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Abstract

The l-bfgs limited-memory quasi-Newton
method is the algorithm of choice for optimiz-
ing the parameters of large-scale log-linear
models with L2 regularization, but it can-
not be used for an L1-regularized loss due
to its non-differentiability whenever some pa-
rameter is zero. Efficient algorithms have
been proposed for this task, but they are im-
practical when the number of parameters is
very large. We present an algorithm Orthant-
Wise Limited-memory Quasi-Newton (owl-

qn), based on l-bfgs, that can efficiently
optimize the L1-regularized log-likelihood of
log-linear models with millions of parame-
ters. In our experiments on a parse re-
ranking task, our algorithm was several or-
ders of magnitude faster than an alternative
algorithm, and substantially faster than l-

bfgs on the analogous L2-regularized prob-
lem. We also present a proof that owl-qn is
guaranteed to converge to a globally optimal
parameter vector.

1. Introduction

Log-linear models, including the special cases of
Markov random fields and logistic regression, are used
in a variety of forms in machine learning. The parame-
ters of such models are typically trained to minimize
an objective function

f(x) = ℓ(x) + r(x), (1)

where ℓ is the negative log-probability of a labelled
training set according to the model, and r is a reg-
ularization term that favors “simpler” models. It is
well-known that the use of regularization is necessary
to achieve a model that generalizes well to unseen data,
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particularly if the number of parameters is very high
relative to the amount of training data.

A choice of regularizer that has received increasing at-
tention in recent years is the weighted L1-norm of the
parameters

r(x) = C‖x‖1 = C
∑

i

|xi|

for some constant C > 0. Introduced in the con-
text of linear regression by Tibshirani (1996) where
it is known as the lasso estimator, the L1 regularizer
enjoys several favorable properties compared to other
regularizers such as L2. It was shown experimentally
and theoretically to be capable of learning good mod-
els when most features are irrelevant by Ng (2004).
It also typically produces sparse parameter vectors in
which many of the parameters are exactly zero, which
makes for models that are more interpretable and com-
putationally manageable.

This latter property of the L1 regularizer is a con-
sequence of the fact that its first partial derivative
with respect to each variable is constant as the vari-
able moves toward zero, “pushing” the value all the
way to zero if possible. (The L2 regularizer, by con-
trast, “pushes” a value less and less as it moves to-
ward zero, producing parameters that are close to, but
not exactly, zero.) Unfortunately, this fact about L1

also means that it is not differentiable at zero, so the
objective function cannot be minimized with general-
purpose gradient-based optimization algorithms such
as the l-bfgs quasi-Newton method (Nocedal &
Wright, 1999), which has been shown to be superior
at training large-scale L2-regularized log-linear models
by Malouf (2002) and Minka (2003).

Several special-purpose algorithms have been designed
to overcome this difficulty. Perkins and Theiler (2003)
propose an algorithm called grafting, in which vari-
ables are added one-at-a-time, each time reoptimizing
the weights with respect to the current set of variables.
Goodman (2004) and Kazama and Tsujii (2003) (in-
dependently) show how to express the objective as a
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constrained optimization problem, which they solve
with a modification of generalized iterative scaling
(GIS) (Darroch & Ratcliff, 1972) and BLMVM (Ben-
son & More, 2001), a quasi-Newton algorithm for prob-
lems with bound constraints, respectively. Unfortu-
nately, GIS is generally considered to be dominated
by l-bfgs, and both of these algorithms require dou-
bling the number of variables in the general case.

Lee et al. (2006) propose the algorithm irls-lars,
inspired by Newton’s method, which iteratively min-
imizes the function’s second order Taylor expansion,
subject to linear constraints. The quadratic program
at each iteration is efficiently solved using the lars al-
gorithm (lasso variant) of Efron et al. (2004). They
compare the approach to the other aforementioned al-
gorithms (except that of Kazama & Tsujii) on small-
to medium-scale logistic regression problems, and show
that in most cases it is much faster. Unfortunately
irls-lars cannot be used to train very large-scale log-
linear models involving millions of variables and train-
ing instances, such as are commonly encountered, for
example, in natural language processing. Although
worst-case bounds are not known, under charitable as-
sumptions the lasso variant of lars may require as
many as O(mn2) operations, where m is the number
of variables and n is the number of training instances.
Indeed, the only test problems of Lee et al. in which
another algorithm approached or surpassed irls-lars

were also the largest, with thousands of variables.

In this paper, we propose a new algorithm based on l-

bfgs for training large-scale log-linear models using L1

regularization, Orthant-Wise Limited-memory Quasi-
Newton (owl-qn). At each iteration, our algorithm
computes a search direction by approximately mini-
mizing a quadratic function that models the objective
over an orthant containing the previous point. Our
experiments on a parse re-ranking task with over one
million features demonstrate the ability of owl-qn to
scale up to very large problems.

1.1. Notation

Let us establish some notation and a few definitions
that will be used in the remainder of the paper. Sup-
pose we are given a convex function f : R

n 7→ R and
vector x ∈ R

n. We will let ∂+
i f(x) denote the right

partial derivative of f at x with respect to xi:

∂+
i f(x) = lim

α↓0

f(x + αei) − f(x)

α
,

where ei is the ith standard basis vector, with the anal-
ogous left variant ∂−

i f(x). The directional derivative
of f at x in direction d ∈ R

n is denoted f ′(x; d), and

is defined as

f ′(x; d) = lim
α↓0

f(x + αd) − f(x)

α
.

A vector d is referred to as a descent direction at x if
f ′(x; d) < 0. We will use ‖·‖ to represent the L2 norm
of a vector, unless explicitly written ‖ · ‖1.

We will also find it convenient to define a few spe-
cial functions. The sign function σ takes values in
{−1, 0, 1} according to whether a real value is nega-
tive, zero, or positive. The function π : R

n 7→ R
n is

parameterized by y ∈ R
n, where

πi(x; y) =

{

xi if σ(xi) = σ(yi),
0 otherwise,

and can be interpreted as the projection of x onto an
orthant defined by y.

2. Quasi-Newton Algorithms and

L-BFGS

We begin our discussion of owl-qn with a description
of its parent, the l-bfgs quasi-Newton algorithm for
unconstrained optimization of a smooth function.

Like Newton’s method, quasi-Newton algorithms iter-
atively construct a local quadratic approximation to a
function, and then conduct a line search in the direc-
tion of the point that minimizes the approximation.
If Bk is the (perhaps approximated) Hessian matrix
of a smooth function f at the point xk, and gk is the
gradient of f at xk, the function is locally modelled by

Q(x) = f(xk) + (x − xk)⊤gk (2)

+
1

2
(x − xk)⊤Bk(x − xk).

If Bk is positive definite, the value x∗ that minimizes
Q can be computed analytically according to

x∗ = xk − Hkgk,

where Hk = Bk
−1. A quasi-Newton method then

explores along the ray xk − αHkgk for α ∈ (0,∞) to
obtain the next point xk+1.

While pure Newton’s method uses the exact second-
order Taylor expansion at each point, quasi-Newton
algorithms approximate the Hessian using first-order
information gathered from previously explored points.
l-bfgs, as a limited-memory quasi-Newton algorithm,
maintains only curvature information from the most
recent m points. Specifically, at step k, it records the
displacement sk = xk − xk−1 and the change in gra-
dient yk = gk − gk−1, discarding the corresponding
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vectors from iteration k − m. It then uses {si} and
{yi} to estimate Hk, or more precisely, to estimate the
search direction −Hkgk, since the full Hessian matrix
(which may be unmanageably large) is not explicitly
computed or inverted. The time and memory require-
ments of the computation are linear in the number of
variables. The details of this process are not impor-
tant for the purposes of this paper, and we refer the
interested reader to Nocedal and Wright (1999).

3. Orthant-Wise Limited-memory

Quasi-Newton

For the remainder of the paper, we assume that the
loss function ℓ : R

n 7→ R is convex, bounded below,
continuously differentiable, and that the gradient ∇ℓ

is L-Lipschitz continuous on the set ℵ = {x : f(x) ≤
f(x0)} for some L and some initial point x0. Our
objective is to minimize f(x) = ℓ(x) + C‖x‖1 for a
given constant C > 0.

Our algorithm is motivated by the following obser-
vation about the L1 norm: when restricted to any
given orthant, i.e., a set of points in which each co-
ordinate never changes sign, it is differentiable, and
in fact is a linear function of its argument. Hence the
second-order behavior of the regularized objective f on
a given orthant is determined by the loss component
alone. This consideration suggests the following strat-
egy: construct a quadratic approximation that is valid
for some orthant containing the current point using
the inverse Hessian estimated from the loss component
alone, then search in the direction of the minimum of
the quadratic, restricting the search to the orthant on
which the approximation is valid.

For any sign vector ξ ∈ {−1, 0, 1}n, let us define

Ωξ = {x ∈ R
n : π(x; ξ) = x},

which is the intersection of an orthant and a plane
constraining some coordinates to be zero. Clearly, for
all x in Ωξ,

f(x) = ℓ(x) + Cξ⊤x.

Defining fξ to be the extension of this function to all
of R

n, we have a differentiable function that coincides
with f on Ωξ. Using Hk, the l-bfgs approximation
to the inverse Hessian of the loss, and vk, the nega-
tive gradient of fξ at xk projected onto the subspace
containing Ωξ,

1 we can approximate fξ on Ωξ with a
quadratic function Qξ as in (2), and search in the di-
rection of the minimum of Qξ. For technical reasons,
we constrain the search direction to match the sign

1This projection just means that vk

i is set to zero when-
ever ξi is zero.

pattern of vk:2

pk = π(Hkvk; vk). (3)

3.1. Choosing an orthant

There may be many orthants containing or adjacent
to a given point, depending on how many of its coor-
dinates are zero. In order to determine which orthant
Ωξ to explore, let us define the pseudo-gradient of f at
x, denoted ⋄f(x), according to

⋄if(x) =







∂−
i f(x) if ∂−

i f(x) > 0
∂+

i f(x) if ∂+
i f(x) < 0

0 otherwise,
(4)

where the left and right partial derivatives of f are

∂±
i f(x) =

∂

∂xi

ℓ(x) +

{

Cσ(xi) if xi 6= 0
±C if xi = 0.

Note that ∂−
i f(x) ≤ ∂+

i f(x), so ⋄ is well-defined. The
pseudo-gradient generalizes the gradient in that the
directional derivative at x is minimized (the local rate
of decrease is maximized) in the direction of − ⋄ f(x),
and x is a local minimum if and only if ⋄f(x) = 0.

A reasonable choice of orthant to explore is the one
containing xk and into which − ⋄ f(xk) leads:

ξk
i =

{

σ(xk
i ) if xk

i 6= 0
σ(− ⋄i f(xk)) if xk

i = 0.

A consequence of this choice is that −⋄ f(xk) is equal
to vk, the projection of the negative gradient of fξ at
xk onto the subspace containing Ωξ. Thus it isn’t nec-
essary to determine ξk explicitly; one merely computes
−⋄ f(xk), and this is what is multiplied by Hk in (3).

3.2. Constrained line search

During the line search, in order to ensure that we do
not leave the region on which Qξ is valid, we project
each point explored orthogonally back onto Ωξ, that is
we explore points

xk+1 = π(xk + αpk; ξk),

which amounts to setting to zero any coordinate that
moves from positive to negative or vice-versa. Any
number of methods could be used to choose α, but we
use the following variation of backtracking line search
in our experiments and convergence proof. Choose

2This ensures that the line search does not deviate too
far from the direction of steepest descent, and is necessary
to guarantee convergence.
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Algorithm 1 owl-qn

choose initial point x0

S ⇐ {}, Y ⇐ {}
for k = 0 to MaxIters do

Compute vk = − ⋄ f(xk) (1)
Compute dk ⇐ Hkvk using S and Y

pk ⇐ π(dk; vk) (2)
Find xk+1 with constrained line search (3)
if termination condition satisfied then

Stop and return xk+1

end if

Update S with sk = xk+1 − xk

Update Y with yk = ∇ℓ(xk+1) −∇ℓ(xk) (4)
end for

constants β, γ ∈ (0, 1) and for n = 0, 1, 2, . . ., accept
the first step size α = βn such that

f(xk+1) ≤ f(xk) − γv⊤(xk+1 − xk).

A pseudo-code description of owl-qn is given in Al-
gorithm 1. In fact, only a few steps of the standard
l-bfgs algorithm have been changed. The only differ-
ences have been marked in the figure:

1. The pseudo-gradient ⋄f(xk) of the regularized ob-
jective is used in place of the gradient.

2. The resulting search direction is constrained to
match the sign pattern of vk = −⋄ f(xk). This is
the projection step of Equation 3.

3. During the line search, each search point is pro-
jected onto the orthant of the previous point.

4. The gradient of the unregularized loss alone is
used to construct the vectors yk used to approxi-
mate the inverse Hessian.

Starting with an implementation of l-bfgs, writing
owl-qn requires changing only about 30 lines of code.

4. Experiments

We evaluated the algorithm owl-qn on the task of
training a conditional log-linear model for re-ranking
linguistic parses of sentences of natural language. Fol-
lowing Collins (2000), the setup is as follows. We are
given:

• a procedure that produces an N -best list of candi-
date parses GEN(x) ⊆ Y for each sentence x ∈ X.

• training samples (xj , yj) for j = 1 . . . M , where
xj ∈ X is a sentence, and yj ∈ GEN(xj) is the
gold-standard parse for that sentence, and

• a feature mapping Φ : X × Y 7→ R
n, which maps

each pair (x, y) to a vector of feature values.

For any weight vector w ∈ R
n we define a distribution

over parses for each sentence according to

Pw(y|x) =
exp w⊤Φ(x, y)

∑

y′∈GEN(x) exp w⊤Φ(x, y′)
.

Our task is to minimize

f(w) = ℓ(w) + C‖w‖1,

where the loss term ℓ(w) is the negative conditional
log-likelihood of the training data:

ℓ(w) = −

M
∑

j=1

log Pw(yj |xj).

We followed the experimental paradigm of parse re-
ranking outlined by Charniak and Johnson (2005). We
used the same generative baseline model for generat-
ing candidate parses, and the nearly the same feature
set, which includes the log probability of a parse ac-
cording to the baseline model plus 1,219,272 additional
features. We trained our the model parameters on Sec-
tions 2-19 of the Penn Treebank, used Sections 20-21 to
select the regularization weight C, and then evaluated
the models on Section 22.3 The training set contains
36K sentences, while the held-out set and the test set
have 4K and 1.7K, respectively.

We compared owl-qn to a fast implementation of the
only other special-purpose algorithm for L1 we are
aware of that can feasibly run at this scale: that of
Kazama and Tsujii (2003), hereafter called “K&T”. In
K&T, each weight wi is represented as the difference
of two values: wi = w+

i − w−
i , with w+

i ≥ 0, w−
i ≥ 0.

The L1 penalty term then becomes simply ‖w‖1 =
∑

i w+
i + w−

i . Thus, at the cost of doubling the num-
ber of parameters, we have a constrained optimiza-
tion problem with a differentiable objective that can
be solved with general-purpose numerical optimization
software. In our experiments, we used the AlgLib im-
plementation of the l-bfgs-b algorithm of Byrd et al.
(1995), which is a C++ port of the FORTRAN code by
Zhu et al. (1997).4 We also ran two implementations
of l-bfgs (AlgLib’s and our own, on which owl-qn

is based) on the L2-regularized problem.

3Since we are not interested in parsing performance per
se, we did not evaluate on the standard test corpus used
in the parsing literature (Section 23).

4The original FORTRAN implementation can be found
at www.ece.northwestern.edu/~nocedal/lbfgsb.html,
while the AlgLib C++ port is available at www.alglib.net.
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Table 1: Chosen value of C and F-scores of the models
used in the study.

C dev test
Baseline 0.8925 0.8986
Oracle 0.9632 0.9687
L2 (l-bfgs) 13.0 0.9103 0.9163
L1 (owl-qn) 3.2 0.9101 0.9165

We used the memory parameter m = 5 for all four al-
gorithms. For the timing results, we first ran each al-
gorithm until the relative change in the function value,
averaged over the previous five iterations, dropped be-
low τ = 10−5. We report the CPU time and the num-
ber of function evaluations required for each algorithm
to reach within 1% of the smallest value found by ei-
ther of the two algorithms. We also report the number
of function evaluations so that the algorithms can be
compared in an implementation-independent way.

4.1. Results

Although we are primarily interested in the efficiency
of training, we first report the performance of the
learned parse models. Performance is measured with
the PARSEVAL metric, i.e., the F-score over labelled
brackets. These results are summarized in Table 1.
“Baseline” refers to the generative model used by GEN.
“Oracle” shows ideal performance if the best parse
from GEN (according to F-score) were always selected
by the re-ranking model. Both types of model per-
formed significantly better than the baseline, and may
indeed be considered state-of-the-art. (For compari-
son, the model of Charniak and Johnson (2005) also
achieved 91.6% F-score on the same test set.5) Inter-
estingly, the two regularizers performed almost iden-
tically: the Wilcoxon paired signed-rank test did not
find the difference statistically significant.

The results of CPU timing experiments using the same
values of C are shown in Table 2. We stopped K&T
after 946 iterations when it had reached the value
7.34× 104, still 5.7% higher than the best value found
by owl-qn. The difference in both runtime and num-
ber of function evaluations between K&T and owl-

qn is quite dramatic. Surprisingly, owl-qn converges
even faster than our implementation of l-bfgs run on
the L2-regularized objective. Note also that the run-
time of all algorithms is dominated by evaluations of
the objective function, and that otherwise the most
expensive step of owl-qn is the computation of the
l-bfgs direction.

5Mark Johnson, personal communication, May 2007.
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Figure 1: L1-regularized objective value during the course
of optimization with owl-qn
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Figure 2: L1-regularized objective value during the course
of optimization with K&T

A more complete picture of the training efficiency of
the two models can be gleaned by plotting the value
of the objective as a function of the number function
calls, shown in Figures 1 through 4. (Note the differ-
ences in scale of the x-axis.)

Since its ability to learn a sparse parameter vector is an
important advantage of the L1 regularizer, we exam-
ine how the number of non-zero weights changes during
the course of optimization in Figures 5 and 6. Both
algorithms start with a significant fraction of features
(5%-12%) and prune them away as the algorithm pro-
gresses, with owl-qn producing a sparse model rather
more quickly. Interestingly, owl-qn interrupts this
pattern with a single sharp valley at the start of the
second iteration (which is actually the sixth function
evaluation, due to the line search). We believe the
cause of this is that the model gives a large weight
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Table 2: Time and function evaluations to reach within 1% of the best value found. All times are in seconds. Figures in
parentheses show percentages of total time.

func evals func eval time l-bfgs dir time other time total time
owl-qn 54 707 (97.7) 10.4 (1.4) 6.9 (1.0) 724
K&T (AlgLib) > 946 16043 (91.2) 1555 (8.8) > 17598
l-bfgs (our impl.) 109 1400 (97.7) 22.4 (1.5) 10 (0.7) 1433
l-bfgs (AlgLib) 107 1384 (83.4) 276 (16.6) 1660
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Figure 3: L2-regularized objective value during the course
of optimization with our l-bfgs implementation
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Figure 4: L2-regularized objective value during the course
of optimization with AlgLib’s l-bfgs

to many features on the first iteration, only to send
most of them back toward zero on the second. On the
third iteration some of those features receive weights
of the opposite sign, and from there the set of non-zero
weights is more stable.6

6Many thanks to Mark Johnson for suggesting this ex-
planation.
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Figure 5: Number of non-zero weights during the course of
optimization with owl-qn
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Figure 6: Number of non-zero weights during the course of
optimization with K&T

Although here we have focused on the runtime behav-
ior of owl-qn for a single problem, we have also used
it to train L1-regularized models with up to ten million
variables for a variety of other problems in NLP, in-
cluding part-of-speech tagging, Chinese word segmen-
tation and language modeling. This work is described
in Gao et al. (2007).
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5. Conclusions

We have presented an algorithm owl-qn for efficiently
training L1-regularized log-linear models with millions
of variables. We tested the algorithm on a very large-
scale NLP task, and found that it was considerably
faster than an alternative algorithm for L1 regulariza-
tion, and even somewhat faster than l-bfgs on the
analogous L2-regularized problem. It would be inter-
esting to see whether owl-qn might be useful on L1-
regularized problems of other forms involving millions
of variables, for example lasso regression. Another
direction to explore would be to use similar meth-
ods to optimize objectives with different sorts of non-
differentiabilities, such as the SVM primal objective.
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7. Appendix: Proof of Convergence

We will use the following fact about l-bfgs:7

Theorem 1. Given positive constants L1 and L2, and
an integer m > 0, there exist positive constants M1

and M2 such that, for any set of m vector pairs (s, y)
satisfying L1‖y‖

2 ≤ s⊤y ≤ L2‖s‖
2, it follows that

∀x : M1‖x‖
2 ≤ x⊤

Hx ≤ M2‖x‖
2, where H is the

inverse Hessian approximation (implicitly) generated
by l-bfgs using those vector pairs.8

Note that this implies that H is positive definite.

We first establish several facts concerning owl-qn

that are not too difficult to verify.

Proposition 1. If pk is a descent direction at xk, the
line search will terminate in a finite number of steps.

Intuitively, this is because backtracking line search will
eventually try a value of α small enough that no co-
ordinate changes sign. Then our termination criterion
reduces to the Armijo rule, which is always satisfied
for small enough α.

7For our problem, we know that s⊤y/‖s‖2 is bounded
because the gradient of ℓ is Lipschitz continuous. Techni-
cally, since ℓ is convex but perhaps not strictly convex, it is
possible for y⊤s/‖y‖2 to be arbitrarily close to zero. One
can still make sure the conditions of the theorem are satis-
fied by choosing a small, positive constant ω and skipping
l-bfgs updates whenever y⊤s < ω. This is the strategy
used by Byrd et al. (1995).

8An equivalent conclusion would be that the condition
number of H is bounded.

Proposition 2. For all v ∈ R
n, if v 6= 0 and H is

positive definite, then p = π(Hv; v) 6= 0.

Proof. It follows immediately from the definition of
π that πi(Hv; v) = 0 only if vi(Hv)i ≤ 0. If p =
0, we would have v⊤

Hv =
∑

i vi(Hv)i ≤ 0, which
contradicts that H is positive definite.

Proposition 3. If {xk} → x̄ and ⋄f(x̄) 6= 0, then
lim infk→∞ ‖ ⋄ f(xk)‖ > 0.

Proof. Since ⋄f(x̄) 6= 0, we can take i such that
⋄if(x̄) 6= 0, so either ∂−

i f(x̄) > 0 or ∂+
i f(x̄) < 0. From

(4), we have that ∀k : ⋄if(xk) ∈ [∂−
i f(xk), ∂+

i f(xk)].
Therefore all limit points of {⋄if(xk)} must be in
the interval [∂−

i f(x̄), ∂+
i f(x̄)], which does not include

zero.9

Proposition 4. Define qk
α = 1

α
(π(xk +αpk; ξk)−xk).

Then for all α ∈ (0,∞) and all i,

dk
i vk

i ≤ pk
i vk

i ≤ (qk
α)iv

k
i ≤ 0,

and therefore

(vk)⊤qk
αk ≥ (vk)⊤pk ≥ (vk)⊤dk.

Proposition 5. At any point x with steepest descent
vector v = − ⋄ f(x), if p is a non-zero direction vec-
tor such that σ(vi) = σ(pi) whenever σ(pi) 6= 0, then
f ′(x; p) = −v⊤p, and f ′(x; p) < 0.

Note that dk, pk and qk
α as previously defined all satisfy

the conditions of Prop. 5.

Theorem 2. The sequence of values {f(xk)} explored
by the algorithm owl-qn during the course of opti-
mization converges to the global minimum of f .

Proof. The sequence {xk} must have a limit point x̄

since every xk is in the bounded set ℵ. It will be suffi-
cient to show that x̄ minimizes f , since {f(xk)} is de-
creasing. To simplify notation, let us assume without
loss of generality that {xk} converges to x̄, by replacing
{xk} with a convergent subsequence if necessary. Let
v̄ = − ⋄ f(x̄). We will show that ‖v̄‖ = 0, and there-
fore {x̄} attains the globally minimal function value.
To this end, assume for a contradiction that ‖v̄‖ > 0.

Since {f(xk)} is decreasing and bounded, we know
that limk→∞ f(xk) − f(xk+1) = 0. If we define qk

α as
in Prop. 4, the line search criterion can be written:

f(xk+1) = f(xk + αqk
α) ≤ f(xk) − γα(vk)⊤qk

α.

9We use property B.24(c) of (Bertsekas, 1999).
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Therefore,

f(xk) − f(xk+1)

γαk
≥ (vk)⊤qk

αk

≥ (vk)⊤dk

= (vk)⊤Hkvk

≥ M1‖v
k‖2, (5)

and as Prop. 3 gives us that lim infk→∞ ‖vk‖ > 0 we
conclude that {αk} → 0.

Thus there must exist a k̄ such that k > k̄ ⇒ αk <

β. Due to the form of the line search, if for some k,
αk < β, it must be the case that the previously tried
value of α on that iteration, αkβ−1, did not meet the
criterion, i.e., for k > k̄,

f(xk +(αkβ−1)qk
αkβ−1) > f(xk)−γαkβ−1(vk)⊤qk

αkβ−1

which we can rewrite as

f(xk + α̂kq̂k) − f(xk)

α̂k
> −γ(vk)⊤q̂k, (6)

defining

q̂k =
qk

αkβ−1

‖qk

αkβ−1
‖
, α̂k = αkβ−1‖qk

αkβ−1‖.

Since ℵ is a bounded set, {‖vk‖} is bounded, so it fol-
lows from Theorem 1 that {‖pk‖}, hence {‖qk

αkβ−1‖},

is bounded. Therefore {α̂k} → 0. Also, since ‖q̂k‖ = 1
for all k > k̄, there exists a subsequence {q̂k}κ of
{q̂k}k>k̄ and a vector q̄ with ‖q̄‖ = 1 such that
{q̂k}κ → q̄.

Applying the mean value theorem to (6) we have that,
for each k ∈ κ, there exists some α̃k ∈ [0, α̂k] such that

f ′(xk + α̃k q̂k; q̂k) > −γ(vk)⊤q̂k = γf ′(xk; q̂k).

Passing to the limit for k ∈ κ, we see that f ′(x̄; q̄) ≥
γf ′(x̄; q̄) and as γ < 1, we conclude that

f ′(x̄; q̄) ≥ 0. (7)

On the other hand,

f ′(xk; q̂k) =
f ′(xk; qk

αkβ−1)

‖qk
αkβ−1‖

=
−(vk)⊤qk

αkβ−1

‖qk
αkβ−1‖

,

and if we take the limit for k ∈ κ, we obtain

f ′(x̄; q̄) =
lim sup−(vk)⊤qk

αkβ−1

lim sup ‖qk
αkβ−1‖

.

It follows from (5) that the numerator is strictly nega-
tive, and also that the denominator is strictly positive
(because if {‖qk

αkβ−1‖} → 0, then {‖vk‖} → 0). There-

fore f ′(x̄; q̄) is negative which contradicts (7).
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