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Table 1: Overall statistics. 

 Web SQL 
Log Start-

Stop 
2001/04/24  
2006/07/01 

2002/12/24 
2006/07/01 

Hits / queries 171,451,162 20,752,863 
Page Views 62,481,516 16,123,600 
Unique IP 925,666 19,497 
Sessions 2,888,279 96,737 
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Abstract The SkyServer is an Internet portal to the Sloan 
Digital Sky Survey Catalog Archive Server.  From 2001 to 

2006, there were a million visitors in 3 million sessions 
generating 170 million Web hits, 16 million ad-hoc SQL 
queries, and 62 million page views. The site currently 
averages 35 thousand visitors and 400 thousand sessions 

per month. The Web and SQL logs are public.  We analyzed 
traffic and sessions by duration, usage pattern, data 
product, and client type (mortal or bot) over time.  The 

analysis shows (1) the site’s popularity, (2) the educational 
website that delivered nearly fifty thousand hours of 
interactive instruction, (3) the relative use of interactive, 
programmatic, and batch-local access, (4) the success of 

offering ad-hoc SQL,  personal database, and batch job 
access to scientists as part of the data publication,  (5) the 
continuing interest in “old” datasets, (6) the usage of SQL 

constructs, and (7) a novel approach of using the corpus of 
correct SQL queries to suggest similar but correct 
statements when a user presents an incorrect SQL 
statement.  

1 Introduction 

1.1 Background 

 The multi-Terabyte Sloan Digital Sky Survey [1] – by far 
the largest digital astronomy archive to date [2] – is 
accessible online to astronomers and the general public via 
two Web portals.  The raw binary data is available as flat 
files using wget/rsync from the Data Archive Server (DAS), 
and the distilled science parameters are extracted into the 
catalog science archive and available through advanced 
query interfaces from the Catalog Archive Server (CAS). 
The CAS is a collection of SQL Server databases [3] each 
storing a particular “release” of the SDSS data.  

 The study here analyzes CAS activity for the Early Data 
Release (EDR) and data releases 1 through 4 (DR1 – DR4).  
DR5 was just coming online as this study began.  EDR was 
80GB with 14M objects, 50K spectra. The later releases 
were 0.5TB, 1.0TB, 1.5TB, and 2.0TB. DR5 is 2.5TB with 
215M photo objects, 0.9M spectra, and ~10B rows spread 
among ~400 tables [4]. DR8 is projected to be 2.9TB (see 
Figure 1.)  The SkyServer offers HTTP, SOAP, SQL, and 
batch access to the CAS, and is really a federation of 
Websites that serve different communities and functions:  

 SkyServer.sdss.org or cas.sdss.org: a public Website 
offering access to the SDSS data, documentation on the 
data, and online-astronomy education in six languages 
(English, Japanese, German, Portuguese, Spanish, and 
Hungarian.) 

 Collaboration and Astronomer portals: separate Websites 
operated for members of the SDSS collaboration 
(restricted access) and other professional astronomers 
that allow longer-running queries on dedicated hardware.  
The user interface is streamlined for use by professional 
astronomers, and collaboration members usually have 
exclusive access to each data release for a few months 
prior to its public availability. 

 CasJobs (batch jobs for the (CAS): A public Web service 
that allows users to create a personal database (MyDB) 
on a server at Fermilab, upload personal datasets to it, 
and submit long-running programs and SQL queries that 
convolve MyDB data with the CAS datasets [5]. 

Virtual Observatory: A collection of Web services being 
developed by the Astronomy community as part of their 
efforts to build the World-Wide Telescope. It is not part 
of the SkyServer proper, but VO traffic appears in the 
Web logs. 

2 SkyServer Hardware Infrastructure 

The SkyServer is deployed on machines at Fermilab as 
described in Figure 1.  The Virtual Observatory services are 
deployed on servers at The Johns Hopkins University 
(JHU). Since April 2001, we have been archiving the Web 
and SQL activity logs from the Fermilab and JHU servers.  
A collector running at JHU harvests the logs every few 
hours from across the Internet using a Web services 
interface offered by each SkyServer and CasJobs server 
(mirror servers in Europe, Asia, and South America have 
not been harvested so far).  The harvested logs are 
aggregated in a publicly accessible database along with an 
activity summary [6]. Table 1 shows the overall statistics as 
of 1 July 2006, the corpus used here. 

The logs have an opt-out privacy policy, but thus far no one 
has opted out [7].  Collaboration queries are hidden from 
public view but are included here because no one in the 
SDSS collaboration opted out of this study. Hence our 
database contains the full Web and SQL logs from Fermilab 
and JHU along with the analysis [8]. 
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Figure 1: The SkyServer hardware configuration at Fermilab as deployed in late 2006 in preparation for Data 
Release 8 (DR8). The analysis here is on EDR, DR1, …, DR4. 

 2.1 Prior Work and Goals of This Study 

Several prior studies used the public logs:  R. Lees, using 
ThinSlicer™ built a datacube that allows easy analysis and 
visualization [9], R. Singh analyzed and visualized some 
session behavior [10, 11], and G. Abdulla analyzed term 
frequencies in the SQL logs [12].  In addition, T. Malik 
classified the structure of the SQL queries as part of her 
work on query-result caching [13].  This report analyzes 
long-term SkyServer usage patterns. Our goals are to: 

(1) Characterize traffic volume and trends based on request-
type (Web, Web-service, downloads, analysis…). 

(2) Categorize the user population: astronomer, student, 
tourist, crawler, downloader, and others. 

(3) Categorize the session behavior of each user segment. 
(4) Characterize how users and bots use SQL. 
(5) Assess the relative interest in datasets over time, in data 

within each data set, and perhaps make database design 
recommendations. 

 

2.1 SkyServer Web and SQL Log Harvesting 

The Web and SQL logs represent 75 system-years of 
activity collected from 60 server logs. They are a wonderful 
public resource, but they are not perfect.  Each log has gaps.  
Some logs have records with incorrect or missing values 
due to bugs in our configuration or logging software.  Much 
of the traffic is from crawlers and robot downloaders that 
swamp the traffic from mortals (people interacting directly 
with the Website.) 

There are anomalies, like a Virtual Observatory registry 
manager that generated 42 million Web hits polling for 
changes to the registry.

 
 So, any analysis using the log data 

must be done with an understanding of the sites, and any 
results are approximate. We cleaned and normalized the 
HTTP and SQL logs and built ancillary data structures 
including: 

IP Name: map the IP address to the institution owning that 
address block 

Sessions: Organized time-sequences of requests from an IP 
address into sessions and computed statistics on 
each session 

Templates: skeleton SQL statements with parameter 
numbers replaced with “#” and skeleton Web 
requests separating the stem (the url to the left of 
the “?”) and parameters (the rest of the url) 

Agent Categorization: for each web-agent string, we try to 
recognize the agent (e.g. MSIE or GoogleBot or 
Perl) and categorize it (e.g. browser or spider or 
bot). 

Page View flag: distinguish Web hits that are page views 
 
The cleanup and normalization took several months effort.  
Figure 2 shows the resulting database design.  The 
normalized database is 35GB (reduced from 180GB), 
accessible online [8]. 
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Figure 3:  Aggregate SkyServer monthly traffic 
from 2001 to 2006.  Web hits doubled every year. 
 

3 Web-HTTP Traffic 

3.1 Web Hits and Page View Traffic 

Figure 3 summarizes the monthly Web traffic.  The top line 
shows the total Web traffic on all servers measured in HTTP 
requests (hits).  The Web-hit volume has doubled each year.  
The hits per month fit an exponential regression, (205% per 
year). In mid-2006, the logs averaged ~35K unique visitors 
and ~380K user sessions per month.  As we will see, much 
of this growth is from programs (bots). 

 How many of these Web hits are just incidental to 
producing a Web page or Web-service answer?  For 

example, displaying the SkyServer home page generates 
twenty hits if nothing is cached. The Web log has an entry 
for each request-reply pair (a hit), but many of those entries 
are either ancillary information (e.g., a .css style sheet for a 
Web page or a metadata .asmx file for a Web service), or 
are part of a larger package (e.g. one of the many .gif 
images on the home page), or are errors, or are redirects.  

Page views measure how many answers the servers 
delivered to users or bots.  We define a page view as any 
Web hit that (1) responds to a GET, HEAD, PUT, POST HTTP 

request or a SOAP request, (2) is not an error or redirect, (3) 
delivers information (status 200-299), (4) is not a noise type 
(e.g., .gif, .png, .txt, .css, .ico,..…), and (5) is not an 
administrative task from the BigBrother monitoring service 
or from the VO Registry Administrator. 

Starting with 171M hits, 90% are the right request type, 4% 
of those return error, and 6% of the residue are redirects. 
Ignoring BigBrother and the VORegistry probes leaves 65 
million page views.  Figure 3 plots the page views, which 
display the same yearly doubling as Web hits.  

There are daily, weekly and seasonal patterns: a mid-day 
peak, a Tuesday peak falling to a valley on the weekend, 
and relatively heavier traffic from November to March.  
Figure 3 shows the dominant patterns (1) year-over-year 
traffic doubling and (2) high short-term variability, with 
huge peaks and some lulls. 

The statistics for http hits are 65% GET, 25% PUT, and 10% 
HEAD.  Only 12% of the hits have a reference string saying 
where the request originated; of these, 98% of the referrals 

 
 

Figure 2:  An overview of the normalized web-log and SQL-log database schema.  The tables are described in the 
later sections. 
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Table 2. Web-hit type frequency. 

suffix hits  Page views 

asp 64,128,683 60,111,219 

asmx 43,728,961 1,680,388 

jpg 22,794,275 0 

gif 16,976,147 0 

aspx 14,559,672 14,295,453 

htm 8,777,611 5,144,895 

css 3,255,012 3,379 

js 1,527,566 0 

ICO 1,446,242 0 

swf 445,284 0 

txt 411,916 0 

are from SDSS sites, 1% are from Google (235k), and the 
remaining 1% are from 3,000 other sites. 

Table 2 gives the relative frequency of the most popular 
Web page types – there were 78K hacker requests to 
execute various programs, many downloads of 
documentation, but most requests were for Web pages (asp, 
aspx) and Web services (asmx). 

3.2  Session and User Segmentation 

3.2.1 Clients 

One of the main goals of this analysis is to characterize the 
way people and programs use the site.  We segment human 
users into four broad categories: 

Scientists: People using the site to analyze the SDSS 
data. 

Students:  People using the site to learn astronomy or 
other science topics. 

Tourists:   Users visiting the site out of curiosity. 
Administrators: People, like us, analyzing site traffic. 

We segment program behaviors as: 

Analyzers: Programs running complex queries on SDSS 
data (e.g. CasJobs). 

 Copiers: Programs that systematically download parts 
of the SDSS database. 

Spiders: Programs that crawl the Web pages to build an 
index. 

 Administrators: Programs that check site status, harvest 
Web logs, or maintain a registry. 

We searched for ways to categorize page views into one of 
these eight categories; but had only modest success. 

3.2.2 Categorizing Clients with Agent Strings 

Users are anonymous.  Each Web request carries an agent 
string that is supposed to tell what kind of agent browser or 
program generated the request. Sometimes the agent string 
tells who the client is (e.g. Google, BigBrother, Perl, 
Safari, Firefox); but agents often masquerade as Internet 
Explorer (MSIE) or some other popular browser in order to 
get certain behavior or in hopes of bypassing firewalls.  So 
we are forced to classify users based on a combination of 
their (1) agent string, (2) IP address, and (3) behavior 
during a session.  The one good thing is that a user’s 
ipAddress is (by definition) constant during a session.  
However, a session may run several different programs and 
may include browser interactions; so, a session may have 
diverse agents, . In addition, the user’s IP address may 
change from day to day.  So, even these three attributes are 
only suggestive of the category that best describes a user or 
session. 

Using the agent string classifies some of the hits as analysis 
clients (24 million), bot or spider clients (19 million), and 
administrative hits (18 million for BigBrother) with a resi-
due of 118 million agent strings that look like browsers. We 
set the 42 million VO-registry probes to have a correct 
agent-string (VO-Registry rather than MSIE) leaving 76M 
hits.  This classification, based purely on parsing the agent 

string, is in the WebAgent table (Figure 2).  It sub-classifies 

the bots into 78 groups (e.g. Google, Slurp…), programs 
into 10 groups (e.g. python, java,..) and the browsers into 
11 groups (e.g. Firefox, MSIE, Safari,..).  This parsing was 
helped by consulting IP registries [14].  Ignoring the ad-
ministration traffic, the top two sub-groups are MSIE with 
47 million hits and 19M page views and Python with 10 
million hits and 9M page views. 

3.2.3 Sessions 

The logs record each client’s session – the page view and 
SQL request sequence from an IP address.  We arbitrarily 
start a new session when the previous page view from that 
IP address is more than 30 minutes old, i.e., a think-time 
larger than 30 minutes starts a new session. The thirty 
minute (1,800 second) think time is based on Figure 4 
which plots page-view inter-arrival time frequency 
bucketed by powers of two. Thirty minutes captures 98% of 
them.  The graph approximates a power law for times 
between 10 seconds and 10M seconds (100 days).  Wong 
and Singh [11] chose the same 30 minute cutoff and we are 
told that MSN and Google use a similar heuristic. 

As explained before, page views from BigBrother (17M 
views and 4.2M SQL queries) and the VORegistry 
administrator (42M views) are excluded.  They comprise 
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Figure 4: Think time (page-view inter-arrival time) from 
individual IP addresses bucketed in powers of 2 vs 
frequency.  Most are short but some are more than a day. 
We arbitrarily chose 30 minutes as the session cutoff time. 
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34% of all hits and 21% of SQL queries, but they are just 
periodic probes of the Website, and they have traffic 
patterns we already understand.  So they were excluded 
from sessions. 

This leaves 65,435,696 page views and 16,123,600 SQL 

queries in 2,985,016 sessions described by the Session 

table, and a SessionLog table indexed by sessionID, 

and rankInSession.  The 65,435,696 SessionLog rows 

describe the session request sequences (pointers into 

WebLog and SqlLog tables) along with their timestamps, 

templates, and some summary information (Figure 2.) 

3.2.4  Session Classification and Diversity 

Our first task is to recognize and exclude spiders so that we 
can focus on the behavior of analysis, copy (data 
download), and human clients.  If a client’s AgentString 
declares a client IP address to be a spider or if the client IP 
address visits robots.txt then we declare all sessions from 
that IP address to be spiders.  This eliminates 1.4M 
sessions, 14M page views and 328K SQL requests.  Spiders 
were ½ the sessions, 18% of the page views, and 2% of the 
SQL traffic. 

Recognizing the other categories is more difficult.  We 
conjectured that people had irregular think times while 
programs would have a regular think-time pattern.  Both 
those conjectures turned out to be false.  Both people and 
programs seem to follow a power-law distribution of think 
times – so think-time is not a good way to distinguish them 
(see Figure 4.)  

Figure 5 shows the frequency of session durations and 
session size (number of requests).  Both graphs bucket the 

populations in powers of two (e.g. log2(requests) and 

log2(duration) ).  The graphs show interesting patterns:  
Session lifetimes beyond a 1000 sec seem to follow an 
approximate power law behavior with a slope of -1.4. There 

is also a sharp cusp at short sessions. At the same time the 
number of requests per session follows a simple power law  
all the way – though SQL sessions tend to be longer than 
http-intensive sessions. 

We conjectured that spiders crawl the Website and rarely 
re-visit the same page in a session.  In line with this, we 
conjecture Copiers and Analyzers systematically crawl the 
database presenting the same request with different 
parameters, and we conjectured that people are a mix of the 
two behaviors; they visit several pages, may return to a 
page, and may dwell on a page as they submit queries. 

These conjectures appear to be true in general.  For 
example, consider sessions of Figure 5 that span more than 
3 days (the ones lasting more than 250k seconds).  Statistics 
for the top 5 are shown in Table 3. They came from five 
institutions doing systematic data downloads.  Four of the 

institutions used the free-form SQL requests (x_sql.asp 

or SkyQa.asp) and two used the pre-canned SQL (x_rect) 

commands that do not record their SQL commands in the 
log. One uses the very popular GetJpegObj.asp that issues 
over a dozen different SQL calls to build an annotated JPEG 
image from the database, but that is just one Web command 
stem (virtually every SkyServer request has or more 
backend SQL actions in addition to generating a SQL Web 
log record).  These sessions routinely had very few Web 
command stems (often one stem) and very few SQL 
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Figure 5:  Session sizes (left) as measured in page views or SQL requests bucketed by powers of 2 (left) follow an approximate 
power law although SQL sessions tend to be longer and very long spider sessions are rare.  The session lengths (duration in seconds) 
seem to have  three different behaviors: sessions less than 3-seconds are popular, sessions lasting 3 to 1,000 seconds seem to follow 
one power low with a slight rise; then past 1,000 seconds session lengths seem to follow a second power law.   

Table 3: Examples of 5 extremely long sessions 

Hours Pages 
Web 
Cmd 

Stems 

Free Form  
SQL Stmts 

Methods 
(asp) 

140 2,479,279 1 3,572 x_sql 
103 1,888,131 1 6,467 x_sql 
368 1,448,323 2 1,098 GetJpeg 

78 1,217,736 1 1 x_rect 
100 1,171,158 1 2,571 x_sql 
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Human Traffic by Month
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Figure 6:  Attempt to show “human” traffic: 
sessions that are neither admin, spider, or program.  
Web traffic continues to grow but SQL traffic 
stabilized at ~1,000 requests per day. The monthly 
traffic is smoothed by a 3 month moving window.  
Compare this figure to “all traffic” of Figure 3.  

Table 4: Main user institutions and request volumes 

Page Views SQL Institution 

4,668,124 3,114,078 NASA 
3,933,370 104,378 Google Inc. 
2,695,292 65,226 Johns Hopkins University 
2,241,295 2,196,411 AstroWise  
1,959,910 1,884,477 NRC Canada 
1,943,511 816 University of California  
1,261,638 971,166 University of Illinois, CCSO 
1,168,071 70,628 Microsoft Corp 
1,094,922 558 Pino Torinese Observatory  

728,123 543,377 Oxford University 
708,429 806,630 Universidad de Cantabria 
644,986 458,636 Max-Planck-Institut Garching 
455,061 390,805 Inst. Astrofisica de Canarias 

14,969 770,019 Unknown 

 

Table 5:  Traffic by Domain Name “type”. 

type institutions page views SQL 
University 863 31,507,386 8,648,855 

College 407 478,996 1,410 
School 310 823,138 1,890 

Other .edu 169 7,554,956 3,509,361 
.gov 238 446,460 83,562 

 

templates. For example, the session with the most requests 
used x_sql.asp to ask the following question with 2.4M 
different number pairs, counting objects in each htm-range 
(spatial bucket): 

select count(*) 

from photoprimary 

where (htmID >= # and htmID <= #) 

 

So, it had one Web stem …/x_sql.asp? and one SQL 

template (the statatement above).  Yes; there are better 
ways to ask and answer this question; but this way works.  

We define a session’s request diversity as the ratio of 
requests to request stems (Web URLs to the left of the “?”) 
plus SQL templates (statements with the non-identifier 
numbers replaced by “#’). The Web stems are in the 

WebCommandStem table and the SQL templates are in the 

SqlTemplate table of Figure 2.  We expect spider sessions 
to have high diversity, copier sessions to have low diversity 
and people to have sessions with intermediate diversity.  
This hypothesis works very well at the extremes, but we 
were unable to get a crisp classifier from this approach.  We 
found no clear break between the diversity of people, 
programs or spiders – the data looks like a continuum. 

In the end, we despaired of an automatic way to recognize 
human users and bots based on statistics.  Some statistics 
show clear bot behavior, 100 hour sessions or 1M page 
views in a session (!) but, the typical spider session is short 
10 page views in 100 seconds – indeed that is why ½ the 
sessions are spider sessions (see Figure 5). 

The best we could do in classifying sessions as mortal, was 
to find all sessions that were not administrative, not 
obviously a spider, not obviously a bot, lasted between one 
minute and 8 hours, and involved at least 4 page views or 
SQL requests.  There were about ½ million such sessions.  

Figure 6 shows the page-view and SQL request traffic for 
mortal sessions when averaged over 3 month windows. 
Web request traffic grew at 75% per year, while mortal 
SQL traffic quickly grew to ~30K requests/month and 
stabilized there.  In comparison, the overall traffic doubles 
every year (Fig 3), thus there is a relative increase bots and 
spider usage. An interesting feature of the underlying data 
is that it seems to show a yearly trend with a dip in the 
summer and fall, and an increase in winter and spring. 

4 Traffic by Source 

4.1 Traffic by IP address 

 Each Web log entry and most SQL log entries carry an IP 
address. A reverse lookup converts this to the name of the 
institution owning the IP address. Unfortunately, many of 
the IP addresses resolve to large IP-address blocks that are 
“sub-leased” to many organization; so, the IP lookup maps 
to a large ISP – for example over 1,000 of the blocks 
mapped to the Amsterdam RIPE network which does not 
disclose it sub-leases.  Nonetheless, a combination of 
automatic lookup and then some manual-resolution mapped 
most of the million IP addresses to about 11k IP domains.  

Table 4 shows the Web and SQL traffic from the most 
active institutions (with administrative traffic removed but 
including spiders and bots).  Most traffic is from programs 
that spider the Website, or download data.  The unknown 
address is caused by bugs in our logging software that did 
not record some IP addresses. 

Table 5 shows the traffic counts when one parses each 
domain’s organization name, looking for words like 
“university” or “college” or “school” or “district”.  It 
indicates that most traffic comes from colleges and 
universities.  
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Figure 7: SkyServer Web page views (averaged 
over 3 month windows) for each language sub-site.  
Note the rapid growth in the Spanish, Hungarian, 
and Portuguese sites. 

4.2 Traffic by Most Popular “verbs” 

Table 6 shows the importance of spatial data search for 
Astronomy applications. Of the 13.3M SQL queries, 5.8M 
involved spatial search functions (like fGetNearbyObjEq()), 
and all but one (“default”) of  the next 5 most popular verbs 
are variants of  “get data near this point.”  
 

4.3 Traffic on Parts of Web Site 

Again, subtracting out the admin and spider traffic, the 
traffic in the Website partitions approximately along the 
menu hierarchy of the site’s home page (tools, get data, 
projects,  help,  ….)  Table 7 gives the traffic breakdown by 
part of the Website. Most traffic goes to the tools that view 
the data and images.  The third most popular part of the site 
is the astronomy educational activities with 4M page views 
and over 600k sessions. 

 

4.4 Traffic by Language 

Figure 7 shows the page view traffic aggregated by 
language (English, German, Hungarian, Japanese, 
Portuguese, and Spanish).  The non-English traffic largely 
reflects people using the site to learn about the SDSS or 
using it for education.   The recent dramatic rise in the 
German traffic after 4 years at 2k page views per month to 
80k page views per month is due to a much better German 
translation of the project website. We are very pleased by 
the traffic growth in the Spanish, Portuguese, and 
Hungarian sites.  
 

4.5 Traffic on the Educational Website 

Of particular interest to us is the use of the Project Website 
that teaches astronomy.  It received 4.2M page views in all.  
Table 8 shows that these page views are largely 

concentrated on the Advanced and Basic projects that teach 
astronomy.  With bots and spiders excluded, there were 
618K sessions involving at least one project page.  The 
297K sessions involving two or more project pages suggest 
that the student was reading the material rather than just 
browsing.  Those sessions had 7.4 million page views, more 
than 21 thousand SQL queries, and delivered more than 47 
thousand hours of instruction.  Few astronomy textbooks or 
teachers can match that record. 

4.6 Traffic by Data Release 

The SDSS has released six versions of the “Best” catalogs 
that contain all the data processed with the most recent 
software – these versions are called the Early Data Release 
and Data Releases 1 through 5 (EDR, DR1-5).  In addition, 
there are Target DR1-5 containing the data snapshot used 
for selection of spectroscopic targets. There is also a Runs 
database that is mosaiced to produce the “Best” database. 
99.98% of the traffic goes to the Best catalogs. DR5 was 
just coming online when the logs for this study were frozen. 
The SDSS Servers have answered about 16 million SQL 
queries when spider and admin queries are excluded.   

Table 6: Most popular web “verbs”. 

verb page views description 

x_sql 13,393,187 Ad hoc SQL query 
default 10,394,717 Navigation page 
GetJpeg 8,929,524 Get an object’s image 
x_radial 6,023,717 Radial DB search 
x_rect 5,673,636 Rectangular search 
showNearest 3,388,016 Nearest object to point 
obj 2,511,025 Get Photo Object by ID 
specById 2,037,324 Get Spectrogram by ID 
OEtoc 1,438,447 Object Explorer root 
camcol 1,307,075 Camera column (band) 
shownavi 1,169,273 Visual Navigation Page 
frameByRCFZ 1,114,325 Get Frame   
 

Table 7: Web site traffic by part of tree 

Page views web tree 

43,486,090 tools: to use the database 
5,482,295 get: data and image retrieval 
4,242,788 proj: Science education projects 
3,986,970 help: documentation on data and site 

560,198 sdss: about SDSS 
549,148 astro: about astronomy 

68,995 skyserver: about Sky Server 
 

Table 8: Page views of Project website by area 

“area” pg  views focus 
Advanced 1,752,889 Teaches astronomy. 
Basic 1,075,487 Tells what astronomy is. 
Kids 489,438 Very elementary.  
Teachers 364,553 Advice to teachers. 
Games 224,888 Hunt pictures for examples 
Challenges 112,019 Some open ended projects 
Links 40,725 Pointers to other places 
Mailing 11,006 Talk to authors 
High School 3,733 Grades 9-12 
Cool 3,459 Fun things.  
User 2,134 User registration 
Middle School 840 Grades 4-8 
Get Answers 461 Answers to exercises 
Lower School 410 Grades K-4 
Evaluate 225 Comment on site. 
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Figure 9: SkyServer SQL Query traffic by data release 
and time. Note the very pronounced “spikes” after the 
data releases, and extended use of the data from DR1. 
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Figure 10: SkyServer SQL Query traffic by rows, 
elapsed time, CPU time and queries, versus access 
categories. “Antique” represents old datasets. 
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Figure 8: SkyServer SQL Query traffic by data 
product expressed as a percentage of SQL queries. 

Each catalog has been available for ad-hoc SQL queries.  
Figure 8 shows the relative traffic (measured in SQL 
queries) on the catalog.  It shows that each dataset has had 
comparable traffic, although the newer ones have had less 
time to garner traffic – This reflects the increased interest in 
the datasets with time.  

Figure 9 shows that in 2003 the SQL traffic quickly rose to 
about 10,000 queries per day and then held fairly steady at 
that saturation level.  It also indicates that each product has 
received between 400K and 600K SQL queries.  The newer 
products have had a shorter time to accumulate “hits.”  The 
figure also shows that interest in a product “spikes” soon 
after it is released and then declines as newer products are 
released.  The huge spike in DR3 is a substantial copy of 
the database by one site.  The oldest product, DR1, still gets 
about 40K SQL queries per month – there are still people 
doing science with it.  This shows that once a data product 
is published, it needs to stay online forever – much as 
scientific literature must remain available to allow others to 
read, verify and extend previous work.  

4.7 Traffic by Professional Astronomers 

The SkyServer Website is the easiest way to access the 
Sloan Digital Sky Survey catalogs.  There are three services 
set up for professional Astronomers.  Some “collaboration” 
servers are set up for the exclusive use of members of the 
SDSS collaboration that allow early access to the data for 
peer review, allow them to run larger queries with larger 
answer sets, and provide a more spartan user interface.  
There is also a public service “/astro/” with the same 
/collab/ spartan interface.  In addition, there is a public 
CasJobs (Catalog Archive Service Batch Jobs) interface 
that allows users to create a personal database on the server 
(MyDB), upload data to it, use data from that database in 
queries, and send results of queries to that database.  
Section 7 discusses CasJobs. 

The /collab site delivered 3.4M page views and 2.4M SQL 
queries, the /astro site delivered 9.2M page views and 3.6M 
SQL queries, and /CasJobs 1.1 delivered 1.1M page views 
and executed 209K jobs.  Put another way, the public sites 
got three times more traffic than the collaboration site, 
indicating that the datasets are widely used and that people 
who were not “insiders” were able to use the data (see 
Figure 10.)  We will return to the kinds of SQL queries the 
professionals presented in sections 6 and 7. 

4.8 Traffic by Server 

As of mid-2006, there were 36 Web server logs and 15 SQL 
server logs being harvested.  Three servers handle 74% of 
all Web requests and the top 3 SQL servers service 65% of 
all SQL requests.    

The public SkyServer has a 10-minute 100K row limit, the 
astro and collab sites have a 1-hour 500K row limit, and the 
CasJobs long queue has an 8 hour. The CasJobs collab site 
has a 24 hour.  

The Web servers are lightly loaded except for the compute-
intensive task of composing JPEG images on demand from 
the images in the database (the GetJpeg verb of Table 5).  
That requires retrieving and converting several Jpegs from 
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Figure 11:  SQL traffic per user, sorted by user frequency (number of jobs from that user – biggest user first).  The chart on the 
left shows how the various measures of SQL traffic, the numbers of job-stems, elapsed times, CPU times and the number of 
returned rows for each user.  The trend-lines use a 30-point boxcar average. The figure on the right shows the correlations 
between the rank and the number of requests for the 100 most active users. Note the 1/f -like behavior, resembling Zipf’s Law. 

the database into a bitmap, decorating the bitmap with 
information fetched from the database, clipping the result to 
an image centered on the desired spot and then converting 
the bitmap to a JPEG image and delivering it via SOAP over 
HTTP.  This entire image-processing task can consume 0.3 
to 5.0 CPU seconds depending on the image size and query 
complexity.   
 
Fermilab has a load-balanced pool of three Web servers 
allocated to service these tasks and the less demanding ones 
on a round-robin basis (Figure 1). The average network 
traffic on these servers is 1.5 MB/s (~10 Mbps) – but peak 
traffic can be whatever is available. Outbound bandwidth is 
~100x inbound bandwidth. 

5 CasJobs and MyDB – Batch is Back 

CasJobs (Catalog Archive Server Batch Jobs) is a Web 
interface and a Web-service SOAP interface that allows 
users to submit unrestricted query scripts in batch mode to 
the SDSS databases, create a personal database on the 
server (MyDB), upload data to it, use data from that 
database in queries, and send results of queries to that 
database.  CasJobs is described in detail in [3, 5] and is on 
the Web for you to explore.  Login is required to submit a 
background job or create a database, but anyone may create 
an account. 

As described in [5], the primary motivations for CasJobs 
were to 

• separate the quick queries (that finished in under a 
minute) from the long queries that took minutes or 
hours to execute and bogged the server down for 
everyone else; 

• provide each user with a server-local scratch 
workbench database to hold intermediate query results 
and bring  the analysis to the data as much as possible 
rather than vice-versa (this avoids moving large 
intermediate data results across the Internet); and 

• provide simple load balancing among the servers by 
distributing the queues across the server pool. 

5.1 CasJobs Queries 

CasJobs processed 209K jobs since September 2004.  The 
CasJobs Administrator did 60% of these jobs (scheduling 
jobs and reporting on them).  In what follows, we exclude 
the administrator. This leaves 77K jobs to consider, of 
which 59K are syntactically correct. 

There have been 537 distinct users. Virtually all “big” 
queries were IO bound (disk bound). CPU utilization rarely 
got above 10% of the elapsed time.  Faster CPUs would not 
help, but more RAM and more disks would have sped the 
queries.  Put another way, the total CasJobs elapsed time 
was slightly more than one year and the total CPU time was 
less than 10 days (229 hours). 

Figure 11 displays the CasJobs activity (jobs, elapsed time, 
CPU time, rows returned) of all 537 users sorted by the 
number of jobs they submitted.  It shows no clear 
breakpoints: some users submitted a few big jobs, some 
users submitted many big jobs, some submitted many small 
jobs, many submitted a few big jobs, and many submitted a 
few small ones.  When sorted by jobs, the top 10 users 
submitted 57% of the jobs; sorted by time, the top 10 used 
27% of the time, and sorted by rows returned, the top 10 
retrieved 51% of the rows.  When we rank users by the 
number of requests they submitted, the rank vs the requests 
shows a nice power-law behavior, resembling a 1/f 
distribution, indicating that users do not have a 
characteristic workload scale. 

Figure 11 also shows that CPU time (blue) is much less 
than wait time (green) in almost all cases – even though 
these are 2-way or 4-way multiprocessor servers.  It shows 
that the system returns about 20K rows per CPU second and 
500 rows per elapsed second.  CasJobs returned 16 billion 
rows in all (about 1TB). This is twice the number of rows 
returned by the public server, four times the number 
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returned by the /astro server, but only 60% of the number 
returned by the /collab servers (see also Figure 10). 

CasJobs saved bandwidth and user wait time.  When it was 
introduced, the public “big queries” moved to CasJobs.  
CasJobs allows users to do sophisticated and high-
bandwidth analysis near the server without having to 
provision their own server and without having to download 
the SDSS archive to their site.  Of the 59K valid CasJobs, 
85% are simple selects, about 9K are complex programs 
that create tables in MyDB, define local variables, 
constants, and functions, and then do multi-step analysis of 
the SDDS catalogs and the user’s MyDB data. 

5.2 CasJobs Users 

Figure 12 shows scatter plots between the various per-user 
average measures and approximate trend lines to emphasize 
characteristic correlations. The left hand figure shows the 
number of rows returned vs elapsed time. The trend line 
corresponds to a 750 rows per sec average. It is obvious, 
that the scatter is quite large. For an elapsed time of about 
100 sec one can see the sharp cutoff at around 500,000 
rows, also noticeable on the right hand plot on Figure 11.  
 
Figure 12 shows that CPU time and elapsed time track one 
another quite well, but the slope is less than one. The 
characteristic ratio is about 34 sec of elapsed time for 1 sec 
of CPU, as measured on the high end, compared to a factor 
of 100 for short queries. This indicates that most of the 
workload is heavily I/O bound.  

High end users tend to use a smaller number of “stems” 
than the low-end users. This trend is clearly seen from the 
third panel on Figure 12: with more requests, the number of 
stems is falling away from the envelope. The meaning of 
this is that the people with lots of jobs are probably refining 
a complex query, or doing a spatial search by changing 
some the parameter values, and running a similar query 
pattern many times.  This vindicates one of our main 

arguments for CasJobs – to avoid wasting bandwidth from 
repeat queries during the refinement process. 

The average query is about 100 tokens long, runs for about 
10 minutes, uses 15 CPU seconds and deposits 250K rows 
in MyDB. Since CasJobs was inaguratead three years ago, 
traffic has been fairly steady at about 10 queries per hour.  
There have been peak periods of 700 queries per hour; but, 
on average jobs are processed within a few hours. SQL  

6 Query Analysis  

Of the 20.7M SQL queries, there were 10.3M distinct 
queries, 9.0M of these statements are syntactically correct, 
and 7.4M returned at least one row suggesting they were 
valid queries.  When one replaces all the numbers in a 
query with a “#” symbol, the set of queries shrinks to 138K 
templates of which 102K are syntactically correct and 78K 
return results.  

6.1 Queries from Bots 

Robot sessions show up with very few templates compared 
to the number of SQL queries – typically thousands of 
queries in a session with just one template.  If we say that a 
session with the same template repeated 4 or more times 

Table 9: Most popular function calls in SQL queries. 

verb queries 

fGetNearbyObjEq 8,698,330 

fGetObjFromRect 3,269,000 

fGetNearestObjEq 661,349 

fGetUrlFitsCFrame 88,453 

fGetNearestFrameEq 78,625 

fGetNearestObjIdAllEq 56,063 

fGetNearestObjIdEqType 18,052 

fGetUrlFitsField 9,016 

fGetObjFromRectEq 5,638 
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Figure 12: Scatter plots of the various user measures in the MyDB/CasJobs environment.  The chart on the left shows how the 
average rows returned correlate with elapsed time. The line displays a linear relation of 500 rows per second, to guide the eye. 
The middle chart shows how CPU time and elapsed time track one another. The slope of the trend is only 0.937, rather than 1. 
A user with and average 100 sec CPU usage has a elapsed time of about 5000 sec, corresponding to a ratio of 50. The right 
hand figure shows the number of stems vs the number of jobs. The line represents the upper envelope of 1 stem per request. It 
demonstrates that for the low-end users the two track one another quite well (the ridge). The high-end users are doing many 
more repeat queries, i.e. the number of stems per request is falling away from the envelope. 
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(session.SqlStem>4*session.sql) represents a robot 
or program,  then those 10.9K robot sessions represent 
15.7M of the SQL queries with only 12K SQL templates – 
the typical bot is reissuing the template 13K times!  The 
residue 85.8K sessions submitted 417K SQL queries.   

The robots typically do a spatial search.  Table 9 shows the 
counts for the most popular functions.  All but 2 of the 
functions in Table 9 are spatial data lookups.  Many other 
robot queries systematically vary the parameters of an 

RA,DEC bounding box using the SQL BETWEEN construct.  

610 of the bot templates (~5%) have that construct. 10K of 
the residue have that construct -- about 12% of the 74K 
valid templates from sessions that seem not to be bots.  
After failing to “teach” users to use the spatial search 
functions, we added an RA-dec index to speed this 
bounding-box construct. 

6.2 Queries from Mortals 

Let us try to characterize non-bot SQL queries.  Define 
mortal queries as ones that are in a session where the 
number of distinct SQL templates is at least 20% of the 
number of SQL queries (that is, the typical query is not re-
used more than 4 times) and where the session is less than 8 
hours.  Further define valid mortal queries as those that 
return at least one row from the database.  Let’s analyze 
these mortal queries and their sessions. 

There are 85k mortal sessions with 412K queries, of which 
271K (66%) are valid mortal queries.  The typical session 
has six SQL queries and lasts thirty minutes – but sessions 
of four hours are quite common (see Figure 11).  The 
median valid query ran for two minutes (127 seconds) and 
those queries had a median of 2 seconds of CPU time and 
3.5K rows returned.  As Figures 11, 12 and 13 indicate, 
these numbers have huge variance – the median and 
average are very different.  The average number of rows 
returned was 187K not 3.5K. 

The 271K valid mortal queries also have a wide range of 
complexity.  There are 74K valid mortal templates.  Of 
those, 71% use the select-from-where syntax, 14% use the 
select-from-where-orderBy syntax, and 6% are select from 
a table-valued function – so 91% follow that simple select-

from format.  But some queries have more than 80 select 
clauses; some have 7 group-by clauses and there is 
considerable use of outer-joins and many other advanced 
features. Approximately 13k templates (18%) involve a 
spatial join using one of the table valued spatial functions.  
The numbers are probably somewhat skewed by a set of 
more than 50 sample queries that are available on the 
SkyServer Help page [15].  Many users tend to initially run 
these either with or without modification until they get 
proficient enough to formulate their own queries.  

6.3 Term Frequency within SQL Queries 

As in Abdulla [12], we analyzed token frequencies within 
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Figure 13: Statistics of SQL-related mortal (human) sessions in the MyDB/CasJobs environment. The left figure shows the 
distribution of session length (minutes or hours.) For reference a lognormal with 30 minute mean is shown (purple line). The 
middle chart displays the frequency distribution of the average elapsed time, the average CPU time, and the number of rows 

delivered (in K-rows). The right hand chart shows the distribution of K-rows returned by median-length jobs lasting 110 to 

130 seconds (the median job length).  These three histograms are bucketed in powers of 2 using the formula round(log2(x)) to 
compute an integer bucket number. The graph at right shows a large variance in behavior with a sharp cutoff at around 1M 
rows representing a limit of ~10K-rows/second that can be returned (these median queries are limited to 130 seconds). In the 
rightmost graph, the population of each bucket is approximately constant showing a classic Zipfian distribution – small queries 

are common but each next power of 2 bucket has a comparable number of jobs (but 2x the rows and so 2x the work.)  
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 Figure 14: The frequency distribution of the top 
5000 SQL terms. The dashed line shows a -1 slope   
corresponding to Zipf’s Law. 
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the SQL templates.  We simplified the SQL query templates 
by removing parentheses, table aliases, database and table 
prefixes, and function parameter names. We also 
substituted tokens for strings, comparison operators (e.g. 
'>=', between), bitwise operators, arithmetic operators, 
logical operators, and for multi-word SQL keywords such 
as group by and order by. This produces about 110K query 
templates. The templates mention all 44 tables, but 493 of 
the 2,228 columns are never mentioned and 36 of the 109 
built in functions are not used.  

SQL is a formal language so one might not expect to see a 
Zipfian distribution of term frequency so characteristic of 
natural languages. But, indeed that is what we see. Ignoring 
term context (part of speech) and spelling errors, and 
plotting term rank vs frequency gives Figure 14 which 
indeed looks like a simple power law. 

Looking deeper into the language, separating SQL verbs, 
column names, and table names gives the top-30 frequency 
counts.  Table 10 shows the top 30 SQL token frequencies, 
Table 11 shows the top 30 table frequencies and Table 12 
shows the frequency of the top 30 columns.  The full data is 
graphed in Figure 15. The Figure and the Tables indicate 
that the distributions are not exactly Zipfian, but term 
frequencies do decline very sharply.  The “staircase” effect 
is caused by correlated constructs like select-from-where 
and case-when-then-end.   

6.4 Using Templates to Correct SQL Queries 

Query repetition may offer a way to improve the user ex-
perience. If a few of the 100K query templates are similar 
to a new user query has a syntax error, it might be useful to 
offer a similar correct queries from the corpus.  A simple 
distance function measures query similarity: First chop each 
template into token substrings (N-grams) [16] that are then 
sorted.  Then compute the Jaccard distance [17] betweeen 
the query's N-gram sets and the N-grams of each template.  
This finds near matches to a user's query. The templates and 
actual correct query examples can be returned as sugges-
tions. For example, consider the following incorrect SQL 
query:  

SELECT TOP 10 ph.ra,ph.dec, 

       str(ph.g - ph.r,11 ? ) as color, 

       isnull(s.bestObjId, 0) as bestObjId,  

       'ugri' 

FROM #x x, #upload up,  

     BESTDR2..PhotoObjAll as ph  

LEFT OUTER JOIN ? SpecObjAll s  

  ON ph.objID = s.bestObjID  

WHERE (ph.type=3 OR ?)  

AND up.up_id = x.up_id  

? x.objID=p 

?.objID 

ORDER BY x.up_id 

The red question marks denote syntax errors. We passed 
this query into the matching system and got back the   top 
three matches in Table 10. 

The top query result fills in the missing values for our input 
query exactly. Also notice how the next two candidates 

Table 10: Three correct matching queries. 

SQL Query Similarity 

SELECT TOP 50 p.ra,p.dec, 

  str(p.g - p.r,11,8) as grModelColor, 

  isnull(s.bestObjID,0) as bestObjID,  

  'ugri' as filter  

FROM  #x x, #upload u,  

      BESTDR2..PhotoObjAll as p  

LEFT OUTER JOIN BESTDR2..SpecObjAll s  

  ON p.objID = s.bestObjID  

WHERE ( p.type = 3 OR p.type = 6)  

  AND u.up_id = x.up_id  

  AND x.objID=p.objID  

ORDER BY x.up_id 

74% 

SELECT TOP 50 p.ra,p.dec, 

p.run,p.rerun,p.camCol,p.field,p.obj, 

   isnull(s.ra,0) as ra, 

   isnull(s.[dec],0) as [dec],  

   'ugriz' as filter  

FROM  #x x, #upload u,   

      BESTDR2..PhotoObjAll as p  

LEFT OUTER JOIN BESTDR2..SpecObjAll s  

  ON p.objID = s.bestObjID  

WHERE ( p.type = 3 OR p.type = 6)  

  AND u.up_id = x.up_id  

  AND x.objID=p.objID  

ORDER BY x.up_id 

66% 

SELECT TOP 50 p.ra,p.dec, 

p.run,p.rerun,p.camCol,p.field ,p.obj, 

  isnull(s.ra,0) as ra, 

  isnull(s.[dec],0) as [dec],  

  'ugriz' as filter  

FROM  #x x, #upload u,  

      BESTDR2..PhotoObjAll as p  

LEFT OUTER JOIN BESTDR2..SpecObjAll s  

  ON p.objID = s.bestObjID  

WHERE  ( p.type = 3 OR p.type = 6)  

  AND u.up_id = x.up_id  

  AND x.objID=p.objID  

ORDER BY x.up_id 

60% 
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follow the same TOP N, temporary table, LEFT OUTER 
JOIN sequence, and WHERE conditional syntax usage. 
Since we record error messages for each SQL query we 
only present correct queries. This example illustrates 
template similarity and the large corpus of templates can 
provide suggestions to users. 

6.5 Examples of Complex SQL Queries 

About 8K templates have explicit join verbs.  Multi-way 
complex joins are common.  The following 8-way join is 
typical: 

SELECT LF.BESTOBJID, LF.TARGETID 

FROM MYTABLE_61         AS LF 

INNER JOIN PHOTOTAG     AS BP 

ON LF.BESTOBJID = BP.OBJID 

INNER JOIN TARGETINFO   AS TI 

ON TI.TARGETID = LF.TARGETID 

INNER JOIN PHOTOTAG     AS TP 

ON TI.TARGETOBJID = TP.OBJID 

INNER JOIN FIELD        AS TF 

ON TF.FIELDID = TP.FIELDID 

INNER JOIN SEGMENT      AS TS 

ON TS.SEGMENTID = TF.SEGMENTID 

INNER JOIN FIELD        AS BF 

ON BF.FIELDID = BP.FIELDID 

INNER JOIN SEGMENT      AS BS 

ON BS.SEGMENTID = BF.SEGMENTID 

LEFT OUTER JOIN SPECOBJ AS SO 

ON LF.BESTOBJID = SO.BESTOBJID 

Another interesting example is this 16-way join: 

select count_big(distinct g.objid) 

from PhotoObjAll as g 

left outer join PhotoProfile as p0 

on g.objId=p0.objID 

left outer join PhotoProfile as p1 

on g.objId=p1.objID 

left outer join PhotoProfile as p2 

    repeated to 15 times for each p(i)… 
left outer join PhotoProfile as p14 

on g.objId=p14.objID 

where g.run = # and g.rerun = # 

  and g.camcol = # and g.field = # 

  and g.obj != # 

  and ((p0.bin=# and p0.band=#)or(p0.bin is null)) 

repeated 15 times for each p(i) 

There is an 85-way union!  There are complex sub-selects 
nested 7 deep.  In general, some of the users are very 
ingenious, and some have SQL skills that qualify them as 
database gurus.  

7 Summary 

These results are tantalizing.  Each answer suggests other 
questions.  A few key patterns emerge from this forest of 
data. SkyServer traffic nearly doubled each year – both 
Web traffic and SQL queries grew by about 100%/year. We 
failed to find clear ways to segment user populations.  We 
were able to ignore the traffic that was administrative or 
was eye-candy, leaving us with a set of 65M page views 
and 16M SQL queries.  We organized these requests into 
about 3M sessions, about half of which were from spiders.  
The residue of 1.5M sessions had 51M page views and 16M 
SQL queries – still a very substantial corpus. 

Our best estimate is that spiders contributed 46% of 
sessions and 20% of the Web traffic.  Scientific analysis 

programs and data downloaders were 3% of the sessions, 
but 37% of the Web traffic and 88% of the SQL traffic. 
Interactive human users were 51% of the sessions, 41% of 
the Web traffic and 10% of the SQL traffic. We cannot be 
sure of those numbers because we did not find a very 
reliable way of classifying bots vs mortals. 

The human traffic seems to grow a little slower than the 
whole.  The yearly growth is still exponential, but the traffic 
only doubles every 1.33 years. 

Many of our logs exhibit a remarkable power law behavior. 
It is well-known that long-tailed distributions emerge 
naturally from multiplicative processes [18, 25, 26], when 
the product of many factors determines the final outcome. It 
has been pointed out recently [19, 20, 28] that such 
behavior is also natural in social networking, especially so 
in Web-based systems where users are presented with many 
choices. We find such long-tailed distributions in the page 
views and the lengths of sessions, and also in the number of 
SQL requests. Some of these power laws extend the 1/f 
behavior over 6 orders of magnitude (e.g., Figure 5a). 

One thing that is clear is that there is considerable interest 
in the educational site in each of the five available 
languages.  There were 297K sessions involving two or 
more project pages with behavior that “looked” mortal.  
Those sessions had 7.4 million page views, more than 21 
thousand SQL queries, and delivered more than 47 
thousand hours of instruction.  Few astronomy textbooks or 
teachers can match that record. 

The SkyServer will write some SQL for you – and many 
users used the fill-in-the-form user interface – but hundreds 
of astronomers “graduated” to the free-form SQL query 
interface where they composed tens of thousands of SQL 
queries, and about 500 astronomers have created their own 
private database and run complex analysis jobs using the 
CasJobs site.  There was considerable skepticism whether 
this would work at all, whether it would be useful, and 
whether it would be abused.  So far it has been quite useful 
to some and has not been abused.  The CasJobs template in 
fact has been successfully adopted by other astronomical 
archives like GALEX [21], and even non-astronomical 
archives like AmeriFlux [22]. 

In terms of interest in the data, each new data release gets a 
flurry of interest.  First there is early mortal traffic, then 
there is an intense period of bot (program) download and 
analysis, and after that (when a new version appears) traffic 
subsides to a few thousand queries per month.  So far no 
release has gone out of use.  This confirms our belief that 
once published, scientific data must remain online and 
accessible so that scientists can repeat experiments or 
analyses indefinitely.  The fact that earlier releases like 
DR1 continue to get sustained usage is of especial 
significance for the budgeting of data access resources for 
the next generation of large astronomical surveys like Pan-
STARRS [23] and LSST [24]. 

SkyServer is an example of the new way to publish and 
access scientific data.  It is the data and documentation 
produced by a collaboration along with tools to analyze the 
data.  It is public, and it can be federated with other 
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scientific archives and with the literature. We hope that it 
will turn into a useful resource for more complex analyses 
by others than those presented in this paper. 
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