given sequence of words. In this
paper, we assume that for a speech recognizer based on hidden
Markov models (HMMs), the likelihood of a given transcription
can be largely represented by the single most likely HMM state
sequence. If represents the set of all possible state sequences
through this HMM and represents one such state sequence,
then the ML estimate of can be written as

(2)

Thus, according to (2), maximizing the likelihood of the
correct transcription requires a joint optimization of both the
array parameters and the HMM state sequence. This joint opti-
mization can be performed by alternately optimizing the state
sequence and the array processing parameters in an iterative
manner.

For a given a set of array parameters , the speech waveforms
can be processed and the features vectors extracted. Using the
feature vectors and the known transcription, the most likely
state sequence can be easily determined using the Viterbi
algorithm [22]. For a given state sequence, finding the optimal
array parameters depends on the form of the HMM state distri-
butions, the feature vectors being used, and the beamforming
architecture. In [16], we presented a method for finding the
optimal array parameters of a sample-domain filter-and-sum
beamformer when log mel spectra or mel frequency cepstral
coefficients (MFCCs) are used as the features and the HMM
states are represented by mixtures of Gaussians. Because both
the feature extraction process and the state probability compu-
tation introduce nonlinearities into the relationship between the
array parameters and the likelihood computation, finding the
optimal array parameters requires the use of iterative nonlinear
optimization techniques, such as the method of conjugate
gradients [23].

A. LIMABEAM in Practice

Thus far, we have assumed that the correct transcription of
the utterance is known. For more realistic scenarios in
which the transcription is in fact unknown, we developed two
different implementations of LIMABEAM. The first, called
Calibrated LIMABEAM, is appropriate for situations in which
the user’s position and environment do not vary significantly
over time [24]. In this method, the user reads an enrollment
utterance with a known transcription. An estimate of the most
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TABLE I
WER OBTAINED USING DELAY-AND-SUM BEAMFORMING AND

CALIBRATED LIMABEAM FOR TWO MICROPHONE ARRAY CORPORA

WITH DIFFERENT REVERBERATION TIMES

likely state sequence corresponding to the enrollment transcrip-
tion is made via forced alignment using the features derived
from the array signals. These features can be generated using an
initial set of filters, such as from a previous calibration session
or a simple delay-and-sum configuration. Using this estimated
state sequence, the filter parameters are then optimized. This
constitutes a single iteration. The state sequence and the re-
sulting filter parameters can then be refined using additional
iterations until the overall likelihood converges. At this point,
the calibration process is complete. The resulting filters are then
fixed and used to process future incoming speech to the array.

The second method, called Unsupervised LIMABEAM,
is more appropriate for use in time-varying environments
[25]. In Unsupervised LIMABEAM, the array parameters are
optimized for each utterance individually on the basis of a
hypothesized transcription generated from an initial estimate of
the array parameters. Using this hypothesized transcription and
the feature vectors generated by the initial array parameters, the
most likely state sequence is estimated using Viterbi alignment
as before. The filters are then optimized using the estimated
state sequence, and a second pass of recognition is performed.
As in the calibrated case, this process can be iterated until the
likelihood converges.

B. LIMABEAM in Reverberant Environments

Both the Calibrated LIMABEAM and Unsupervised
LIMABEAM algorithms have been shown to produce sig-
nificant improvements in recognition accuracy over conven-
tional array processing approaches in environments with low
reverberation [16]. In environments in which the reverberation
is more severe, however, the improvements over traditional
beamforming methods were reduced [17]. As an example,
Table I compares the word error rate (WER) obtained by using
delay-and-sum beamforming and Calibrated LIMABEAM in
two different environments, one with a 60-dB reverberation
time of 0.30 s and one with a reverberation time of 0.47 s.
In the 0.3-s reverberation environment, 50-tap finite-impulse
response (FIR) filters were optimized, while in the 0.47-s re-
verberation environment, the filter length was increased to 100
taps. In both cases, one utterance (11.7 s) of calibration data
was used per speaker. As the table shows, the improvement over
delay-and-sum beamforming in the second, more reverberant,
environment is only marginal, as compared to that obtained in
the first environment.

In an effort to improve the performance of LIMABEAM in
these conditions, we first increased the length of the filters used
in the beamformer. Using longer filters may help compensate

Fig. 1. WER as a function of filter length for the WSJ corpus when the
filter parameters are optimized using Calibrated LIMABEAM. The performance
using conventional delay-and-sum processing is also shown.

TABLE II
WER OBTAINED USING THE CALIBRATED LIMABEAM ALGORITHM FOR

THE WSJ CORPUS WHEN 100-TAP FIR FILTERS ARE OPTIMIZED

USING DIFFERENT AMOUNTS OF CALIBRATION DATA

for the longer room impulse responses typically associated with
more reverberant environments. Fig. 1 shows the WER in the
0.47-s environment as a function of beamformer filter length.
As the figure shows, increasing the filter length does not im-
prove the performance. In fact, using 200 taps per filter results
in significantly worse performance than delay-and-sum beam-
forming, while reducing the filter length to 50 taps results in
slightly improved performance.

As Fig. 1 suggests, if too many parameters are optimized
using too short of a calibration utterance, overfitting can occur,
and the resulting beamformer will not generalize well. Thus,
we also attempted to improve performance of Calibrated
LIMABEAM by increasing the amount of calibration data used
for optimization. The results obtained when optimizing 100-tap
FIR filters in the 0.47-s environment are shown in Table II.

As the table shows, increasing the amount of calibration data
does not consistently improve the performance of Calibrated
LIMABEAM, even though up to three times the amount of data
are being used. One would certainly not expect the performance
to degrade as the amount of calibration data is increased. How-
ever, using 28.1 s of data for calibration resulted in worse per-
formance than using 18.9 s.

Thus, we were unable to improve the performance of Cal-
ibrated LIMABEAM significantly and consistently, either by
increasing the number of beamformer parameters or the amount
of calibration data used for optimization. Furthermore, to com-
pensate for 0.47 s of reverberation, we expect that filters longer
that 100 or 200 taps will be necessary. Yet, as we have shown
here, even with this relatively modest number of taps, it is
clear that it is difficult to find an optimal solution robustly. We
hypothesize that as the number of parameters increases, the
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number of local minima in the optimization surface also in-
creases, and thus, finding a robust solution becomes extremely
difficult.

We note here that these experiments have been limited to
Calibrated LIMABEAM because a more fundamental problem
plagues Unsupervised LIMABEAM in highly reverberant envi-
ronments. This problem has less to do with the effects of rever-
beration as it does with the nature of unsupervised optimiza-
tion. For Unsupervised LIMABEAM to be successful, there
must be a sufficient number of correctly labeled frames in the
utterance. Performing unsupervised optimization on an utter-
ance with too few correctly hypothesized labels will only de-
grade performance, propagating the recognition errors further.
In these experiments, we typically use delay-and-sum beam-
forming as a means of obtaining first-pass hypothesized tran-
scriptions. As Table I shows, in the environment with
0.47 s, the error rate of these hypotheses is almost 60%. At this
level, little or no improvement can be expected using Unsuper-
vised LIMABEAM unless more accurate first-pass transcrip-
tions can be obtained. This general shortcoming of unsuper-
vised processing does not change the previous conclusion that
in reverberant conditions where long time-domain filters are re-
quired, finding optimal values of the LIMABEAM parameters
has proven to be extremely difficult.

In the next two sections, we develop a LIMABEAM algo-
rithm which utilizes subband processing techniques in order to
improve the performance in these environments.

III. SUBBAND FILTERING FOR MICROPHONE-ARRAY-BASED

SPEECH RECOGNITION

A. Brief Review of Subband Adaptive Filtering

The use of a subband filtering architecture has been proposed
as a means to improve the rate of convergence of adaptive fil-
tering algorithms when the desired filter to be estimated is very
long and the input signals are highly correlated [15]. In sub-
band filtering, the input signal is first decomposed into a series
of independent subbands using a bank of bandpass filters, called
analysis filters. Because each subband signal has a narrower
bandwidth that the original signal, the signals can be down-
sampled. Each subband signal is now processed independently
using an adaptive filter to minimize the subband error. After
processing, the full-band signal is reconstructed by upsampling
the output signals of the subband filters, and then passing them
through another set of filters called synthesis filters.

Subband filtering provides an improvement in convergence
over conventional full-band filtering for two reasons. First,
when the signal is divided into subbands, the learning rate or
step size used for adaptation in each subband can be chosen
independently of the other subbands. By using subband-specific
step sizes rather than a single step size for the entire broadband
signal, it is possible to compensate for variations in the signal
power across subbands and, as a result, obtain an improvement
in convergence [15]. Second, because processing takes place in
subbands, the number of parameters that needs to be estimated
jointly is reduced. Because each subband filter is operating
on a narrowband, downsampled version of the input signal,

processing requires fewer parameters. This improves the com-
putational complexity of the adaptation process. While the total
computation can be shown to be approximately the same [26],
the computation per subband is less. Because the subbands are
independent, the adaptation of the different subband filters can
be performed in parallel.

B. Incorporating Subband Processing Into the ASR Front End

In the feature extraction process used by most state-of-the-art
speech recognition systems, the incoming waveform is first seg-
mented into a series of overlapping frames. Each frame is then
windowed and transformed to the frequency domain using a dis-
crete Fourier transform (DFT). This short-time Fourier trans-
form (STFT) generates a series of spectral vectors that reflect the
change in the speech spectrum over time. Log mel spectra and
then mel cepstra are then extracted from these vectors through
a series of additional processing stages [27].

The STFT can be interpreted as a filtering operation, where
the window function combined with the DFT operation creates
a bank of bandpass filters centered at the DFT bin frequencies
and having the impulse response of the window function [28].
Furthermore, because of the shift typically performed between
successive frames, the front end is also performing downsam-
pling of the input signal.

Thus, subband processing can be easily incorporated into
the speech recognition front end because the required analysis
processing, i.e., the bandpass filtering and downsampling, does
not require any additional computation. In addition, because
the STFT vectors are converted to feature vectors for decoding,
there is no need to resynthesize the full-band signal after
processing.

C. Subband Filter-and-Sum Array Processing

When subband processing is performed using a DFT filter
bank, the subband signals are simply the DFT coefficients them-
selves. Consider a sequence of spectral vectors derived from
several frames of speech waveform. The DFT coefficients at a
particular frequency over all frames are a time–series of (com-
plex) samples that describes the variation over time in the signal
at that particular frequency. In this paper, each subband is as-
signed an FIR filter with complex tap values. Furthermore, be-
cause we are operating in a multichannel microphone array en-
vironment, we assign one such filter to each channel in the array.
This leads to a subband filter-and-sum array processing archi-
tecture, which can be expressed as

(3)

where is the value of the STFT in subband of the signal
captured by microphone at frame , is the th com-
plex tap of the subband filter assigned to that microphone and
subband, and denotes complex conjugation.

In the next section, we present a method for optimizing the pa-
rameters of a subband filter-and-sum beamformer which specif-
ically targets speech recognition performance.
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IV. SUBBAND LIKELIHOOD-MAXIMIZING BEAMFORMING

In this section, we present a subband filter-and-sum archi-
tecture derived directly from the manner in which recognition
features are computed. We then present an algorithm for op-
timizing the subband filter parameters using the LIMABEAM
framework.

A. Feature-Based Subband Filtering

In conventional subband adaptive filtering techniques, the
filter coefficients for particular subband are adapted
independently from the other subbands. However, closer
examination of the feature extraction process used in speech
recognition will reveal that, for our purposes, this is suboptimal.

To compute MFCC features, the mel spectrum is first derived
from the STFT by computing the energy in a series of weighted
overlapping frequency bands. Each component of the mel spec-
tral vector is computed as a linear combination of the energy
in a particular subset of DFT subbands. If we define as the
th component of the mel spectrum of frame and as the

value of the th mel triangle applied to subband , this can be
expressed as

(4)

where and are the DFT bins corresponding to the left and
right edges of the th mel filter, respectively. Outside of this
range, the value of is 0.

Substituting (3) into (4) clearly reveals that a given mel spec-
tral component is a function of the subband filter parame-
ters of all microphones and all subbands in the frequency range
spanned by its mel filter. Processing all subbands independently
ignores this relationship. A more optimal approach would con-
sider this set of filter coefficients jointly for each mel spectral
component, and in the following section, we describe a method
that does so.

B. Maximum-Likelihood Estimation of Subband Filter
Parameters

As before, we will assume that maximizing the likelihood of a
recognition hypothesis can be accomplished by maximizing the
likelihood of the most likely HMM state sequence for that tran-
scription. We further assume that the components of the feature
vectors are independent. This is the same assumption used by
the recognizer in modeling the HMM state output distributions
as Gaussians with diagonal covariance matrices. Under this as-
sumption, the likelihood of a given state sequence can be max-
imized by maximizing the likelihood of each component in the
feature vector independently.

If we operate in the log mel spectral domain, each component
of the feature vector is a function of only a subset of DFT sub-
bands, as shown in (4). Therefore, to maximize the likelihood of
a given vector component, we only need to optimize the param-
eters of the subband filters that are used to compute that com-
ponent. Note that if we were to operate directly in the cepstral
domain, we could not do this because each cepstral coefficient

is a linear combination of all log mel spectral components and,
therefore, a function of all subbands.1

We can now define to be the vector of subband filter param-
eters required to generate the th log mel spectral component.
is a complex vector of length covering
all filter taps of all microphones for the group of subbands from
which the th mel spectral component is computed. The length
of varies depending on the number of subbands used to com-
pute a particular mel spectral component.

For each dimension of the feature vector
, we want to maximize the log likelihood of the given HMM

state sequence with respect to , the vector of subband array
parameters for that dimension. Thus, we perform maximum
likelihood optimizations of the form

(5)
where is the th component of the log mel spectrum at
frame , and is the most likely HMM state at frame .

Fig. 2 shows an example of this ML subband filter optimiza-
tion for an array of two microphones, for the th log mel spectral
component which is composed of three DFT subbands.

C. Optimizing the Subband Filter Parameters

Because of both the nonlinear operations in the feature ex-
traction process and the form of the state output distributions
used by the HMMs, i.e., mixtures of Gaussians, (5) cannot be
directly maximized with respect to . Therefore we use iterative
nonlinear optimization methods. We employ conjugate gradient
descent as our optimization method. In order to do so, we need
to compute the gradient of (5) with respect to the corresponding
set of array parameters .

1) Gaussian State Output Distributions: If the HMM state
output distributions are assumed to be Gaussian, then the log-
likelihood expression in (5) can be written as

(6)

where and are the mean and variance of the th dimension
of the Gaussian of state and . It can
be shown that the gradient of (6) can be expressed as

(7)

where is the gradient vector. The gradient vector
is a complex vector with dimension that varies according to the

1In most speech recognition systems, the mel triangles do not actually span
the entire frequency range. The lowest frequency is typically between 100 and
150 Hz, and the highest frequency depends on the sampling rate but is usually
somewhat less than the Nyquist frequency.
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Fig. 2. S-LIMABEAM for an array of two microphones for the l log mel spectral component which is composed of three subbands. X and X are the STFT
vectors for microphones 0 and 1, respectively, and V is the lth mel filter.

log mel spectral component. For the th component, the length
of the gradient vector is . It can be shown
that each element of the gradient vector can be expressed as

(8)

where is the tap index, is the microphone index, and
is the subband index as before. The complete derivation of the
gradient vector is given in the Appendix.

2) Mixture of Gaussians State Output Distributions: In the
case where the state densities are mixtures of Gaussians, the
gradient of the log-likelihood expression can be expressed as

(9)

where is the a posteriori probability that the th
Gaussian in the mixture modeling state generated the ob-
served log mel spectral component , and is
defined as in (8).

Because we are doing componentwise optimization, there are
separate optimizations performed, one for each dimension of

the log mel spectral vector. Again, because we are performing
subband processing, there are far fewer parameters to optimize
per optimization than in the full-band case. Note, however,
that because the mel triangles are typically spaced along the
frequency axis so that adjacent triangles overlap each other by
50%, each DFT subband contributes to the value of two mel
spectral components. By processing the DFT subbands jointly
within each mel component, but independently across mel
components, the optimization of the complete log mel spectral
vector has twice as many degrees of freedom compared to
conventional subband filtering schemes.

V. EXPERIMENTAL RESULTS

To evaluate the performance of the proposed S-LIMABEAM
algorithm, we performed a series of experiments on three
different microphone array corpora representing a variety of
acoustic environments.

The first corpus was created using the RWCP Soundscene
Database [29]. This database contains room impulse responses
recorded in five different rooms using linear and circular micro-
phone arrays. The reverberation times of the rooms varied from
0.3 to 1.3 s. A reverberant corpus for speech recognition experi-
ments was created by convolving the utterances from the WSJ0
test set [30] with the impulse responses recorded by a seven-ele-
ment linear microphone array, with an intermicrophone spacing
of 5.66 cm. The user was directly in front of the array at a dis-
tance of 2 m. A small amount of uncorrelated white noise was
also added to each channel to simulate sensor noise. This corpus
consists of five seperate test sets, each corresponding to a dif-
ferent reverberation time. We refer to these test sets as WSJ ,
where indicates the 60-dB reverberation time of the room
[31]. For example, WSJ represents the test set from a room
with a reverberation time of 0.3 s. Each test set consisted of eight
speakers with approximately 40 utterances per speaker.

The second corpus used was the ICSI Meeting Recorder
(ICSI-MR) corpus [32]. This corpus consists of recordings of
actual meetings that took place over a three-year time period.
The audio in each meeting was captured by a close-talking
microphone worn by each user, as well as four pressure zone
microphone (PZM) tabletop microphones placed along the
conference room table and two microphones embedded in a
wooden PDA mockup. The majority of the speech during these
meetings was spontaneous multiparty conversation typical of
meetings. In addition, during each meeting, each participant
read several strings of connected digits.

Because the work in this paper is concerned with degrada-
tions in recognition accuracy caused by environmental condi-
tions rather than speaking style, accent, or other factors, we
chose to focus our experiments solely on the connected digits
segments of the meetings. Furthermore, we restricted these data
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to only those meeting participants who were native speakers of
English. The data set used for these experiments consisted of
speech data from 16 different meetings, with an average of four
people in each meeting. However, there were only 13 unique
speakers in the data set, as some of the speakers participated in
multiple meetings. The test set was 0.5 h in length.

In the experiments in this paper, we focused on improving
the recognition accuracy using only the four PZM tabletop mi-
crophones. These microphones were spaced approximately 1 m
apart along the center of the table. This microphone arrange-
ment is highly suboptimal from a traditional beamforming point
of view, as it produces severe spatial-aliasing over the range of
frequencies spanned by speech signals.

Finally, to evaluate the performance of S-LIMABEAM in
an environment with low reverberation but significant additive
noise, experiments were performed using the CMU-8 corpus
[33]. This database was recorded in the CMU speech lab. A linear
microphone array of eight channels was used with an interele-
ment spacing of 7 cm. The array was placed on a desk and user sat
directly in front of the array at distance of 1 m. The reverberation
time of the room was 0.24 s, and the speech captured by the
array had an SNR of about 6.5 dB. The corpus consists of 140
utterances (10 speakers 14 utterances). The utterances consist
of strings of keywords as well as alphanumeric strings, where
the user spelled out answers to various census questions, e.g.,
name, address, etc. This corpus was used to evaluate the original
time-domain LIMABEAM algorithms extensively. [17].

Speech recognition was performed using Sphinx-3, a
large-vocabulary HMM-based speech recognition system [34].
Context-dependent three-state left-to-right HMMs with no
skips (eight Gaussians/state) were trained using the speaker-in-
dependent WSJ training set, consisting of 7000 utterances. The
system was trained with 39-dimensional feature vectors con-
sisting of 13-dimensional MFCC parameters, along with their
delta and delta–delta parameters. A 25-ms window length and
a 10-ms frame shift were used. Cepstral mean normalization
(CMN) was performed in both training and testing.

Because the array parameter optimization of S-LIMABEAM
is performed in the log mel spectral domain, but recognition is
performed in the cepstral domain, we employ a second set of
HMMs in the log mel spectral domain that are trained from the
cepstral HMMs using the statistical reestimation (STAR) algo-
rithm [35]. Training the log mel spectral models in this manner
ensures that the two sets of models are exactly parallel, with
identical frame-to-state alignments. This allows the decoding
and Viterbi alignment to be performed in the cepstral domain
and the array parameter optimization to be performed in the log
mel spectral domain.

A. Experimental Results Using Calibrated S-LIMABEAM

To evaluate the performance of Calibrated S-LIMABEAM,
we performed experiments using corpora captured in rooms
with of 0.3 and 0.47 s. For these experiments, a single iter-
ation of calibration was performed as follows. Using the known
transcription of the calibration utterance and features generated
from the delay-and-sum output signal, the most likely state
sequence was estimated. The filter parameters were then ini-
tialized to the delay-and-sum configuration and optimized. The

TABLE III
WER OBTAINED USING DELAY-AND-SUM BEAMFORMING, CALIBRATED

LIMABEAM, AND CALIBRATED S-LIMABEAM FOR WSJ AND WSJ

Fig. 3. WER obtained using Calibrated S-LIMABEAM shown as a function
of reverberation time for the reverberant WSJ corpora. The performance of a
delay-and-sum beamforming and the original full-band LIMABEAM algorithm
are also shown.

state output distributions in the log-likelihood expression being
maximized were represented by mixtures of eight Gaussians.
Once the subband filter parameters were calibrated, they were
used to process the remaining test set utterances. The same set
of calibration utterances was used across all room conditions.
Subband filters with one tap were used for the 0.3-s case, while
filters with five taps were used for the 0.47-s case.

The results of this experiment are shown in Table III. For
comparison, the performance of delay-and-sum beamforming
and full-band Calibrated LIMABEAM is also shown. In
LIMABEAM, 50-tap FIR filters were optimized (shown to
be the optimal filter length in Fig. 1). As the table shows, the
performance of S-LIMABEAM is significantly better than both
delay-and-sum beamforming and full-band LIMABEAM in
both cases. The benefit in going from a full-band beamformer
architecture to a subband architecture is particularly evident in
the WSJ case, where a 28.5% relative improvement over
LIMABEAM is obtained by using S-LIMABEAM.

The performance of Calibrated S-LIMABEAM in environ-
ments with reverberation times up to 1.3 s is shown in Fig. 3.
The performance of delay-and-sum beamforming is shown for
comparison, as is the performance of LIMABEAM up to
0.47 s. At longer reverberation times, the performance of
full-band LIMABEAM is no better than delay-and-sum beam-
forming, and thus is not shown.

As the figure indicates, Calibrated S-LIMABEAM produces
significant improvements over both conventional delay-and-
sum processing and full-band LIMABEAM. Using this
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Fig. 4. Log mel spectrograms of a segment of an utterance from the WSJ corpus obtained from (a) a single channel in the array, (b) delay-and-sum beam-
forming, (c) the Calibrated S-LIMABEAM algorithm with five taps per filter, and (d) the close-talking microphone signal.

approach, the relative improvement over delay-and-sum beam-
forming, averaged over all reverberation times, is 26.0%, with
a minimum improvement of 19.7% at 1.3 s and a maximum
improvement of 36.2% at 0.47 s.

Fig. 4 shows four spectrographic displays of 40-dimensional
log mel spectral feature vectors for a segment of one of the ut-
terances in the test set. The figure compares the log mel spectra
extracted from a single microphone from the array, the output
of a delay-and-sum beamformer, the output of the Calibrated
S-LIMABEAM algorithm with five taps per filter, and the
close-talking recording. As the figure shows, delay-and-sum
processing does little to reduce the temporal smearing caused
by the reverberation, and in fact, the delay-and-sum spec-
trogram is virtually indistinguishable from that of the single
microphone. Compared to the close-talking log mel spectra,
all distinctions between high- and low-energy regions across
time have been lost. On the other hand, the features generated
by the calibrated subband filtering algorithm look significantly
sharper and the low-energy regions between speech segments
have been restored.

Clearly, we are able to achieve significant improvements in
WER over a wide range of reverberation times. However, to be
fair, we must also acknowledge that the data used in these exper-
iments are ideally suited to a calibration algorithm. Because the
reverberant speech corpora were created by convolving close-
talking speech with recorded room impulse responses, the dis-
tortion caused by the reverberation was exactly the same for all
utterances in the test set. This is a bit unrealistic, as even a user
trying to remain in place would not be perfectly still. Therefore,
it is possible that the algorithm’s performance would degrade

a bit if it were applied to data recorded by actual users. How-
ever, based on our results obtained from the original Calibrated
LIMABEAM obtained using actual microphone array data, we
expect the loss in performance to be minimal [17]. This hypoth-
esis, however, remains untested, as a suitable reverberant corpus
was not available.

These experiments show that the filter parameter cali-
bration algorithm can be successfully incorporated into the
S-LIMABEAM framework. We now turn to the unsupervised
processing case for use in situations in which the environ-
mental conditions and/or the user’s position may vary across
utterances.

B. Experimental Results Using Unsupervised S-LIMABEAM

To evaluate the performance of Unsupervised
S-LIMABEAM, experiments were performed using the
ICSI-MR corpus. We compared the recognition accuracies
obtained using the single microphone with the highest SNR,
and using all four microphones combined via delay-and-sum
processing, Unsupervised LIMABEAM, and Unsupervised
S-LIMABEAM. In order to choose the single best microphone,
the SNR of each of the four microphones was estimated for
every utterance using SNR estimation software from the
National Institute of Standards and Technology (NIST) [36].
For each utterance, the microphone with the highest SNR was
used for recognition.

For all utterances, a single iteration of Unsupervised
LIMABEAM/S-LIMABEAM was performed as follows. Fea-
tures derived from delay-and-sum processing were used to
generate an initial transcription. Based on this transcription,
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TABLE IV
WER OBTAINED ON THE ICSI-MR CORPUS USING ONLY THE FOUR PZM
TABLETOP MICROPHONES. THE WER OBTAINED USING A CLOSE-TALKING

MICROPHONE IS ALSO SHOWN FOR REFERENCE

TABLE V
WER OBTAINED USING THREE DIFFERENT ARRAY PROCESSING TECHNIQUES

FOR THE ICSI-MR, WSJ , AND, WSJ CORPORA

the most likely HMM state sequence was estimated and used
to optimize the beamformer. For full-band LIMABEAM, a
beamformer with 50 taps per filter was optimized, while in
S-LIMABEAM, filters with a single tap per subband were used.
Each utterance was then processed by its optimized filters and
a second pass of recognition was performed.

The results of this experiment are shown in Table IV. As the
table shows, although the microphone arrangement is highly
suboptimal, delay-and-sum processing is able to improve per-
formance over the single best microphone. A small additional
improvement over delay-and-sum beamforming is obtained
by Unsupervised LIMABEAM. However, the best results are
obtained using Unsupervised S-LIMABEAM, which provides
a 18.5% relative improvement over delay-and-sum processing,
and a 15.4% relative improvement over full-band LIMABEAM.
We also performed Unsupervised S-LIMABEAM using two
taps per subband, rather than one, but the performance declined
to 2.4% WER. We believe that the degradation caused by longer
filters occurred because the utterances were rather short, and
there was not enough speech to optimize twice the number of
beamformer parameters.

C. Comparison of Calibrated and Unsupervised S-LIMABEAM

We also compared the performance of the Calibrated and
Unsupervised S-LIMABEAM algorithms directly using the
ICSI-MR, WSJ , and WSJ corpora. The results are shown
in Table V. The peformance of delay-and-sum beamforming is
also shown for comparison. The results in the table demonstrate
the relative strengths and weaknesses of the two processing
approaches.

Using the ICSI-MR corpus, Unsupervised S-LIMABEAM
outperforms Calibrated S-LIMABEAM. This is not surprising,
as in a meeting room environment, users tend to move around

TABLE VI
WER OBTAINED ON THE CMU-8 CORPUS USING DELAY-AND-SUM

PROCESSING, UNSUPERVISED LIMABEAM, AND UNSUPERVISED

S-LIMABEAM

significantly. Thus, a beamformer calibrated to one particular
utterance may not be accurate for future utterances. On the other
hand, by optimizing the beamformer for each utterance individ-
ually, Unsupervised S-LIMABEAM can account for such user
movement and achieve good performance.

The performance obtained using the WSJ corpus shows
that if the speaker and environment are slowly varying or sta-
tionary, such as in front of a kiosk or desktop PC, and the first-
pass transcriptions (in this case obtained from delay-and-sum
processing) are reasonably accurate, we can expect the perfor-
mance of the two S-LIMABEAM algorithms to be similar. Of
course, the performance of the unsupervised optimization is crit-
ically dependent on the accuracy of the first-pass transcription.
This is demonstrated by the performance of WSJ , where
Calibrated S-LIMABEAM is able to obtain significant improve-
ment over delay-and-sum processing, while the improvement
from Unsupervised S-LIMABEAM is much smaller. The per-
formance of Unsupervised S-LIMABEAM is hindered by the
high WER of the first-pass delay-and-sum-based transcriptions.

D. S-LIMABEAM in Environments With Low Reverberation

In this paper, we have proposed a subband filtering approach
to the LIMABEAM framework. The algorithms presented were
designed specifically to improve the performance of speech
recognition in highly reverberant environments. However, these
algorithms will be significantly more valuable if they are in fact
general solutions for many environments, rather than limited
solely to use in environments where the distortion is caused
primarily by significant reverberation, rather than other sources,
such as additive noise.

In this series of experiments, we use the CMU-8 corpus
to compare the performed obtained using Unsupervised
LIMABEAM with a 20-tap filter-and-sum beamformer to that
obtained using Unsupervised S-LIMABEAM with a single tap
per subband filter. In [17], 20 taps was determined experimen-
tally to produce the best recognition results using unsupervised
processing in this environment. In both cases, the unsupervised
filter optimization was performed based on hypothesized tran-
scriptions from delay-and-sum processing. The results of these
experiments are shown in Table VI. For comparison, the WER
obtained from delay-and-sum processing is also shown.

The performance of LIMABEAM and S-LIMABEAM are
virtually identical. In fact, there is no statistically significant dif-
ference between the two methods. Thus, S-LIMABEAM is as
effective as the original sample-domain LIMABEAM approach
in environments where the distortion is largely caused by addi-
tive noise and the reverberation is less severe.
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VI. SUMMARY AND CONCLUSION

We previously proposed a new approach to microphone
array processing called LIMABEAM. In LIMABEAM, the
parameters of a sample-domain filter-and-sum beamformer are
optimized in order to maximize the likelihood of the correct
recognition hypothesis, as measured by the statistical models
of the recognition engine itself. This method was shown to
produce significant improvements in recognition accuracy
compared to more traditional array processing techniques
based on waveform-level objective criteria. However, in highly
reverberant environments, where long filter lengths are required
and the input signals are highly correlated, the performance of
LIMABEAM degraded.

In this paper, we proposed a new algorithm called
S-LIMABEAM, designed specifically to improve hands-
free speech recognition in reverberant environments.
S-LIMABEAM utilizes a novel subband filter-and-sum ar-
chitecture which explicitly takes into account the feature
extraction process used for recognition. Because each mel
spectral component is derived from the energy in multiple
subbands, the filters assigned to these subbands are optimized
jointly for each mel spectral component. Thus, compared to
conventional subband processing, S-LIMABEAM performs an
independent likelihood maximization for each log mel spectral
component, rather than for each individual subband.

Two implementations of S-LIMABEAM were presented.
Using Calibrated S-LIMABEAM, an average relative improve-
ment in WER of 26.0% over delay-and-sum processing was
obtained in environments with reverberation times up to 1.3 s.
In contrast, the relative improvement of LIMABEAM over
delay-and-sum beamforming as less than 5% in these highly
reverberant environments.

Using Unsupervised S-LIMABEAM on the ICSI Meeting
Recorder corpus, we also demonstrated an improvement of over
20% in recognition accuracy in a situation in which the array ge-
ometry is suboptimal and is in fact, unknown a priori. Because
S-LIMABEAM is a purely data-driven algorithm and makes no
assumptions about array geometry or room configuration, we
were able to obtain significant improvements under highly sub-
optimal recording conditions.

Finally, we showed that S-LIMABEAM is not only useful
in environments corrupted by significant amounts of reverber-
ation, but can in fact obtain good results in environments with
low reverberation and significant additive noise. This generality
makes S-LIMABEAM useful across a wide variety of environ-
mental conditions. Of course, there are limitations to this algo-
rithm. For example, Unsupervised S-LIMABEAM relies on the
first-pass recognition as the basis of the parameter optimization.
If the accuracy of this pass is extremely poor, then the parame-
ters will be optimized based on inaccurate state sequences and
will result in poor results.

In [17] and [16], we showed that additional improve-
ment in recognition accuracy can be obtained by combining
LIMABEAM/S-LIMABEAM with single-channel feature-
space noise robustness techniques, e.g., CDCN [37] and HMM
model adaptation techniques, e.g., MLLR [38]. However,
we believe further improvement can be obtained by fully

integrating the benefits of all of these methods into a single
algorithm. Such an algorithm could potentially include both
the introduction of an explicit noise model and a joint opti-
mization over both the array parameters and the acoustic model
parameters.

APPENDIX

DERIVATION OF THE S-LIMABEAM GRADIENT VECTORS

In this Appendix, we derive the expression for the gradient
vector required for S-LIMABEAM. In this algorithm, subband
filters operating on the output of a DFT filterbank are optimized
to maximize the likelihood of the resulting log mel spectra. The
likelihood of each log mel spectral component is maximized
independently. Therefore, for each log mel spectral component,
we require the corresponding gradient vector, composed of the
partial derivatives of that particular log mel spectral coefficient
with respect the each of the filter parameters of its constituent
subbands.

We define to be the log mel spectral feature vector of length
for frame . Recall that each mel spectral component is the en-

ergy in a particular frequency band defined by an associated mel
filter. Thus, the th log mel spectral component can be expressed
as

(10)

(11)

(12)

where is the DFT of waveform at frame ,
is the magnitude squared of , and is the coefficient
of the th mel filter in frequency bin . Complex conjugation
is denoted by . The limits of summation and represent
the lowest and highest bins, respectively, in the frequency band
defined by the th mel filter.

In the subband array processing algorithm, generated as
the output of a subband filter-and-sum operation, expressed as

(13)

where is the value of the STFT in subband from mi-
crophone at frame , and is the th complex tap of the
subband filter assigned to that microphone and subband.

We define to be the vector of array parameters needed to
compute the th log mel spectral component. By substituting
(13) into (12), it is apparent that is is a complex vector of
length composed of the subband filter
parameters for ,

, and .
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We can now define the gradient as the vector composed of the
partial derivatives of with respect to each of the elements of

. We express this as

(14)

A. Computing the Elements of the Gradient Vector

We define one element of the gradient vector, corresponding
to microphone , tap , and subband , as . From (10) and
(11), we can express as

(15)

(16)

(17)

To compute , we first define the filter parameter
simply as

(18)

We can now define as

(19)

Using (12), (13), and (18), the partial derivative of with
respect to can be computed as

(20)

We similarly obtain the partial derivative of with re-
spect to as

(21)

Substituting (20) and (21) into (19), we obtain the final ex-
pression for

(22)

Finally, by substituting (22) into (17), we can express the ele-
ment of the gradient vector corresponding to microphone , tap
, and subband as

(23)

The full gradient vector defined in (14) can
now be computed by evaluating (23) over all microphones

, taps , and subbands
.
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