
 1

Table 1: Overall statistics.

 Web SQL
Log Start-

Stop
2001/04/24
2006/07/01

2002/12/24
2006/07/01

Hits / queries 171,451,162 20,752,863
Page Views 62,481,516 16,123,600
Unique IP 925,666 19,497
Sessions 2,888,279 96,737

SkyServer Traffic Report – The First Five Years
Vik Singh, Jim Gray
Microsoft Research

Ani Thakar, Alexander S. Szalay, Jordan Raddick
The Johns Hopkins University

Bill Boroski, Svetlana Lebedeva, Brian Yanny
Fermilab

Microsoft Technical Report MSR TR-2006-190, December 2006

Abstract The SkyServer is an Internet portal to the Sloan
Digital Sky Survey Catalog Archive Server. From 2001 to

2006, there were a million visitors in 3 million sessions
generating 170 million Web hits, 16 million ad-hoc SQL
queries, and 62 million page views. The site currently
averages 35 thousand visitors and 400 thousand sessions

per month. The Web and SQL logs are public. We analyzed
traffic and sessions by duration, usage pattern, data
product, and client type (mortal or bot) over time. The

analysis shows (1) the site’s popularity, (2) the educational
website that delivered nearly fifty thousand hours of
interactive instruction, (3) the relative use of interactive,
programmatic, and batch-local access, (4) the success of

offering ad-hoc SQL, personal database, and batch job
access to scientists as part of the data publication, (5) the
continuing interest in “old” datasets, (6) the usage of SQL

constructs, and (7) a novel approach of using the corpus of
correct SQL queries to suggest similar but correct
statements when a user presents an incorrect SQL
statement.

1 Introduction

1.1 Background

 The multi-Terabyte Sloan Digital Sky Survey [1] – by far
the largest digital astronomy archive to date [2] – is
accessible online to astronomers and the general public via
two Web portals. The raw binary data is available as flat
files using wget/rsync from the Data Archive Server (DAS),
and the distilled science parameters are extracted into the
catalog science archive and available through advanced
query interfaces from the Catalog Archive Server (CAS).
The CAS is a collection of SQL Server databases [3] each
storing a particular “release” of the SDSS data.

 The study here analyzes CAS activity for the Early Data
Release (EDR) and data releases 1 through 4 (DR1 – DR4).
DR5 was just coming online as this study began. EDR was
80GB with 14M objects, 50K spectra. The later releases
were 0.5TB, 1.0TB, 1.5TB, and 2.0TB. DR5 is 2.5TB with
215M photo objects, 0.9M spectra, and ~10B rows spread
among ~400 tables [4]. DR8 is projected to be 2.9TB (see
Figure 1.) The SkyServer offers HTTP, SOAP, SQL, and
batch access to the CAS, and is really a federation of
Websites that serve different communities and functions:

 SkyServer.sdss.org or cas.sdss.org: a public Website
offering access to the SDSS data, documentation on the
data, and online-astronomy education in six languages
(English, Japanese, German, Portuguese, Spanish, and
Hungarian.)

 Collaboration and Astronomer portals: separate Websites
operated for members of the SDSS collaboration
(restricted access) and other professional astronomers
that allow longer-running queries on dedicated hardware.
The user interface is streamlined for use by professional
astronomers, and collaboration members usually have
exclusive access to each data release for a few months
prior to its public availability.

 CasJobs (batch jobs for the (CAS): A public Web service
that allows users to create a personal database (MyDB)
on a server at Fermilab, upload personal datasets to it,
and submit long-running programs and SQL queries that
convolve MyDB data with the CAS datasets [5].

Virtual Observatory: A collection of Web services being
developed by the Astronomy community as part of their
efforts to build the World-Wide Telescope. It is not part
of the SkyServer proper, but VO traffic appears in the
Web logs.

2 SkyServer Hardware Infrastructure

The SkyServer is deployed on machines at Fermilab as
described in Figure 1. The Virtual Observatory services are
deployed on servers at The Johns Hopkins University
(JHU). Since April 2001, we have been archiving the Web
and SQL activity logs from the Fermilab and JHU servers.
A collector running at JHU harvests the logs every few
hours from across the Internet using a Web services
interface offered by each SkyServer and CasJobs server
(mirror servers in Europe, Asia, and South America have
not been harvested so far). The harvested logs are
aggregated in a publicly accessible database along with an
activity summary [6]. Table 1 shows the overall statistics as
of 1 July 2006, the corpus used here.

The logs have an opt-out privacy policy, but thus far no one
has opted out [7]. Collaboration queries are hidden from
public view but are included here because no one in the
SDSS collaboration opted out of this study. Hence our
database contains the full Web and SQL logs from Fermilab
and JHU along with the analysis [8].

 2

BestDR8 (2.9 TB); TargDR8 (2.6 TB)

Web Server Front-end
Load-balancing configuration
managing web and soap access to all data

3 servers

specs:

2U rack mount Dual Xeon2.8 GHz Server

2GB memory

(2) 250GB SATA drives (~250GB as RAID10)

MS Windows (implementing s/w load-balancing)

Est. cost: $3.6K ea. (Jun-05 pricing)

CAS Database Servers
6 servers (RAID10)

specs:

4U rack mount Dual Opteron 2.2GHz Server

4 GB memory

(24) 500GB SATA drives (~5.45 TB as RAID10)

MS Windows + SQL Server 2005

Est., cost: $13.7K ea. (Mar-06 pricing)

CasJobs long queries

MyDBs
(storage for CasJobs

input & output)

MyDB Servers
2 servers (primary & mirror)
Storage for 630 users @ 500 MB each;
expandable to 1 GB

specs:

2U rack mount Dual Opteron Server

2.2GHz; 4 GB memory

(4) 500GB SATA drives

(~1.28 TB as RAID5)

MS Windows + SQL Server 2005

Est., cost: $3.6 ea.

Public access, ImageCutout

Collab short and long queries

Astro, Collab, VO services,
CasJobs Short Queries

Public access, ImageCutout

Collab short and long queries

Astro, Collab, VO services,
CasJobs Short Queries

RunsDB (primary)

RunsDB (backup)

Figure 1: The SkyServer hardware configuration at Fermilab as deployed in late 2006 in preparation for Data
Release 8 (DR8). The analysis here is on EDR, DR1, …, DR4.

 2.1 Prior Work and Goals of This Study

Several prior studies used the public logs: R. Lees, using
ThinSlicer™ built a datacube that allows easy analysis and
visualization [9], R. Singh analyzed and visualized some
session behavior [10, 11], and G. Abdulla analyzed term
frequencies in the SQL logs [12]. In addition, T. Malik
classified the structure of the SQL queries as part of her
work on query-result caching [13]. This report analyzes
long-term SkyServer usage patterns. Our goals are to:

(1) Characterize traffic volume and trends based on request-
type (Web, Web-service, downloads, analysis…).

(2) Categorize the user population: astronomer, student,
tourist, crawler, downloader, and others.

(3) Categorize the session behavior of each user segment.
(4) Characterize how users and bots use SQL.
(5) Assess the relative interest in datasets over time, in data

within each data set, and perhaps make database design
recommendations.

2.1 SkyServer Web and SQL Log Harvesting

The Web and SQL logs represent 75 system-years of
activity collected from 60 server logs. They are a wonderful
public resource, but they are not perfect. Each log has gaps.
Some logs have records with incorrect or missing values
due to bugs in our configuration or logging software. Much
of the traffic is from crawlers and robot downloaders that
swamp the traffic from mortals (people interacting directly
with the Website.)

There are anomalies, like a Virtual Observatory registry
manager that generated 42 million Web hits polling for
changes to the registry.

 So, any analysis using the log data

must be done with an understanding of the sites, and any
results are approximate. We cleaned and normalized the
HTTP and SQL logs and built ancillary data structures
including:

IP Name: map the IP address to the institution owning that
address block

Sessions: Organized time-sequences of requests from an IP
address into sessions and computed statistics on
each session

Templates: skeleton SQL statements with parameter
numbers replaced with “#” and skeleton Web
requests separating the stem (the url to the left of
the “?”) and parameters (the rest of the url)

Agent Categorization: for each web-agent string, we try to
recognize the agent (e.g. MSIE or GoogleBot or
Perl) and categorize it (e.g. browser or spider or
bot).

Page View flag: distinguish Web hits that are page views

The cleanup and normalization took several months effort.
Figure 2 shows the resulting database design. The
normalized database is 35GB (reduced from 180GB),
accessible online [8].

 3

1.E+5

1.E+6

1.E+7

2001/4 2002/4 2003/4 2004/4 2005/4 2006/4

Hits

pageViews

Traffic by Month

Figure 3: Aggregate SkyServer monthly traffic
from 2001 to 2006. Web hits doubled every year.

3 Web-HTTP Traffic

3.1 Web Hits and Page View Traffic

Figure 3 summarizes the monthly Web traffic. The top line
shows the total Web traffic on all servers measured in HTTP
requests (hits). The Web-hit volume has doubled each year.
The hits per month fit an exponential regression, (205% per
year). In mid-2006, the logs averaged ~35K unique visitors
and ~380K user sessions per month. As we will see, much
of this growth is from programs (bots).

 How many of these Web hits are just incidental to
producing a Web page or Web-service answer? For

example, displaying the SkyServer home page generates
twenty hits if nothing is cached. The Web log has an entry
for each request-reply pair (a hit), but many of those entries
are either ancillary information (e.g., a .css style sheet for a
Web page or a metadata .asmx file for a Web service), or
are part of a larger package (e.g. one of the many .gif
images on the home page), or are errors, or are redirects.

Page views measure how many answers the servers
delivered to users or bots. We define a page view as any
Web hit that (1) responds to a GET, HEAD, PUT, POST HTTP

request or a SOAP request, (2) is not an error or redirect, (3)
delivers information (status 200-299), (4) is not a noise type
(e.g., .gif, .png, .txt, .css, .ico,..…), and (5) is not an
administrative task from the BigBrother monitoring service
or from the VO Registry Administrator.

Starting with 171M hits, 90% are the right request type, 4%
of those return error, and 6% of the residue are redirects.
Ignoring BigBrother and the VORegistry probes leaves 65
million page views. Figure 3 plots the page views, which
display the same yearly doubling as Web hits.

There are daily, weekly and seasonal patterns: a mid-day
peak, a Tuesday peak falling to a valley on the weekend,
and relatively heavier traffic from November to March.
Figure 3 shows the dominant patterns (1) year-over-year
traffic doubling and (2) high short-term variability, with
huge peaks and some lulls.

The statistics for http hits are 65% GET, 25% PUT, and 10%
HEAD. Only 12% of the hits have a reference string saying
where the request originated; of these, 98% of the referrals

Figure 2: An overview of the normalized web-log and SQL-log database schema. The tables are described in the
later sections.

 4

Table 2. Web-hit type frequency.

suffix hits Page views

asp 64,128,683 60,111,219

asmx 43,728,961 1,680,388

jpg 22,794,275 0

gif 16,976,147 0

aspx 14,559,672 14,295,453

htm 8,777,611 5,144,895

css 3,255,012 3,379

js 1,527,566 0

ICO 1,446,242 0

swf 445,284 0

txt 411,916 0

are from SDSS sites, 1% are from Google (235k), and the
remaining 1% are from 3,000 other sites.

Table 2 gives the relative frequency of the most popular
Web page types – there were 78K hacker requests to
execute various programs, many downloads of
documentation, but most requests were for Web pages (asp,
aspx) and Web services (asmx).

3.2 Session and User Segmentation

3.2.1 Clients

One of the main goals of this analysis is to characterize the
way people and programs use the site. We segment human
users into four broad categories:

Scientists: People using the site to analyze the SDSS
data.

Students: People using the site to learn astronomy or
other science topics.

Tourists: Users visiting the site out of curiosity.
Administrators: People, like us, analyzing site traffic.

We segment program behaviors as:

Analyzers: Programs running complex queries on SDSS
data (e.g. CasJobs).

 Copiers: Programs that systematically download parts
of the SDSS database.

Spiders: Programs that crawl the Web pages to build an
index.

 Administrators: Programs that check site status, harvest
Web logs, or maintain a registry.

We searched for ways to categorize page views into one of
these eight categories; but had only modest success.

3.2.2 Categorizing Clients with Agent Strings

Users are anonymous. Each Web request carries an agent
string that is supposed to tell what kind of agent browser or
program generated the request. Sometimes the agent string
tells who the client is (e.g. Google, BigBrother, Perl,
Safari, Firefox); but agents often masquerade as Internet
Explorer (MSIE) or some other popular browser in order to
get certain behavior or in hopes of bypassing firewalls. So
we are forced to classify users based on a combination of
their (1) agent string, (2) IP address, and (3) behavior
during a session. The one good thing is that a user’s
ipAddress is (by definition) constant during a session.
However, a session may run several different programs and
may include browser interactions; so, a session may have
diverse agents, . In addition, the user’s IP address may
change from day to day. So, even these three attributes are
only suggestive of the category that best describes a user or
session.

Using the agent string classifies some of the hits as analysis
clients (24 million), bot or spider clients (19 million), and
administrative hits (18 million for BigBrother) with a resi-
due of 118 million agent strings that look like browsers. We
set the 42 million VO-registry probes to have a correct
agent-string (VO-Registry rather than MSIE) leaving 76M
hits. This classification, based purely on parsing the agent

string, is in the WebAgent table (Figure 2). It sub-classifies

the bots into 78 groups (e.g. Google, Slurp…), programs
into 10 groups (e.g. python, java,..) and the browsers into
11 groups (e.g. Firefox, MSIE, Safari,..). This parsing was
helped by consulting IP registries [14]. Ignoring the ad-
ministration traffic, the top two sub-groups are MSIE with
47 million hits and 19M page views and Python with 10
million hits and 9M page views.

3.2.3 Sessions

The logs record each client’s session – the page view and
SQL request sequence from an IP address. We arbitrarily
start a new session when the previous page view from that
IP address is more than 30 minutes old, i.e., a think-time
larger than 30 minutes starts a new session. The thirty
minute (1,800 second) think time is based on Figure 4
which plots page-view inter-arrival time frequency
bucketed by powers of two. Thirty minutes captures 98% of
them. The graph approximates a power law for times
between 10 seconds and 10M seconds (100 days). Wong
and Singh [11] chose the same 30 minute cutoff and we are
told that MSN and Google use a similar heuristic.

As explained before, page views from BigBrother (17M
views and 4.2M SQL queries) and the VORegistry
administrator (42M views) are excluded. They comprise

Think Times

Between Page Views

from an IP address

1.E+4

1.E+5

1.E+6

1.E+7

1.E+8

1.E-1 1.E+0 1.E+1 1.E+2 1.E+3 1.E+4 1.E+5 1.E+6 1.E+7

Think Time (seconds)

F
re

q
e
n

c
y

30 mins

1 day

Figure 4: Think time (page-view inter-arrival time) from
individual IP addresses bucketed in powers of 2 vs
frequency. Most are short but some are more than a day.
We arbitrarily chose 30 minutes as the session cutoff time.

 5

34% of all hits and 21% of SQL queries, but they are just
periodic probes of the Website, and they have traffic
patterns we already understand. So they were excluded
from sessions.

This leaves 65,435,696 page views and 16,123,600 SQL

queries in 2,985,016 sessions described by the Session

table, and a SessionLog table indexed by sessionID,

and rankInSession. The 65,435,696 SessionLog rows

describe the session request sequences (pointers into

WebLog and SqlLog tables) along with their timestamps,

templates, and some summary information (Figure 2.)

3.2.4 Session Classification and Diversity

Our first task is to recognize and exclude spiders so that we
can focus on the behavior of analysis, copy (data
download), and human clients. If a client’s AgentString
declares a client IP address to be a spider or if the client IP
address visits robots.txt then we declare all sessions from
that IP address to be spiders. This eliminates 1.4M
sessions, 14M page views and 328K SQL requests. Spiders
were ½ the sessions, 18% of the page views, and 2% of the
SQL traffic.

Recognizing the other categories is more difficult. We
conjectured that people had irregular think times while
programs would have a regular think-time pattern. Both
those conjectures turned out to be false. Both people and
programs seem to follow a power-law distribution of think
times – so think-time is not a good way to distinguish them
(see Figure 4.)

Figure 5 shows the frequency of session durations and
session size (number of requests). Both graphs bucket the

populations in powers of two (e.g. log2(requests) and

log2(duration)). The graphs show interesting patterns:
Session lifetimes beyond a 1000 sec seem to follow an
approximate power law behavior with a slope of -1.4. There

is also a sharp cusp at short sessions. At the same time the
number of requests per session follows a simple power law
all the way – though SQL sessions tend to be longer than
http-intensive sessions.

We conjectured that spiders crawl the Website and rarely
re-visit the same page in a session. In line with this, we
conjecture Copiers and Analyzers systematically crawl the
database presenting the same request with different
parameters, and we conjectured that people are a mix of the
two behaviors; they visit several pages, may return to a
page, and may dwell on a page as they submit queries.

These conjectures appear to be true in general. For
example, consider sessions of Figure 5 that span more than
3 days (the ones lasting more than 250k seconds). Statistics
for the top 5 are shown in Table 3. They came from five
institutions doing systematic data downloads. Four of the

institutions used the free-form SQL requests (x_sql.asp

or SkyQa.asp) and two used the pre-canned SQL (x_rect)

commands that do not record their SQL commands in the
log. One uses the very popular GetJpegObj.asp that issues
over a dozen different SQL calls to build an annotated JPEG
image from the database, but that is just one Web command
stem (virtually every SkyServer request has or more
backend SQL actions in addition to generating a SQL Web
log record). These sessions routinely had very few Web
command stems (often one stem) and very few SQL

Session Size

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

 Session Size (page views)

F
re

q
u

e
n

c
y

All
mostly http
mostly sql
spider

Session Length

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

1E-1 1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

 Session Length (sec)

F
re

q
u

e
n

c
y

All
mostly http
mostly sql
spider

Figure 5: Session sizes (left) as measured in page views or SQL requests bucketed by powers of 2 (left) follow an approximate
power law although SQL sessions tend to be longer and very long spider sessions are rare. The session lengths (duration in seconds)
seem to have three different behaviors: sessions less than 3-seconds are popular, sessions lasting 3 to 1,000 seconds seem to follow
one power low with a slight rise; then past 1,000 seconds session lengths seem to follow a second power law.

Table 3: Examples of 5 extremely long sessions

Hours Pages
Web
Cmd

Stems

Free Form
SQL Stmts

Methods
(asp)

140 2,479,279 1 3,572 x_sql
103 1,888,131 1 6,467 x_sql
368 1,448,323 2 1,098 GetJpeg

78 1,217,736 1 1 x_rect
100 1,171,158 1 2,571 x_sql

 6

Human Traffic by Month

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

0 10 20 30 40 50 60

month

re
q

u
e

s
ts

Page View

SQL

75%/y growth

saturated at year 1

Figure 6: Attempt to show “human” traffic:
sessions that are neither admin, spider, or program.
Web traffic continues to grow but SQL traffic
stabilized at ~1,000 requests per day. The monthly
traffic is smoothed by a 3 month moving window.
Compare this figure to “all traffic” of Figure 3.

Table 4: Main user institutions and request volumes

Page Views SQL Institution

4,668,124 3,114,078 NASA
3,933,370 104,378 Google Inc.
2,695,292 65,226 Johns Hopkins University
2,241,295 2,196,411 AstroWise
1,959,910 1,884,477 NRC Canada
1,943,511 816 University of California
1,261,638 971,166 University of Illinois, CCSO
1,168,071 70,628 Microsoft Corp
1,094,922 558 Pino Torinese Observatory

728,123 543,377 Oxford University
708,429 806,630 Universidad de Cantabria
644,986 458,636 Max-Planck-Institut Garching
455,061 390,805 Inst. Astrofisica de Canarias

14,969 770,019 Unknown

Table 5: Traffic by Domain Name “type”.

type institutions page views SQL
University 863 31,507,386 8,648,855

College 407 478,996 1,410
School 310 823,138 1,890

Other .edu 169 7,554,956 3,509,361
.gov 238 446,460 83,562

templates. For example, the session with the most requests
used x_sql.asp to ask the following question with 2.4M
different number pairs, counting objects in each htm-range
(spatial bucket):

select count(*)

from photoprimary

where (htmID >= # and htmID <= #)

So, it had one Web stem …/x_sql.asp? and one SQL

template (the statatement above). Yes; there are better
ways to ask and answer this question; but this way works.

We define a session’s request diversity as the ratio of
requests to request stems (Web URLs to the left of the “?”)
plus SQL templates (statements with the non-identifier
numbers replaced by “#’). The Web stems are in the

WebCommandStem table and the SQL templates are in the

SqlTemplate table of Figure 2. We expect spider sessions
to have high diversity, copier sessions to have low diversity
and people to have sessions with intermediate diversity.
This hypothesis works very well at the extremes, but we
were unable to get a crisp classifier from this approach. We
found no clear break between the diversity of people,
programs or spiders – the data looks like a continuum.

In the end, we despaired of an automatic way to recognize
human users and bots based on statistics. Some statistics
show clear bot behavior, 100 hour sessions or 1M page
views in a session (!) but, the typical spider session is short
10 page views in 100 seconds – indeed that is why ½ the
sessions are spider sessions (see Figure 5).

The best we could do in classifying sessions as mortal, was
to find all sessions that were not administrative, not
obviously a spider, not obviously a bot, lasted between one
minute and 8 hours, and involved at least 4 page views or
SQL requests. There were about ½ million such sessions.

Figure 6 shows the page-view and SQL request traffic for
mortal sessions when averaged over 3 month windows.
Web request traffic grew at 75% per year, while mortal
SQL traffic quickly grew to ~30K requests/month and
stabilized there. In comparison, the overall traffic doubles
every year (Fig 3), thus there is a relative increase bots and
spider usage. An interesting feature of the underlying data
is that it seems to show a yearly trend with a dip in the
summer and fall, and an increase in winter and spring.

4 Traffic by Source

4.1 Traffic by IP address

 Each Web log entry and most SQL log entries carry an IP
address. A reverse lookup converts this to the name of the
institution owning the IP address. Unfortunately, many of
the IP addresses resolve to large IP-address blocks that are
“sub-leased” to many organization; so, the IP lookup maps
to a large ISP – for example over 1,000 of the blocks
mapped to the Amsterdam RIPE network which does not
disclose it sub-leases. Nonetheless, a combination of
automatic lookup and then some manual-resolution mapped
most of the million IP addresses to about 11k IP domains.

Table 4 shows the Web and SQL traffic from the most
active institutions (with administrative traffic removed but
including spiders and bots). Most traffic is from programs
that spider the Website, or download data. The unknown
address is caused by bugs in our logging software that did
not record some IP addresses.

Table 5 shows the traffic counts when one parses each
domain’s organization name, looking for words like
“university” or “college” or “school” or “district”. It
indicates that most traffic comes from colleges and
universities.

 7

Page Views by Language

1.E+3

1.E+4

1.E+5

1.E+6

1.E+7

1 13 25 37 49 61
Month

P
a
g

e
 V

ie
w

s

en

de

jp

sp

hu

 0 12 24 36 48 60

Figure 7: SkyServer Web page views (averaged
over 3 month windows) for each language sub-site.
Note the rapid growth in the Spanish, Hungarian,
and Portuguese sites.

4.2 Traffic by Most Popular “verbs”

Table 6 shows the importance of spatial data search for
Astronomy applications. Of the 13.3M SQL queries, 5.8M
involved spatial search functions (like fGetNearbyObjEq()),
and all but one (“default”) of the next 5 most popular verbs
are variants of “get data near this point.”

4.3 Traffic on Parts of Web Site

Again, subtracting out the admin and spider traffic, the
traffic in the Website partitions approximately along the
menu hierarchy of the site’s home page (tools, get data,
projects, help, ….) Table 7 gives the traffic breakdown by
part of the Website. Most traffic goes to the tools that view
the data and images. The third most popular part of the site
is the astronomy educational activities with 4M page views
and over 600k sessions.

4.4 Traffic by Language

Figure 7 shows the page view traffic aggregated by
language (English, German, Hungarian, Japanese,
Portuguese, and Spanish). The non-English traffic largely
reflects people using the site to learn about the SDSS or
using it for education. The recent dramatic rise in the
German traffic after 4 years at 2k page views per month to
80k page views per month is due to a much better German
translation of the project website. We are very pleased by
the traffic growth in the Spanish, Portuguese, and
Hungarian sites.

4.5 Traffic on the Educational Website

Of particular interest to us is the use of the Project Website
that teaches astronomy. It received 4.2M page views in all.
Table 8 shows that these page views are largely

concentrated on the Advanced and Basic projects that teach
astronomy. With bots and spiders excluded, there were
618K sessions involving at least one project page. The
297K sessions involving two or more project pages suggest
that the student was reading the material rather than just
browsing. Those sessions had 7.4 million page views, more
than 21 thousand SQL queries, and delivered more than 47
thousand hours of instruction. Few astronomy textbooks or
teachers can match that record.

4.6 Traffic by Data Release

The SDSS has released six versions of the “Best” catalogs
that contain all the data processed with the most recent
software – these versions are called the Early Data Release
and Data Releases 1 through 5 (EDR, DR1-5). In addition,
there are Target DR1-5 containing the data snapshot used
for selection of spectroscopic targets. There is also a Runs
database that is mosaiced to produce the “Best” database.
99.98% of the traffic goes to the Best catalogs. DR5 was
just coming online when the logs for this study were frozen.
The SDSS Servers have answered about 16 million SQL
queries when spider and admin queries are excluded.

Table 6: Most popular web “verbs”.

verb page views description

x_sql 13,393,187 Ad hoc SQL query
default 10,394,717 Navigation page
GetJpeg 8,929,524 Get an object’s image
x_radial 6,023,717 Radial DB search
x_rect 5,673,636 Rectangular search
showNearest 3,388,016 Nearest object to point
obj 2,511,025 Get Photo Object by ID
specById 2,037,324 Get Spectrogram by ID
OEtoc 1,438,447 Object Explorer root
camcol 1,307,075 Camera column (band)
shownavi 1,169,273 Visual Navigation Page
frameByRCFZ 1,114,325 Get Frame

Table 7: Web site traffic by part of tree

Page views web tree

43,486,090 tools: to use the database
5,482,295 get: data and image retrieval
4,242,788 proj: Science education projects
3,986,970 help: documentation on data and site

560,198 sdss: about SDSS
549,148 astro: about astronomy

68,995 skyserver: about Sky Server

Table 8: Page views of Project website by area

“area” pg views focus
Advanced 1,752,889 Teaches astronomy.
Basic 1,075,487 Tells what astronomy is.
Kids 489,438 Very elementary.
Teachers 364,553 Advice to teachers.
Games 224,888 Hunt pictures for examples
Challenges 112,019 Some open ended projects
Links 40,725 Pointers to other places
Mailing 11,006 Talk to authors
High School 3,733 Grades 9-12
Cool 3,459 Fun things.
User 2,134 User registration
Middle School 840 Grades 4-8
Get Answers 461 Answers to exercises
Lower School 410 Grades K-4
Evaluate 225 Comment on site.

 8

2003/11
2004/11

2005/11

D
R

1 D
R

4

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

DR1

DR2

DR3

DR4

Q
u
e
ri
e
s
 /

 M
o
n
th

Figure 9: SkyServer SQL Query traffic by data release
and time. Note the very pronounced “spikes” after the
data releases, and extended use of the data from DR1.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

public astro collab antique runs CASJOBS

rows
elapsed
cpu
queries

SQL Usage

Figure 10: SkyServer SQL Query traffic by rows,
elapsed time, CPU time and queries, versus access
categories. “Antique” represents old datasets.

DR4,

3,5M,

18%

DR3,

5,9M,

30%

DR2,

6,6M,

33%

DR1,

3,8M,

19%

% of SQL Queries

Figure 8: SkyServer SQL Query traffic by data
product expressed as a percentage of SQL queries.

Each catalog has been available for ad-hoc SQL queries.
Figure 8 shows the relative traffic (measured in SQL
queries) on the catalog. It shows that each dataset has had
comparable traffic, although the newer ones have had less
time to garner traffic – This reflects the increased interest in
the datasets with time.

Figure 9 shows that in 2003 the SQL traffic quickly rose to
about 10,000 queries per day and then held fairly steady at
that saturation level. It also indicates that each product has
received between 400K and 600K SQL queries. The newer
products have had a shorter time to accumulate “hits.” The
figure also shows that interest in a product “spikes” soon
after it is released and then declines as newer products are
released. The huge spike in DR3 is a substantial copy of
the database by one site. The oldest product, DR1, still gets
about 40K SQL queries per month – there are still people
doing science with it. This shows that once a data product
is published, it needs to stay online forever – much as
scientific literature must remain available to allow others to
read, verify and extend previous work.

4.7 Traffic by Professional Astronomers

The SkyServer Website is the easiest way to access the
Sloan Digital Sky Survey catalogs. There are three services
set up for professional Astronomers. Some “collaboration”
servers are set up for the exclusive use of members of the
SDSS collaboration that allow early access to the data for
peer review, allow them to run larger queries with larger
answer sets, and provide a more spartan user interface.
There is also a public service “/astro/” with the same
/collab/ spartan interface. In addition, there is a public
CasJobs (Catalog Archive Service Batch Jobs) interface
that allows users to create a personal database on the server
(MyDB), upload data to it, use data from that database in
queries, and send results of queries to that database.
Section 7 discusses CasJobs.

The /collab site delivered 3.4M page views and 2.4M SQL
queries, the /astro site delivered 9.2M page views and 3.6M
SQL queries, and /CasJobs 1.1 delivered 1.1M page views
and executed 209K jobs. Put another way, the public sites
got three times more traffic than the collaboration site,
indicating that the datasets are widely used and that people
who were not “insiders” were able to use the data (see
Figure 10.) We will return to the kinds of SQL queries the
professionals presented in sections 6 and 7.

4.8 Traffic by Server

As of mid-2006, there were 36 Web server logs and 15 SQL
server logs being harvested. Three servers handle 74% of
all Web requests and the top 3 SQL servers service 65% of
all SQL requests.

The public SkyServer has a 10-minute 100K row limit, the
astro and collab sites have a 1-hour 500K row limit, and the
CasJobs long queue has an 8 hour. The CasJobs collab site
has a 24 hour.

The Web servers are lightly loaded except for the compute-
intensive task of composing JPEG images on demand from
the images in the database (the GetJpeg verb of Table 5).
That requires retrieving and converting several Jpegs from

 9

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08

1.E+09

1.E+10

0 50 100 150 200 250 300 350 400 450 500

rank

stems

lapse

cpu

rows

1E+2

1E+3

1E+4

1 10 100

rank

re
q

u
e
s
ts

Requests

Figure 11: SQL traffic per user, sorted by user frequency (number of jobs from that user – biggest user first). The chart on the
left shows how the various measures of SQL traffic, the numbers of job-stems, elapsed times, CPU times and the number of
returned rows for each user. The trend-lines use a 30-point boxcar average. The figure on the right shows the correlations
between the rank and the number of requests for the 100 most active users. Note the 1/f -like behavior, resembling Zipf’s Law.

the database into a bitmap, decorating the bitmap with
information fetched from the database, clipping the result to
an image centered on the desired spot and then converting
the bitmap to a JPEG image and delivering it via SOAP over
HTTP. This entire image-processing task can consume 0.3
to 5.0 CPU seconds depending on the image size and query
complexity.

Fermilab has a load-balanced pool of three Web servers
allocated to service these tasks and the less demanding ones
on a round-robin basis (Figure 1). The average network
traffic on these servers is 1.5 MB/s (~10 Mbps) – but peak
traffic can be whatever is available. Outbound bandwidth is
~100x inbound bandwidth.

5 CasJobs and MyDB – Batch is Back

CasJobs (Catalog Archive Server Batch Jobs) is a Web
interface and a Web-service SOAP interface that allows
users to submit unrestricted query scripts in batch mode to
the SDSS databases, create a personal database on the
server (MyDB), upload data to it, use data from that
database in queries, and send results of queries to that
database. CasJobs is described in detail in [3, 5] and is on
the Web for you to explore. Login is required to submit a
background job or create a database, but anyone may create
an account.

As described in [5], the primary motivations for CasJobs
were to

• separate the quick queries (that finished in under a
minute) from the long queries that took minutes or
hours to execute and bogged the server down for
everyone else;

• provide each user with a server-local scratch
workbench database to hold intermediate query results
and bring the analysis to the data as much as possible
rather than vice-versa (this avoids moving large
intermediate data results across the Internet); and

• provide simple load balancing among the servers by
distributing the queues across the server pool.

5.1 CasJobs Queries

CasJobs processed 209K jobs since September 2004. The
CasJobs Administrator did 60% of these jobs (scheduling
jobs and reporting on them). In what follows, we exclude
the administrator. This leaves 77K jobs to consider, of
which 59K are syntactically correct.

There have been 537 distinct users. Virtually all “big”
queries were IO bound (disk bound). CPU utilization rarely
got above 10% of the elapsed time. Faster CPUs would not
help, but more RAM and more disks would have sped the
queries. Put another way, the total CasJobs elapsed time
was slightly more than one year and the total CPU time was
less than 10 days (229 hours).

Figure 11 displays the CasJobs activity (jobs, elapsed time,
CPU time, rows returned) of all 537 users sorted by the
number of jobs they submitted. It shows no clear
breakpoints: some users submitted a few big jobs, some
users submitted many big jobs, some submitted many small
jobs, many submitted a few big jobs, and many submitted a
few small ones. When sorted by jobs, the top 10 users
submitted 57% of the jobs; sorted by time, the top 10 used
27% of the time, and sorted by rows returned, the top 10
retrieved 51% of the rows. When we rank users by the
number of requests they submitted, the rank vs the requests
shows a nice power-law behavior, resembling a 1/f
distribution, indicating that users do not have a
characteristic workload scale.

Figure 11 also shows that CPU time (blue) is much less
than wait time (green) in almost all cases – even though
these are 2-way or 4-way multiprocessor servers. It shows
that the system returns about 20K rows per CPU second and
500 rows per elapsed second. CasJobs returned 16 billion
rows in all (about 1TB). This is twice the number of rows
returned by the public server, four times the number

 10

returned by the /astro server, but only 60% of the number
returned by the /collab servers (see also Figure 10).

CasJobs saved bandwidth and user wait time. When it was
introduced, the public “big queries” moved to CasJobs.
CasJobs allows users to do sophisticated and high-
bandwidth analysis near the server without having to
provision their own server and without having to download
the SDSS archive to their site. Of the 59K valid CasJobs,
85% are simple selects, about 9K are complex programs
that create tables in MyDB, define local variables,
constants, and functions, and then do multi-step analysis of
the SDDS catalogs and the user’s MyDB data.

5.2 CasJobs Users

Figure 12 shows scatter plots between the various per-user
average measures and approximate trend lines to emphasize
characteristic correlations. The left hand figure shows the
number of rows returned vs elapsed time. The trend line
corresponds to a 750 rows per sec average. It is obvious,
that the scatter is quite large. For an elapsed time of about
100 sec one can see the sharp cutoff at around 500,000
rows, also noticeable on the right hand plot on Figure 11.

Figure 12 shows that CPU time and elapsed time track one
another quite well, but the slope is less than one. The
characteristic ratio is about 34 sec of elapsed time for 1 sec
of CPU, as measured on the high end, compared to a factor
of 100 for short queries. This indicates that most of the
workload is heavily I/O bound.

High end users tend to use a smaller number of “stems”
than the low-end users. This trend is clearly seen from the
third panel on Figure 12: with more requests, the number of
stems is falling away from the envelope. The meaning of
this is that the people with lots of jobs are probably refining
a complex query, or doing a spatial search by changing
some the parameter values, and running a similar query
pattern many times. This vindicates one of our main

arguments for CasJobs – to avoid wasting bandwidth from
repeat queries during the refinement process.

The average query is about 100 tokens long, runs for about
10 minutes, uses 15 CPU seconds and deposits 250K rows
in MyDB. Since CasJobs was inaguratead three years ago,
traffic has been fairly steady at about 10 queries per hour.
There have been peak periods of 700 queries per hour; but,
on average jobs are processed within a few hours. SQL

6 Query Analysis

Of the 20.7M SQL queries, there were 10.3M distinct
queries, 9.0M of these statements are syntactically correct,
and 7.4M returned at least one row suggesting they were
valid queries. When one replaces all the numbers in a
query with a “#” symbol, the set of queries shrinks to 138K
templates of which 102K are syntactically correct and 78K
return results.

6.1 Queries from Bots

Robot sessions show up with very few templates compared
to the number of SQL queries – typically thousands of
queries in a session with just one template. If we say that a
session with the same template repeated 4 or more times

Table 9: Most popular function calls in SQL queries.

verb queries

fGetNearbyObjEq 8,698,330

fGetObjFromRect 3,269,000

fGetNearestObjEq 661,349

fGetUrlFitsCFrame 88,453

fGetNearestFrameEq 78,625

fGetNearestObjIdAllEq 56,063

fGetNearestObjIdEqType 18,052

fGetUrlFitsField 9,016

fGetObjFromRectEq 5,638

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10

rows

e
la

p
s

e
d

 t
im

e

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E-3 1E-1 1E+1 1E+3 1E+5

cpu time

e
la

p
s

e
d

 t
im

e

1E+0

1E+1

1E+2

1E+3

1E+4

1E+0 1E+1 1E+2 1E+3 1E+4

requests

s
te

m
s

Figure 12: Scatter plots of the various user measures in the MyDB/CasJobs environment. The chart on the left shows how the
average rows returned correlate with elapsed time. The line displays a linear relation of 500 rows per second, to guide the eye.
The middle chart shows how CPU time and elapsed time track one another. The slope of the trend is only 0.937, rather than 1.
A user with and average 100 sec CPU usage has a elapsed time of about 5000 sec, corresponding to a ratio of 50. The right
hand figure shows the number of stems vs the number of jobs. The line represents the upper envelope of 1 stem per request. It
demonstrates that for the low-end users the two track one another quite well (the ridge). The high-end users are doing many
more repeat queries, i.e. the number of stems per request is falling away from the envelope.

 11

(session.SqlStem>4*session.sql) represents a robot
or program, then those 10.9K robot sessions represent
15.7M of the SQL queries with only 12K SQL templates –
the typical bot is reissuing the template 13K times! The
residue 85.8K sessions submitted 417K SQL queries.

The robots typically do a spatial search. Table 9 shows the
counts for the most popular functions. All but 2 of the
functions in Table 9 are spatial data lookups. Many other
robot queries systematically vary the parameters of an

RA,DEC bounding box using the SQL BETWEEN construct.

610 of the bot templates (~5%) have that construct. 10K of
the residue have that construct -- about 12% of the 74K
valid templates from sessions that seem not to be bots.
After failing to “teach” users to use the spatial search
functions, we added an RA-dec index to speed this
bounding-box construct.

6.2 Queries from Mortals

Let us try to characterize non-bot SQL queries. Define
mortal queries as ones that are in a session where the
number of distinct SQL templates is at least 20% of the
number of SQL queries (that is, the typical query is not re-
used more than 4 times) and where the session is less than 8
hours. Further define valid mortal queries as those that
return at least one row from the database. Let’s analyze
these mortal queries and their sessions.

There are 85k mortal sessions with 412K queries, of which
271K (66%) are valid mortal queries. The typical session
has six SQL queries and lasts thirty minutes – but sessions
of four hours are quite common (see Figure 11). The
median valid query ran for two minutes (127 seconds) and
those queries had a median of 2 seconds of CPU time and
3.5K rows returned. As Figures 11, 12 and 13 indicate,
these numbers have huge variance – the median and
average are very different. The average number of rows
returned was 187K not 3.5K.

The 271K valid mortal queries also have a wide range of
complexity. There are 74K valid mortal templates. Of
those, 71% use the select-from-where syntax, 14% use the
select-from-where-orderBy syntax, and 6% are select from
a table-valued function – so 91% follow that simple select-

from format. But some queries have more than 80 select
clauses; some have 7 group-by clauses and there is
considerable use of outer-joins and many other advanced
features. Approximately 13k templates (18%) involve a
spatial join using one of the table valued spatial functions.
The numbers are probably somewhat skewed by a set of
more than 50 sample queries that are available on the
SkyServer Help page [15]. Many users tend to initially run
these either with or without modification until they get
proficient enough to formulate their own queries.

6.3 Term Frequency within SQL Queries

As in Abdulla [12], we analyzed token frequencies within

1E+1

1E+2

1E+3

1E+4

1E+5

1 10 100 1000

query

Avg Lapse Time (s)

Avg rows (K)

Avg CPU Time (s)

1.E+0

1.E+1

1.E+2

1.E+3

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8

rows

1E+2

1E+3

1E+4

1E+5

0 1 2 3 4 5 6 7 8 9 10

session length

 1m 2m 4m 8m 16m 32m 1hr 2hr 4hr 8hr

Sessions Queries Rows

Figure 13: Statistics of SQL-related mortal (human) sessions in the MyDB/CasJobs environment. The left figure shows the
distribution of session length (minutes or hours.) For reference a lognormal with 30 minute mean is shown (purple line). The
middle chart displays the frequency distribution of the average elapsed time, the average CPU time, and the number of rows

delivered (in K-rows). The right hand chart shows the distribution of K-rows returned by median-length jobs lasting 110 to

130 seconds (the median job length). These three histograms are bucketed in powers of 2 using the formula round(log2(x)) to
compute an integer bucket number. The graph at right shows a large variance in behavior with a sharp cutoff at around 1M
rows representing a limit of ~10K-rows/second that can be returned (these median queries are limited to 130 seconds). In the
rightmost graph, the population of each bucket is approximately constant showing a classic Zipfian distribution – small queries

are common but each next power of 2 bucket has a comparable number of jobs (but 2x the rows and so 2x the work.)

SQL Term Frequency vs Rank

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1 10 100 1000 10000

rank

fr
e
q

u
e
n

c
y

 Figure 14: The frequency distribution of the top
5000 SQL terms. The dashed line shows a -1 slope
corresponding to Zipf’s Law.

 12

the SQL templates. We simplified the SQL query templates
by removing parentheses, table aliases, database and table
prefixes, and function parameter names. We also
substituted tokens for strings, comparison operators (e.g.
'>=', between), bitwise operators, arithmetic operators,
logical operators, and for multi-word SQL keywords such
as group by and order by. This produces about 110K query
templates. The templates mention all 44 tables, but 493 of
the 2,228 columns are never mentioned and 36 of the 109
built in functions are not used.

SQL is a formal language so one might not expect to see a
Zipfian distribution of term frequency so characteristic of
natural languages. But, indeed that is what we see. Ignoring
term context (part of speech) and spelling errors, and
plotting term rank vs frequency gives Figure 14 which
indeed looks like a simple power law.

Looking deeper into the language, separating SQL verbs,
column names, and table names gives the top-30 frequency
counts. Table 10 shows the top 30 SQL token frequencies,
Table 11 shows the top 30 table frequencies and Table 12
shows the frequency of the top 30 columns. The full data is
graphed in Figure 15. The Figure and the Tables indicate
that the distributions are not exactly Zipfian, but term
frequencies do decline very sharply. The “staircase” effect
is caused by correlated constructs like select-from-where
and case-when-then-end.

6.4 Using Templates to Correct SQL Queries

Query repetition may offer a way to improve the user ex-
perience. If a few of the 100K query templates are similar
to a new user query has a syntax error, it might be useful to
offer a similar correct queries from the corpus. A simple
distance function measures query similarity: First chop each
template into token substrings (N-grams) [16] that are then
sorted. Then compute the Jaccard distance [17] betweeen
the query's N-gram sets and the N-grams of each template.
This finds near matches to a user's query. The templates and
actual correct query examples can be returned as sugges-
tions. For example, consider the following incorrect SQL
query:

SELECT TOP 10 ph.ra,ph.dec,

 str(ph.g - ph.r,11 ?) as color,

 isnull(s.bestObjId, 0) as bestObjId,

 'ugri'

FROM #x x, #upload up,

 BESTDR2..PhotoObjAll as ph

LEFT OUTER JOIN ? SpecObjAll s

 ON ph.objID = s.bestObjID

WHERE (ph.type=3 OR ?)

AND up.up_id = x.up_id

? x.objID=p

?.objID

ORDER BY x.up_id

The red question marks denote syntax errors. We passed
this query into the matching system and got back the top
three matches in Table 10.

The top query result fills in the missing values for our input
query exactly. Also notice how the next two candidates

Table 10: Three correct matching queries.

SQL Query Similarity

SELECT TOP 50 p.ra,p.dec,

 str(p.g - p.r,11,8) as grModelColor,

 isnull(s.bestObjID,0) as bestObjID,

 'ugri' as filter

FROM #x x, #upload u,

 BESTDR2..PhotoObjAll as p

LEFT OUTER JOIN BESTDR2..SpecObjAll s

 ON p.objID = s.bestObjID

WHERE (p.type = 3 OR p.type = 6)

 AND u.up_id = x.up_id

 AND x.objID=p.objID

ORDER BY x.up_id

74%

SELECT TOP 50 p.ra,p.dec,

p.run,p.rerun,p.camCol,p.field,p.obj,

 isnull(s.ra,0) as ra,

 isnull(s.[dec],0) as [dec],

 'ugriz' as filter

FROM #x x, #upload u,

 BESTDR2..PhotoObjAll as p

LEFT OUTER JOIN BESTDR2..SpecObjAll s

 ON p.objID = s.bestObjID

WHERE (p.type = 3 OR p.type = 6)

 AND u.up_id = x.up_id

 AND x.objID=p.objID

ORDER BY x.up_id

66%

SELECT TOP 50 p.ra,p.dec,

p.run,p.rerun,p.camCol,p.field ,p.obj,

 isnull(s.ra,0) as ra,

 isnull(s.[dec],0) as [dec],

 'ugriz' as filter

FROM #x x, #upload u,

 BESTDR2..PhotoObjAll as p

LEFT OUTER JOIN BESTDR2..SpecObjAll s

 ON p.objID = s.bestObjID

WHERE (p.type = 3 OR p.type = 6)

 AND u.up_id = x.up_id

 AND x.objID=p.objID

ORDER BY x.up_id

60%

Frequency of SQL Terms

in SQL Template Queries

1E+3

1E+4

1E+5

1E+6

se
le
ct

/ |
 *

| +
 |
-

jo
in

po
w
er

in
se

rt

w
hen in

t

bi
gi
nt

no
t

ltr
im

in
ne

r

is
nul

l

m
ax

SQL Term

F
re

q
u

e
n

c
y

Column Frequency

in SQl Template Queries

1E+2

1E+3

1E+4

1E+5

1E+6

1 100 10000

Rank

F
re

q
u

e
n

c
y

Figure 15. Frequencies of the SQL terms in SQL template
queries. The blue dashed line has a slope of -2, the purple
line has a slope of -4. Note the change in the slope at around
the rank of 80.

 13

follow the same TOP N, temporary table, LEFT OUTER
JOIN sequence, and WHERE conditional syntax usage.
Since we record error messages for each SQL query we
only present correct queries. This example illustrates
template similarity and the large corpus of templates can
provide suggestions to users.

6.5 Examples of Complex SQL Queries

About 8K templates have explicit join verbs. Multi-way
complex joins are common. The following 8-way join is
typical:

SELECT LF.BESTOBJID, LF.TARGETID

FROM MYTABLE_61 AS LF

INNER JOIN PHOTOTAG AS BP

ON LF.BESTOBJID = BP.OBJID

INNER JOIN TARGETINFO AS TI

ON TI.TARGETID = LF.TARGETID

INNER JOIN PHOTOTAG AS TP

ON TI.TARGETOBJID = TP.OBJID

INNER JOIN FIELD AS TF

ON TF.FIELDID = TP.FIELDID

INNER JOIN SEGMENT AS TS

ON TS.SEGMENTID = TF.SEGMENTID

INNER JOIN FIELD AS BF

ON BF.FIELDID = BP.FIELDID

INNER JOIN SEGMENT AS BS

ON BS.SEGMENTID = BF.SEGMENTID

LEFT OUTER JOIN SPECOBJ AS SO

ON LF.BESTOBJID = SO.BESTOBJID

Another interesting example is this 16-way join:

select count_big(distinct g.objid)

from PhotoObjAll as g

left outer join PhotoProfile as p0

on g.objId=p0.objID

left outer join PhotoProfile as p1

on g.objId=p1.objID

left outer join PhotoProfile as p2

 repeated to 15 times for each p(i)…
left outer join PhotoProfile as p14

on g.objId=p14.objID

where g.run = # and g.rerun = #

 and g.camcol = # and g.field = #

 and g.obj != #

 and ((p0.bin=# and p0.band=#)or(p0.bin is null))

repeated 15 times for each p(i)

There is an 85-way union! There are complex sub-selects
nested 7 deep. In general, some of the users are very
ingenious, and some have SQL skills that qualify them as
database gurus.

7 Summary

These results are tantalizing. Each answer suggests other
questions. A few key patterns emerge from this forest of
data. SkyServer traffic nearly doubled each year – both
Web traffic and SQL queries grew by about 100%/year. We
failed to find clear ways to segment user populations. We
were able to ignore the traffic that was administrative or
was eye-candy, leaving us with a set of 65M page views
and 16M SQL queries. We organized these requests into
about 3M sessions, about half of which were from spiders.
The residue of 1.5M sessions had 51M page views and 16M
SQL queries – still a very substantial corpus.

Our best estimate is that spiders contributed 46% of
sessions and 20% of the Web traffic. Scientific analysis

programs and data downloaders were 3% of the sessions,
but 37% of the Web traffic and 88% of the SQL traffic.
Interactive human users were 51% of the sessions, 41% of
the Web traffic and 10% of the SQL traffic. We cannot be
sure of those numbers because we did not find a very
reliable way of classifying bots vs mortals.

The human traffic seems to grow a little slower than the
whole. The yearly growth is still exponential, but the traffic
only doubles every 1.33 years.

Many of our logs exhibit a remarkable power law behavior.
It is well-known that long-tailed distributions emerge
naturally from multiplicative processes [18, 25, 26], when
the product of many factors determines the final outcome. It
has been pointed out recently [19, 20, 28] that such
behavior is also natural in social networking, especially so
in Web-based systems where users are presented with many
choices. We find such long-tailed distributions in the page
views and the lengths of sessions, and also in the number of
SQL requests. Some of these power laws extend the 1/f
behavior over 6 orders of magnitude (e.g., Figure 5a).

One thing that is clear is that there is considerable interest
in the educational site in each of the five available
languages. There were 297K sessions involving two or
more project pages with behavior that “looked” mortal.
Those sessions had 7.4 million page views, more than 21
thousand SQL queries, and delivered more than 47
thousand hours of instruction. Few astronomy textbooks or
teachers can match that record.

The SkyServer will write some SQL for you – and many
users used the fill-in-the-form user interface – but hundreds
of astronomers “graduated” to the free-form SQL query
interface where they composed tens of thousands of SQL
queries, and about 500 astronomers have created their own
private database and run complex analysis jobs using the
CasJobs site. There was considerable skepticism whether
this would work at all, whether it would be useful, and
whether it would be abused. So far it has been quite useful
to some and has not been abused. The CasJobs template in
fact has been successfully adopted by other astronomical
archives like GALEX [21], and even non-astronomical
archives like AmeriFlux [22].

In terms of interest in the data, each new data release gets a
flurry of interest. First there is early mortal traffic, then
there is an intense period of bot (program) download and
analysis, and after that (when a new version appears) traffic
subsides to a few thousand queries per month. So far no
release has gone out of use. This confirms our belief that
once published, scientific data must remain online and
accessible so that scientists can repeat experiments or
analyses indefinitely. The fact that earlier releases like
DR1 continue to get sustained usage is of especial
significance for the budgeting of data access resources for
the next generation of large astronomical surveys like Pan-
STARRS [23] and LSST [24].

SkyServer is an example of the new way to publish and
access scientific data. It is the data and documentation
produced by a collaboration along with tools to analyze the
data. It is public, and it can be federated with other

 14

scientific archives and with the literature. We hope that it
will turn into a useful resource for more complex analyses
by others than those presented in this paper.

8 Acknowledgments

This research was enabled by the dataset created by the
Sloan Digital Sky Survey and by the website that hosts the
data. So, this work owes a huge debt to the astronomers
who designed and built the telescope, who gathered the
data, who wrote the software to convert pixels into the
SDSS catalog, and who ran those pipelines. Many others
built the SkyServer website, CasJobs, and other web
services. Others developed educational materials using the
data and have translated the website into 5 different
languages. This article would not have been possible
without all those contributions.

Funding for the SDSS and SDSS-II has been provided by
the Alfred P. Sloan Foundation, the Participating
Institutions, the National Science Foundation, the U.S.
Department of Energy, the National Aeronautics and Space
Administration, the Japanese Monbukagakusho, the Max
Planck Society, and the Higher Education Funding Council
for England. The SDSS Web Site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research
Consortium for the Participating Institutions. The
Participating Institutions are the American Museum of
Natural History, Astrophysical Institute Potsdam,
University of Basel, University of Cambridge, Case
Western Reserve University, University of Chicago, Drexel
University, Fermilab, the Institute for Advanced Study, the
Japan Participation Group, the Johns Hopkins University,
the Joint Institute for Nuclear Astrophysics, the Kavli
Institute for Particle Astrophysics and Cosmology, the
Korean Scientist Group, the Chinese Academy of Sciences
(LAMOST), Los Alamos National Laboratory, the Max-
Planck-Institute for Astronomy (MPIA), the Max-Planck-
Institute for Astrophysics (MPA), New Mexico State
University, Ohio State University, University of Pittsburgh,
University of Portsmouth, Princeton University, the United
States Naval Observatory, and the University of
Washington.

Alex Szalay acknowledges support from NSF AST-
0407308, from the Gordon and Betty Moore Foundation
and the W.M. Keck Foundation. We benefited from
discussions with Tanu Malik and Stuart Ozer about SQL
query templates and their statistics. Conversations with
Raul Singh and Ghaleb Abdulla, and Richard Lees about
their SkyServer log analysis were also very useful. Mark
Manasse was very helpful in discussions that led to the
template-matching ideas in section 6.5.

9 References

[1] Sloan Digital Sky Survey (SDSS):http://www.sdss.org/
Data Archive Server (DAS): http://das.sdss.org/,
Catalog Archive Server CAS): http://cas.sdss.org/.

[2] A.S. Szalay, “The Sloan Digital Sky Survey,” Comput-

ing in Science & Engineering, V.1.2, 1999, pp. 54–62.

[3] A.R. Thakar, A.S. Szalay, P.Z. Kunszt, J. Gray, “Mi-

grating A Multiterabyte Archive from Object to Rela-

tional Databases,” Computing in Science & Engineer-

ing, V.5.5, Sep/Oct 2003, pp. 16-29.
[4] A.S. Szalay, P. Kunszt, A.R. Thakar, J. Gray.

“Designing And Mining Multi-Terabyte Astronomy
Archives: The Sloan Digital Sky Survey.”. SIGMOD,
May 2000, pp 451-462.

[5] W. O’Mullane, N. Li, M. A. Nieto-Santisteban, A.
Thakar, A.S. Szalay, J. Gray, “Batch is Back: CasJobs,
Serving Multi-TB Data on the Web,” Microsoft MSR-
TR-2005-19, February 2005. or CasJobs:
http://casjobs.sdss.org/CasJobs/

[6] SkyServer Site Logs: http://skyserver.sdss.org/log/
[7] http://skyserver.sdss.org/log/en/traffic/privacy.asp
[8] The location of the compressed SQL2005 DB at JHU:

http://dataspace.skyserver.org/
[9] R. Lees, ThinSlicer™ http://easternmining.com.au/

Default_files/WebAndProxyAnalysis.htm
[10] B. Bhattarai, M. Wong, and R. Singh, "Multimodal

Usage Visualization for Large Websites", TR-06.21,
Computer Science Department, San Francisco State U.,
http://cs.sfsu.edu/techreports/reports_list.html

[11] M. Wong, B. Bhattarai, and R. Singh,
“Characterization and Analysis of Usage Patterns in

Large Multimedia Websites", TR-06.20, Computer
Science Department, San Francisco State University,
2006, http://cs.sfsu.edu/techreports/reports_list.html

[12] G. Abdulla, “Analysis of SDSS SQL Server Log Fles”,
UCRL- MI-215756-DRAFT. Lawrence Livermore
National Laboratory, 2005

[13] T. Malik, R. Burns, A. Chaudhary. “Bypass Caching:

Making Scientific Databases Good Network Citizens”.
ICDE, 2005.

[14] List of User-Agents (Spiders, Robots, Crawlers,
Browsers):
http://www.psychedelix.com/agents/index.shtml

[15] SkyServer Sample Queries:
http://cas.sdss.org/public/en/help/docs/realquery.asp.

[16] R. Kosala, H. Blockeel, “Web Mining Research: A
Survey.” SIGKDD Explor. Newsl. 2, 1 (Jun. 2000), 1-
15. DOI= http://doi.acm.org/10.1145/360402.360406.

[17] L. Lee, Measures of distributional similarity. Proc.
37

th
 ACL., Morristown, NJ, 25-32. June 20 - 26, 1999.

[18] E. W. Montroll, M. F. Shlesinger. “Maximum Entropy
Formalism, Fractals, Scaling Phenomena, and 1/f

Noise: A Tale of Tails.” Journal of Statistical Physics
32 (1983), 209-230.

[19] A-L. Barabási, R Albert 1999 Emergence Of Scaling
In Random Networks Science 286 509

[20] C. Anderson: "The Long Tail", Wired, Oct. 2004.
[21] Galaxy Evolution Explorer (GALEX):

http://www.galex.caltech.edu/, and GALEX CasJobs
site: http://galex.stsci.edu/casjobs/.

 15

[22] AmeriFlux: http://public.ornl.gov/ameriflux/.
[23] Panoramic Survey Telescope and Rapid Response

System (Pan-STARRS): http://pan-
starrs.ifa.hawaii.edu/public/ .

[24] Large Synoptic Survey Telescope (LSST):
(http://www.lsst.org/).

[25] G. K. Zipf, Human Behaviour and the Principle of
Least-Effort, Addison-Wesley, Cambridge MA, 1949

[26] C. D. Manning, H. Schütze, Foundations of Statistical
Natural Language Processing, MIT Press, Cambridge
MA, 1999

[27] W. Li, "Random Texts Exhibit Zipf's-Law-Like Word
Frequency Distribution", IEEE TOIT, V.38.6,
pp.1842-1845, 1992

[28] M. Mitzenmacher, “A Brief History of Generative
Models for Power Law and Lognormal Distributions,”
Internet Mathematics V.1.2: 226-251

