
An Online Approach to Physical Design Tuning

Nicolas Bruno Surajit Chaudhuri
Microsoft Research

{nicolasb,surajitc}@microsoft.com

Abstract
There has been considerable work on automated physi-

cal design tuning for database systems. Existing solutions
require offline invocations of the tuning tool and depend
on DBAs identifying representative workloads manually. In
this work, we propose an alternative approach to the physi-
cal design problem. Specifically, we design algorithms that
are always-on and continuously modify the current physi-
cal design reacting to changes in the query workload. Our
techniques have low overhead and take into account stor-
age constraints, update statements, and the cost to create
temporary physical structures.

1 Introduction
Database applications have become increasingly com-

plex and varied. Physical design tuning has therefore
emerged as more relevant than ever before. Presently, most
database vendors (e.g., [3, 8, 11]) offer automated tools to
tune the physical design of a database, with the objective
of reducing the DBMS’ total cost of ownership. These au-
tomated tools are very sophisticated and useful. However,
they take an offline approach to the physical design problem
and leave several significant decisions to DBAs. Specifi-
cally, DBAs need to explicitly identify representative work-
loads and feed them to the tuning tool. DBAs are also re-
quired to guess when a tuning session is needed, and when
to deploy recommendations. Naturally, this is not a one-
time process, but instead DBAs continuously monitor, di-
agnose, and re-tune database installations. In that sense, we
still require some effort to “get physical tuning right”.

Unfortunately, these manual tasks become even more
problematic in current complex applications. Consider, as
an increasingly common example, large installations that
support multiple database applications (for instance, ISPs
provide this back-end service to advanced users). Such
hosted applications may come and go, and usually exhibit
unexpected spikes in their loads. At the same time, the
hosting installation might have some additional amount of
resources to globally tune the physical design, and all ap-
plications would compete for these valuable resources. As

another example, some applications exhibit periodic, some-
times unexpected changes in the select/update mix in the
workload. Consider, for instance, a bug-tracking system.
Most days the system is queried and browsed (select load),
but a few days –sometimes called “bug-bash” days– are
used to primarily identify and insert large numbers of bugs
(update load). If we gather a representative workload over,
say, a month, chances are that no index is globally useful, as
the gains in query processing are outweighed by the update
costs during bug-bash periods. It is very difficult to explic-
itly model the workload in these scenarios, and equally dif-
ficult to decide when to tune the database and deploy the re-
sulting recommendations (in fact, tuning too frequently re-
sults in wasted resources, but tuning too sporadically misses
critical opportunities to improve performance).

With increasingly common DBMS features like online
indexes1, it is appealing to explore more automatic solutions
to the physical design problem that advance the state of the
art. There are, however, new and significant challenges to
address. Such fully automated solutions will be always-
on, continuously monitoring changes in both the workload
and the database state, and refining the physical design as
needed. It is therefore critical that such solutions have very
low overhead and do not interfere with the normal function-
ing of the DBMS. Additionally, in contrast to current offline
approaches, fully automated solutions must also balance the
cost of transitioning between physical design configurations
and the potential benefits of such design changes for the fu-
ture workload. Although we would like to react quickly to
changes in the workload, reacting too quickly can result in
unwanted oscillations, in which the same indexes are con-
tinuously created and dropped. A fully automatic solution
must “do no harm” for stable workloads, but also react in a
timely manner to significant workload changes.

In this paper we introduce our online algorithm to tune
indexes in a DBMS, developed in the context of the Au-
toAdmin project at Microsoft. Its main characteristics are:

- As queries are optimized, we identify a relevant set of
candidate indexes that would improve performance.

1This feature allows query processing to continue in parallel with in-
dexes that are built in the background.

- At execution time, we track the potential benefits that
we lose by not having such candidate indexes and
also the utility of existing indexes in the presence of
queries, updates, and space constraints.

- After we gather enough “evidence” that a physical de-
sign change is beneficial, we automatically trigger in-
dex creations or deletions.

- The online nature of our problem implies that we will
generally lag behind optimal solutions that know the
future. However, by carefully measuring evidence, we
ensure that we do not suffer from “late” decisions sig-
nificantly, thus bounding the amount of incurred loss.

The rest of the paper is structured as follows. In Sec-
tion 2 we show how to track index benefits and penalties
by building on top of technology previously developed for
offline solutions. In Section 3 we formally define our prob-
lem, present a three-competitive online solution for a re-
stricted scenario, and generalize it to address the general
problem. Section 4 reports an experimental evaluation of
our algorithm, and Section 5 reviews related work.

2 Preliminaries

We now briefly review techniques introduced in [4, 6]
that capture crucial information during query optimization
and allow us to efficiently infer cost and plan properties for
varying physical designs. Due to space constraints, the pre-
sentation is brief and high-level (see [6] for more details).

2.1 Access-Path/Index Requests
We gather information during optimization by instru-

menting the optimizer and intercepting the optimization
rules that generate execution sub-plans using index strate-
gies. We then tag operators in the final execution plan with
annotations (we call them access-path- or index-requests).
Such requests encode the logical properties of any physical
plan that might implement the sub-tree rooted at the cor-
responding operator (or its “right” sub-tree in the case of
requests tagging joins). Consider the execution plan in Fig-
ure 1 for the following query:

SELECT S.b FROM R,S

WHERE R.x=S.y AND R.a=5 AND S.y=8

In the figure, request ρ1 is associated with filter R.a=5 and
specifies that (i) there is one sargable column R.a returning
2500 tuples, (ii) R.x is required upwards in the tree, and (iii)
the plan found by the optimizer costs 0.08s and uses index
I1. Similarly, request ρ2 was obtained when the optimizer
tried an index-nested-loop join with R and S as the outer
and inner relations, respectively. Request ρ2 specifies that
S.y is a sargable column which would be sought with 2500
bindings and would produce 1 row for each binding (ρ2 was
not implemented in the final plan, which uses a hash join).

R.x=S.y

AND

ρ1

ρ3ρ2

OR

Hash

Join

Filter(R.a=5) Filter(S.b=8)

Scan(R) Scan(S)

ρ1=({R.a [2500]}, {R.x},

 0.08s, I1)

ρ3 =({(S.b[5000]}, {S.y},

 0.05s, I2)

ρ2 =2500 times

({S.y [1]}, {S.b}, 0.23s, Ø)

Figure 1. Execution plan and AND/OR request tree.

As shown in [6], some requests might conflict with each
other. For instance, ρ2 and ρ3 in the figure are mutually ex-
clusive (if a plan implements ρ2 with an index-nested-loop
join using S as the inner table, it cannot simultaneously im-
plement ρ3). To represent these relationships, we encode
the requests in an AND/OR tree (see Figure 1), where inter-
nal nodes indicate whether their sub-trees can be satisfied
simultaneously (AND) or are mutually exclusive (OR).

2.2 Local Plan Transformations
The query requests obtained during optimization and

stored in the resulting plan allow us to make inferences
about characteristics and costs of execution plans for vary-
ing physical designs (i.e., index creations or drops), and do
so without issuing additional optimization calls. If we pro-
duce any physical sub-plan p that implements a given re-
quest ρ, we can locally replace with p the original physical
sub-plan associated with ρ, and the resulting (overall) plan
would be valid and equivalent to the original one. We know
the cost of the original sub-plan and can calculate the cost
of the newly generated alternative. Thus, we can infer how
much would the original execution plan improve or degrade
if we replaced the given sub-tree with the alternative one.

As an example, consider ρ1 in Figure 1 and suppose
we would like to infer what would happen if a new index
I3=(a, x) is added to the current physical design. In that
case, we can implement ρ1 by using an index seek on col-
umn I3.a returning 2500 (a, x) tuples, and passing the pro-
jection on x upwards in the tree. If the calculated cost of
this alternative is, say, 0.03s, we know that the overall ex-
ecution plan would be 0.08s−0.03s=0.05s more efficient
than when the original index I1 was used. Furthermore, by
just analyzing the request, we can infer what is the index
that would result in the cheapest plan without enumerating
all possibilities. In our example, I3=(a, x) is the best index
for ρ1 (see [6] for more details).

In this way, we can obtain a locally-optimum execution
plan. That is, we replace the physical sub-plans associated
to each winning request in the original plan with alternatives
that are as efficient as possible. We would not be able to,
say, obtain a plan with different join orders, or other com-
plex transformation rules that optimizers apply during plan
generation. Instead, we are able to explore a limited set

of alternate plans without having to re-optimize the query.
The cost of the resulting plan is therefore an approximation
(tight upper bound) of the global optimal plan that the opti-
mizer would find under the new physical design.

To summarize, the following functions (adapted from [4,
6]) form the basis of the online algorithms in this paper:

- getRequests(q:query): gets the AND/OR request tree
for q encoding the requirements of each index strategy
that can be implemented via local transformations.

- getBestIndex(ρ:request): gets the index that results
in the cheapest alternative implementing ρ.

- getCost(ρ:request, {Ij}:indexes): approximates
the cost of the best locally transformed plan imple-
menting ρ when {Ij} are available.

3 Online Physical Tuning
We now define the online physical tuning problem and

present algorithms to solve it. In Section 3.1 we focus on the
case of a single index and obtain a three-competitive algo-
rithm. In Section 3.2 we extend this approach to the general
case (but cannot guarantee three-competitiveness anymore).

A physical configuration is the set of indexes available
at some point in time. For a configuration s, we denote the
cost of creating an index I as Bs

I (note that Bs
I depends on

the indexes in s). Let a workload W=(q1, q2, . . . , qn) be a
sequence of queries and updates. We define cost(qi, s), or
simply cs

i if qi is clear from the context, as the estimated
cost of qi when optimized under configuration s.

A configuration schedule S is a sequence of configura-
tions S=(s0, s1, . . . , sn), such that qi is executed when the
DBMS is in configuration si. The cost of W under S is:

cost(W,S) =
n∑

i=1

(
csi
i + transition(si−1, si)

)

where transition(s0, s1)=
∑

I∈(s1−s0)
Bs0

I . Therefore,
cost(W,S) is the sum of each query cost in W under the
corresponding configuration, plus the total cost to transi-
tion between configurations in S. The optimal configura-
tion schedule S∗ is the one with minimum cost, so S∗=
minargS(cost(W,S)). An online algorithm that solves
this problem must progressively determine S=(s0, . . . , sn)
without seeing the complete workload W=(q1, . . . , qn).
Specifically, to determine each physical configuration si,
we only have knowledge about (q1, . . . , qi).

3.1 Single-Index Scenario
To simplify the presentation, in this case a physical con-

figuration s is either 1 (when the given index I is present) or
0 (when it is absent). We can only create I from s=0, so we
denote I’s creation cost simply as BI . The transition cost
between configurations is given by:

transition(s0, s1) =
{

BI if s0 = 0 and s1 = 1
0 otherwise

3.1.1 Optimal Strategy Opt-SI
We now explain how to obtain the optimal schedule S∗ for
a given workload W 2.
Definition 1 For a workload W and integers i0, i1, we de-
fine ∆(W, i0, i1)=

∑i1
i=i0

(c0
i−c1

i) where c0
i (c1

i) is the cost
of qi when index I is present in (absent from) configuration
si. If W is clear from the context, we simply write ∆i0,i1 .

Intuitively, ∆i0,i1 measures, for a sub-sequence of the
workload, the cumulative difference in cost between the
configuration that does not contain index I (s=0) and the
one that contains it (s=1). If ∆i0,i1=C, executing queries
(qi0 , . . . , qi1) without the index (s=0) is C units more ex-
pensive than doing it with the index (s=1). Therefore, we
can see ∆ values as the aggregated benefit (or penalty, for
negative ∆ values) of having the index in the configuration
for a given workload sub-sequence.

Opt-SI (W=(q1, . . . , qn):workload, s0:configuration)

01 i=0
02 while (i < n)
03 if (si=0) // see Cases A1, A2, A3 in Figure 3
04 if (Case A1) sk=0 for i+1≤k≤j; i=j
05 else if (Case A2) sk=1 for i+1≤k≤j; i=j
06 else (Case A3) sk=0 for i+1≤k≤n; i=n
07 else // si=1, see Cases B1, B2, B3 in Figure 3
08 if (Case B1) sk=1 for i+1≤k≤j; i=j
09 else if (Case B2) sk=0 for i+1≤k≤j; i=j
10 else (Case B3) sk=0 for i+1≤k≤n; i=n

Figure 2. Optimal algorithm for single-index case.

Figure 2 introduces the optimal algorithm Opt-SI using
∆ values. The idea is to progressively determine the op-
timal schedule S∗ for longer workload prefixes by using a
case-by-case analysis on the future behavior of ∆. Each
new sub-schedule is appended to the optimal prefix after
determining whether a physical change would be beneficial.
Consider Case A2 in Figure 3. If the benefit of the index at
a point in the future is larger than its creation cost (and it is
never negative), it makes sense to create the index for such
period of time. We next prove that this intuition is correct.

Theorem 1 Algorithm Opt-SI determines the optimal con-
figuration schedule for an input workload W .
Proof: From Figure 3 it follows that any instance of ∆
satisfies one and only one among {A1, A2, A3}, or one and
only one among {B1, B2, B3}. Algorithm Opt-SI there-
fore always advances i at each iteration, and in doing so
determines longer prefixes of the optimal schedule. Even-
tually, it reaches i=n and terminates. We need to show that
each determination in lines 4-6 and 8-10 leads to an op-
timal schedule. For instance, consider Case A2 and sup-
pose that si=0. Algorithm Opt-SI appends the sub-schedule

2Note that there are simpler ways to obtain the optimal schedule (e.g.,
see [2]), but our version is more easily adapted to an online algorithm.

Case A1

Case A3

Case A2

∆(W,S,0,t)

t

∆0+BI

0

∆0

Case B1

Case B3

i n

∆0-BI

0 Case B2

Case A1: ∃j>i s.t.∆i,j≤0 and ∀j′<j, 0<∆i,j′<BI

Case A2: ∃j>i s.t.∆i,j≥BI and ∀j′<j, 0<∆i,j′<BI

Case A3: ∀i<j≤n, 0<∆i,j<BI

Case B1: ∃j>i s.t.∆i,j≥0 and ∀j′<j, −BI<∆i,j′<0
Case B2: ∃j>i s.t.∆i,j≤−BI and ∀j′<j, −B−

I <∆i,j′<0
Case B3: ∀i<j≤n,−BI<∆i,j<0

Figure 3. Possible behavior of ∆i,n.

SO=(1, 1, . . . , 1) from positions i+1 to j. Suppose there is
an alternative schedule SA that contains at least one index
deletion. SA starts with a block of zero or more configura-
tions with no index (s=0), continues with a strict alternation
between blocks of configurations with the index (s=1) and
without it (s=0), and optionally ends with a block of config-
urations with the index (s=1). Let us obtain the difference
in cost between sub-schedules SA and SO :

SA C0
1BI C1

2 C0
3BI C1

4 . . . C0
n [BIC1

n+1]

SO BIC1
1 C1

2 C1
3 C1

4 . . . C1
n [C1

n+1]

SA-SO δ1 0 BI +δ3 0 . . . δn [BI]

where C0
i and C1

i denote the partial cost of the blocks with
configuration s=0 and s=1, respectively. Before switch-
ing from s=0 to s=1 in SA, we add BI , the cost of cre-
ating I . Also, the final costs between brackets represent
the optional block with s=1. Consider now δ1. Accord-
ing to Definition 1, δ1=∆i,i′ for some i < i′ ≤ j. By def-
inition of Case A2, we know that δ1 > 0. Similarly, it
can be shown that δn=∆j′,j > 0 and for each 1 < k < n,
|δk| ≤ BI (see Figure 3 for visual intuition). Putting
it all together, cost(W,SA, i+1, j) > cost(W,SO, i+1, j).
(Note that if SA contains no index creations nor deletions,
SA−SO=C0

n−C1
n=∆n > 0 as well.) The remaining cases

are proved analogously, but we omit the details due to space
constraints.

3.1.2 Online Strategy Online-SI
A careful look at algorithm Opt-SI reveals the following
property. Suppose that at some iteration we added a config-
uration block of si=0. Algorithm Opt-SI will then transition
to s=1 if ∆i,j>BI for the smallest j>i, and ∆i,j′ does not
goes below zero for i<j′<j. Another way of simulating

this behavior is to maintain the minimum value of ∆0,i since
Opt-SI lastly transitioned to s=0 (let us call it ∆min), and
transition to s=1 if there is j>i such that ∆0,j>∆min+BI

and no j′<j satisfies ∆0,j′ <∆min. Similarly, if s=1, we
maintain the maximum value of ∆0,i since Opt-SI lastly
transitioned to s=1 (let us call it ∆max), and transition to
s=0 if there is a j > i such that ∆0,j <∆max−BI and no
j′<j satisfies ∆0,j′>∆max.

This alternative formulation of Opt-SI suggests an on-
line algorithm. We maintain ∆min and ∆max as explained
above, but instead of looking into the (unknown) future,
we transition configurations after gathering the information
that proves that the optimal strategy would have done so at
a past point in time. Algorithm Online-SI is shown in Fig-
ure 4. We note that in line 1 we need to obtain the expected
cost of the input query under the “opposite” physical config-
uration. We do that without issuing an additional optimiza-
tion call by using the getCost function from Section 2 over
the request that used (or could have used) index I . Note
that we store a constant amount of information per index
(i.e., ∆, ∆min, and ∆max). Also, every time we execute
a query we only update ∆ values, whose cost is negligible
compared to that of executing the actual queries.

Online-SI (qi :query, s:current configuration)

// Initially, ∆=∆min=∆max = 0
1 δ = c0

i − c1
i

2 ∆ = ∆ + δ
3 ∆min = MIN(∆min, ∆)

4 ∆max = MAX(∆max, ∆)

5 if (s=0 and ∆−∆min≥BI)

6 ∆max=∆; s=1 // create index
7 if (s=1 and ∆max−∆≥BI)

8 ∆min=∆; s=0 // drop index

Figure 4. Online algorithm for single index Case.

3.1.3 Competitive Analysis
Conceptually, algorithm Online-SI lags behind Opt-SI
and transitions physical designs only after the evidence that
Opt-SI would have gathered “from the future” has already
passed. We now bound the sub-optimality of Online-SI by
presenting a worst-case scenario for which Online-SI keeps
creating and dropping index I as often as possible without
ever exploiting it.

Theorem 2 Algorithm Online-SI is three-competitive (i.e.,
it is no worse than 3 times the optimal algorithm Opt-SI).
Proof: Consider workload W=(q1, q2, q1, q2, . . .),
where cost(q1, 0)=ε + BI , cost(q1, 1)=ε, cost(q2, 0)=ε and
cost(q2, 1) = ε + BI . The optimal schedule S∗ for W
is (s0=0, 1, 0, 1, 0, . . .). In other words, index I is built
before each instance of q1 and dropped before each in-
stance of q2. The cost of such an schedule is (BI + 2ε)
for every pair (q1, q2) in W . The schedule produced by

Online-SI is Sonline=(s0=0, 0, 1, 0, 1, 0, . . .). The cost
of such an schedule is (ε + BI) + BI + (ε + BI), or
(3BI + 2ε) for every pair (q1, q2) in W . Then, the ratio
cost(W,Sonline)/cost(W,S∗) is 3BI+2ε

BI+2ε <3 since ε>0.

3.2 Multiple-Index Scenario
We now extend the ideas of the previous section to mul-

tiple given indexes. For that purpose, we first revise the
definition of ∆ values to reflect this scenario.

Definition 2 For a workload W , a configura-
tion s, an index I , and integers i0, i1, we define
∆(W, s, I, i0, i1)=

∑i1
i=i0

c
s−{I}
i − c

s∪{I}
i where cs

i is
the cost of qi under configuration s. If W , s, and I are
clear from the context, we simply write ∆i0,i1 .

Using ∆ values, we can generalize Online-SI. For
each query qi that is executed, we execute Online-SI in
parallel for each index I ∈ {getBestIndex(ρ): ρ ∈
getRequests(qi)}. This generalization, however, intro-
duces two challenges that we address below.

Consider indexes I1=(a, b, c) and I2=(a, b, c, d). If we
do not consider the inherent index interaction between I1

and I2, we risk (i) underestimating ∆ values for I2 by ig-
noring sub-optimal –but better than existing– plans that use
I2 for requests served optimally by I1, (ii) overestimating
∆ values for I1 after creating I2 because I2 can be a better
alternative than the original one if I1 is not present, and sim-
ilarly (iii) underestimating ∆ values for I2 if I1 is removed
from the current configuration. Consequently, physical de-
sign changes might be unexpectedly affected.

Additionally, if there is a storage constraint, we might
not be able to create all indexes I for which ∆−∆min≥Bs

I .
In these situations, we need to (i) decide which indexes to
create in case of competing alternatives, (ii) decide whether
to drop an index I from the current configuration s even
though ∆max−∆<Bs

I to make space for better alternatives,
and (iii) consider index merging [5] to obtain additional in-
dexes that might better trade off space and efficiency.

3.2.1 Index Interactions
We noted the importance of taking into account index inter-
actions when maintaining ∆ values. It is equally important
to address this issue with low bookkeeping overhead, or the
tuning requirements would be too large. We now explain
our approach to address index interactions, which requires
a constant amount of information per index. While ours is
not a definitive solution, it reasonably balances the accuracy
of the resulting approximations and the required overhead.

Recall that, for each index I that we consider
in configuration s, we need to accumulate the value
∆i0,inow

=
∑inow

i=i0
c
s−{I}
i −c

s∪{I}
i . To simplify the notation,

we use Oi instead of c
s−{I}
i and Ni instead of c

s∪{I}
i .

For each incoming query qi, we obtain Oi (original cost
for qi when I is not present) and Ni (new cost of qi

when I is present) by using function getCost as described
in Section 2. Instead of maintaining ∆=

∑
(Oi − Ni),

we exploit the equality
∑

i(Oi − Ni)=(
∑

i Oi)−(
∑

i Ni)
and maintain these two aggregates separately. Addi-
tionally, we decompose each aggregate into four terms,∑

i Oi=O0+O1+O2+OU , and
∑

i Ni=N0+N1+N2+NU ,
and modify these values depending on how index I is used
for each request coming from the workload:

- If I’s columns are required in no particular order, we
add Oi to O0 and Ni to N0.

- If I’s key column is required to be there (e.g., for an
index seek), we add Oi to O1 and Ni to N1.

- If more than one key column in I is required to be there
(e.g., for a multi-column index seek or sort request),
we add Oi to O2 and Ni to N2.

- If I is updated by the query, we add Oi and Ni from
the update shell to OU and NU , respectively.

We store these eight values along with each index, and
obtain back ∆ as O0+O1+O2+OU−N0−N1−N2−NU .
Since we now have more granular information about each
index usage, we can handle index interactions more accu-
rately (although still in an approximate sense). For that pur-
pose, we use the following definition.

Definition 3 Let I1 and I2 be indexes. The usefulness level
of I1 with respect to I2 is given by the following table:

Level Condition
−1 I1 columns do not include I2 columns.
0 I1 columns include I2 columns.
1 Additionally, I2’s leading column agrees with I1’s.
2 Additionally, I2 is a prefix of I1.

Informally, if the usefulness level of I1 with respect to
I2 is l≥0, then I1 can (sub-optimally) implement requests
whose costs were stored in Om and Nm components of ∆
for I2 (for m≤ l). Note that this is an approximation, and
some indexes can help implement additional requests, but
we only consider these cases to keep the overhead low. As
an example, consider I1=(a, b, c) and I2=(a, c). The useful-
ness level of I1 with respect to I2 is 1, and the usefulness
level of I2 with respect to I1 is −1. This means that all the
requests whose costs were stored in (O0, N0) or (O1, N1)
for I2 can also take advantage of I1.

Adjusting ∆ values after index creation. Suppose that
we create index I in the current configuration. We then
need to update the ∆ values for the remaining indexes that
we consider to reflect the fact that the current configuration
contains I . We then proceed as follows for each index Ij :

1. Find lj , the usefulness level of I with respect to Ij .

2. For each level l≤lj , set Ol to min(Ol, αj · N l) where
αj=size(Ij)/size(I). The rationale is that if I is cre-
ated, the original cost Ol in Ij for all l≤ lj might be

reduced due to I . We thus refine Ol for Ij as the mini-
mum between the original value and a factor αj of N l

(we linearly extrapolate the cost of index usages as a
function of the index sizes). Since Ij was optimal for
the requests it served, N l values remain unchanged.
The net effect is that we potentially reduce the value of
∆ for index Ij as a result of creating I .

3. Adjust ∆min and ∆max as appropriate.

Adjusting ∆ values after index deletion. Similarly, if
we drop index I in the current configuration, we update ∆
values of each remaining indexes Ij as follows:

1. Find lj , the usefulness level of I with respect to Ij .
2. For each level l ≤ lj , multiply Ol by βl, where

βl=Ol/N l from index I . The rationale is that if I is
dropped, the original cost Ol in Ij for all l≤lj might
be increased if I was originally used in the correspond-
ing requests. We then multiply the original Ol values
by βl, the average increase in cost for level l when I is
not present in the configuration. Since Ij was optimal
for the requests it served, the values of N l remain un-
changed. The net effect is that we potentially increase
the value of ∆ for index Ij as a result of dropping I .

3. Adjust ∆min and ∆max as appropriate.

Obtaining ∆ values from sub-optimal plans. When we
update ∆ values for index I , it is because I can optimally
serve some request in the workload. Sub-optimal usages
are not recorded explicitly, but can be approximated from
the available information (so we get more accurate ∆ val-
ues for indexes under consideration, or infer ∆ values for
newly considered indexes such as those resulting from in-
dex merging). To approximate ∆ for an index I taking into
account suboptimal usages we proceed as follows:

1. For each index Ij under consideration, find lj , the use-
fulness level of I with respect to Ij . For each level
l≤ lj , add to ∆ for I the value Ol−αj · N l from Ij ,
where αj=size(I)/size(Ij).

2. If I is a newly considered index, find I ′, the most simi-
lar index to I among the considered ones using the dis-
tance function |I∩I ′|/|I∪I ′|. Then, subtract from I’s
∆ the value (OU−NU) from I ′ (i.e., we approximate
the update cost for I ′ from the most similar index).

Addressing OR nodes. Note that an additional kind of in-
dex interaction results from OR nodes in the AND/OR request
tree. In fact, only one of the multiple requests with an OR

parent node can be implemented in an execution plan. For
this reason, every time we create an index, the ∆ values of
the remaining indexes that were optimal for requests that
shared an OR parent node need to be updated. To address
this issue, we maintain an additional value per index that
captures the fraction of (

∑
i Ni) that was generated from

“shared-OR nodes” and update ∆ values appropriately. The
details, however, are omitted due to space constraints.

3.2.2 Storage Constraints
After executing an input query, there might be indexes I that
should be created (i.e., indexes for which ∆−∆min >Bs

I)
but no available space and no existing indexes to drop (i.e.,
indexes I ′ ∈ s for which ∆max−∆>Bs

I′). We now explain
how we handle this common scenario in our approach.

We define the residual cost of an index I under
configuration s as residual(I, s)=Bs

I−(∆max−∆). If
residual(I, s)<0, I should be dropped from s. Otherwise,
residual(I, s) indicates how much slack I has before being
deemed a “dropping candidate”. Also, we define the ben-
efit for an index I �∈ s as benefit(I, s)=(∆−∆min)−Bs

I .
Thus, if benefit(I, s)>0, index I should be added. Also,
positive values of benefit(I, s) indicate the “excess in con-
fidence” for adding I to s (see Figure 5 for an illustration).

∆ ∆max

B
S

I

residual(I,s)

∆∆min

B
S

I benefit(I,s)

Figure 5. Residual(I, s) and benefit(I, s) values.

Suppose that benefit(I, s) > 0 for some I �∈ s, but
no space is available for creating I and, for all indexes
I ′ ∈ s, residual(I ′, s) > 0 (i.e., we cannot drop any ex-
isting index). Now, if we find a subset of indexes s′ ⊆ s
such that

∑
I′∈s′ residual(I ′, s)<benefit(I, s), we know

that the benefit of creating I exceeds the combined slack of
indexes in s′. We can then update s=s − s′ ∪ {I}. There
might be many choices for I and s′ at any time. We explain
how we choose from these alternatives in the next section.

Addressing the oscillation problem. Suppose that we
identify a set of indexes that are useful but do not fit
in the available space. We know that, by definition,
residual(I, s) is upper-bounded by Bs

I for indexes I ∈ s.
At the same time, benefit(I, s) keeps growing for I �∈ s as
new queries arrive. Therefore, eventually indexes that are
not in s would replace indexes in s. But now, the indexes
we just dropped would start increasing their benefit val-
ues while the ones we just created would have a bounded
residual value. We are caught in an endless oscillation al-
though the relative benefit of all indexes is similar. To ad-
dress this oscillation problem, we proceed as follows. Sup-
pose that we are updating the ∆ value of some index I ∈ s
with an additional δ, but residual(I, s)=Bs

I . After updat-
ing ∆ to ∆+δ, ∆max would also be updated appropriately
and residual(I, s) would stay unchanged at Bs

I . To make
I’s benefit explicit, in these situations we proportionally de-
crease ∆ values of all indexes I ′ �∈ s so that the new value
of benefit(I ′, s) becomes max(0, benefit(I ′, s)−δ). In
other words, as current indexes I ∈ s keep being helpful,
we adjust down the benefit of the remaining indexes I ′ �∈ s,
thus avoiding the oscillations described above.

3.3 Putting It All Together

Figure 6 shows a pseudo-code of our online algorithm
for physical design tuning. Each time a query is optimized,
we generate its AND/OR request tree T and obtain the best in-
dex to implement each request. When a query is executed,
we retrieve its AND/OR request tree T and update ∆ values
for the indexes that are not in s but optimally implement
some request in T (lines 3-4). (We maintain in H the set
of candidate indexes that were optimal for some request in
the workload.) We also update ∆ values for the indexes
in s that were used to implement some request in T (lines
5-6). If the input query was an update we refine ∆ values
in lines 7-8. Lines 1-8 are very efficient because they only
manipulate in-memory scalars. In line 9 we drop all indexes
I ∈ s for which ∆max−∆>Bs

I . In lines 10-18 we analyze
the current candidate indexes and determine if we can cre-
ate (and optionally drop) indexes in s. For that purpose, we
initialize ITC=H and process each index in ITC. We first
obtain accurate ∆ values (line 13) and optionally find a sub-
set of elements from s that, if dropped, would make enough
space for I to be created. For efficiency, we periodically
sort the existing indexes by residual(I, s)/size(I) so that
indexes that are either large or are almost dropping candi-
dates are chosen first. In lines 15-17 we adjust the benefit
of I by subtracting the combined residual values from s′.
If the resulting benefit is the largest seen so far, we keep I
as the best candidate. Finally, we lazily generate merged in-
dexes and include them in ITC for later analysis (line 18).
After all indexes in ITC are processed, we implement the
best design change (if any) in lines 19-21.

In the rest of this section, we discuss some refinements
and technical details of algorithm OnlinePT.

Throttling. Although OnlinePT is efficient, it might still
impose overhead to the normal DBMS execution. To miti-
gate this overhead, we propose to throttle OnlinePT down as
follows. We always execute lines 1-8 for each query, which
imposes minimal overhead and keeps the required informa-
tion up-to-date. If the load on the database server increases,
we execute lines 9-21 once every certain period of time, and
therefore slightly delay changes in the physical design. To
further decrease the server overhead, we can only consider
index merges (line 18) a fraction of the executions.

Impact of online index creation. There is a period of
time between the asynchronous online index creation (line
21) and the time the index is ready to be used. During this
time, queries cannot use the index, but OnlinePT must un-
derstand that the index is being created and not consider it
again for creation. We achieve this by removing the index
from H as soon as the creation begins, so it is not consid-
ered again in ITC at the next iteration. However, we keep
updating its ∆ value as new queries arrive. If the benefit

OnlinePT (qi:query, s:current configuration)

// Initially, H = ∅ (no candidate indexes to create)
01 AOT = getRequests(qi)

// Update ∆ values
02 for each request ρ in AOT
03 I = getBestIndex(ρ); if I �∈ s
04 H=H ∪ {I}; update ∆ for I // Section 3.2.1
05 Iused = index in s used to implement ρ
06 update ∆ for Iused // Sections 3.2.1 and 3.2.2
07 if qi is INSERT/UPDATE/DELETE on table T
08 add OU , NU to ∆ for each index over T
// Remove bad indexes
09 drop I ∈ s if residual(I, s)≤0
// Analyze candidate indexes to create
10 ITC = {I ∈ H, benefit(I, s)>0} // candidates
11 bestI = NULL; bestB = 0; bestS′=∅
12 for each index I in ITC
13 bI = ∆ − Bs

I // see Section 3.2.1
14 get prefix s′ of s in residual(I ′, s)/size(I ′)

order such that size(s−s′ ∪ {I}) fits in

the available storage

15 bI = bI−
∑

I′∈s′ residual(I ′, s)
16 if (bI≥ bestB)

17 bestI = I; bestB = bI; bestS′= s′

18 ITC= ITC ∪{merge(I, I ′) : I ′ ∈ s ∪ ITC}
// Create indexes (optionally removing others)
19 if (bestI is not NULL)

20 drop I ′ ∈ s′ from s
21 create bestI in s; H= H − {bestI}

Figure 6. Online physical tuning algorithm.

value of the index being created drops more than Bs
I due to

updates, we abort the index creation and thus save time.

Index suspend/restart. Some DBMSs allow indexes to
be “suspended” (a suspended index is not updated and can-
not help query processing) and later “restarted” (which is
done by propagating changes from the log to the index,
which is generally faster than a full rebuild). In this sce-
nario, every time we drop an index due to high update costs
(line 9 in Figure 6) we only suspend it. The value Is

B needs
to change so that it reflects the alternative procedure to bring
the index back to operational mode.

Manual intervention. DBAs might still want to manually
create and drop indexes. Our algorithms enable this func-
tionality by reusing the techniques of Section 3.2.1. For
each index that is created or dropped manually, we adjust
∆ values of the remaining indexes in the same way as if the
physical change was done automatically.

Supporting statistics. The approximations of cost in our
techniques might benefit from statistics. However, we can-
not greedily trigger statistics computation due to the addi-
tional overhead. As a middle ground, we propose to trig-
ger asynchronous statistics creation tasks on an index key

columns whenever ∆−∆min is larger than a fraction (e.g.,
0.8) of BS

I . Thus, after we gather enough evidence about
the usefulness of a given index, we create supporting statis-
tics to have more accurate information in the near future.

Online versus traditional physical tuning. The online
algorithms in this work are useful when DBAs are uncer-
tain about the future behavior of the workload, or have no
possibility of doing a comprehensive analysis or modelling.
If a DBA has full information about the workload charac-
teristics, then a static analysis and deployment by existing
tools (e.g., [2, 3]) would be a better alternative.

4 Experimental Evaluation
We now report an experimental evaluation of our tech-

niques, implemented on Microsoft SQL Server 2005. To fo-
cus on the characteristics of our algorithm, we enforce that
each physical change is done before evaluating new queries
(i.e., index creation and drops are synchronous).

4.1 Simple Workloads
Table 1 shows, for simple workloads, the online config-

uration schedules generated by OnlinePT, and the total ex-
ecution time of both OnlinePT and a manually constructed
optimal schedule Opt. We use the following notation: (i)
kE(q)[c] represents k executions of query q, each one with
expected cost c, (ii) C(I)[c] represents the creation of index
I with cost c, and (iii) D(I) represents the deletion of index
I . The workloads are composed of the following queries:

q1 = SELECT a,b,c,id FROM R WHERE a<100

q2 = SELECT a,d,e,id FROM R WHERE a<100

q3 = INSERT INTO R SELECT * FROM S

The schedules start with only primary indexes and consider
the following candidate indexes:

I1=R(id, a, b, c) I2=R(a, b, c, id) I3=R(id, a, d, e)
I4=R(a, d, e, id) I5=R(a, b, c, d, e, id)

Table 1 starts with workload W1=250q1; 250q2 (i.e., 250 in-
stances of q1 followed by 250 instances of q2). The total
space for the database is 135 MB, which is just enough for
a single 4-column index. We start executing q1 five times at
cost 0.57. For this query, both I1 and I2 are useful (I1 as a
vertical partition for a scan request, and I2 as a better over-
all alternative for a seek request). Note also that the cost to
create I1 (1.33) is significantly smaller than that of I2 (8.96)
because I1 shares the same key columns with the primary
index and therefore no intermediate sort is necessary. After
five executions of q1, the benefit of creating I1 is larger than
its creation cost of 1.33, so we create I1. But q1 can still be
improved by index I2. In fact, after 38 executions at 0.29
cost, the benefit of I2 is larger than its creation cost plus the
residual benefit for the existing I1, so we drop I1 and cre-
ate I2. The remaining 207 executions of q1 cost only 0.09.
Right after that, query q4 starts executing, and after 24 exe-
cutions with cost 0.57, the benefit of index I4 (over table S)

is larger than its creation cost plus the residual cost of I2, so
we swap I4 and I2. The remaining 226 instances of q4 are
executed at cost 0.09.

The next three schedules in Table 1 correspond to work-
load W2=250[q1; q2] (i.e., 250 interleaved executions of q1

and q2). While 135MB only allow one 4-column index to
be created (i.e., I5 is too large), 138MB allows any index
(but only one) to be created, and 150MB allow multiple in-
dexes to be created. For 135MB, we start executing (q1; q2)
until we create I1 which helps q1. Index I2 starts increasing
its benefit with respect to I1 and at some point replaces I1.
From this point on, the schedule executes q1 at only 0.09,
and q2 at the original cost 0.57 (the relative benefits of in-
dexes for q2 are roughly the same to the corresponding ones
for I1, so the schedule does not change further and avoids
oscillations). The overall cost is then 180.1. In contrast,
if 138MB are available, the schedule starts similarly, but
instead of changing I1 by I2, index merging produces I5

which serves both queries simultaneously. The remaining
237 executions of (q1, q2) cost 0.11 for each query, and the
overall cost is reduced to just 79.71. Finally, when 150MB
are available, both I1 and I3 are created initially, and after
creating the merged index I5 we are able to additionally cre-
ate optimal indexes for both q1 and q2 (at small cost, since
I5 avoids intermediate sorts to create I2 and I4). The re-
maining executions of (q1, q2) cost 0.09 for each query, and
the overall cost is still smaller at 75.36.

The last schedule in the figure shows a workloads with
updates. Specifically, W3=100q1; 100q3. In this case, the
schedule starts similarly to previous cases and creates in-
dexes I1 and I2 to help q1. When q3 starts executing at cost
3.17, the benefits of the existing indexes decrease, and af-
ter 4 executions we drop I1. The cost of q1 decreases to
2.32, and after 22 additional executions we drop I2 (it takes
longer to drop I2 because its creation time is larger). The
remaining 74 executions of q3 cost only 1.47, since only the
primary index is updated, and the overall cost is 199.92.

4.2 Complex Workloads

We generated random TPC-H workloads by appending
multiple batches together. Each batch consists of a permu-
tation of a random instance of all the TPC-H queries. We then
evaluated the workloads using (i) our algorithm OnlinePT,
(ii) an offline, set-based tool Offline-Set [3], and (iii) the
offline “sequence-based” Offline-Seq of [2].

Figure 7(a) shows the cost of executing a 60-batch work-
load with OnlinePT on a 1GB database with an additional
1GB of storage for indexes. As batches are executed, the
query processing cost decreases as better indexes are built.
Between batches 1 and 15 there is more activity due to phys-
ical design, and several indexes are created and sometimes
later dropped. The physical design stabilizes over time,
and after batch 15 virtually no further changes are neces-

Workload Online Configuration Schedule ConlinePT [Costopt]
W1, 135MB 5E(q1)[0.57]; C(I1)[1.33]; 31E(q1)[0.29]; C(I2)[8.69]; 214E(q1)[0.09]; 24E(q2)[0.57]; D(I2); 85.77 [62.92]

C(I4)[8.96]; 226E(q2)[0.09]

W2, 135MB 4E(q1; q2)[0.57;0.57]; C(I1)[1.33]; 14E(q1; q2)[0.29;0.57]; D(I1); C(I2)[8.96]; 232E(q1; q2)[0.09;0.57] 180.01 [173.96]
W2, 138MB 4E(q1; q2)[0.57;0.57]; C(I1)[1.33]; 9E(q1; q2)[0.57;0.29]; D(I1); C(I5)[9.2]; 237E(q1; q2)[0.12;0.12] 79.71 [69.21]
W2, 150MB 4E(q1; q2)[0.57;0.57]; C(I1)[1.33]; C(I3)[1.33]; 30E(q1; q2)[0.29;0.29]; C(I5)[9.2]; E(q1)[0.12]; 75.16 [56.86]

C(I2)[1.2]; E(q2)[0.12]; C(I4)[1.2]; 215E(q1; q2)[0.09;0.09]

W3, 150MB 5E(q1)[0.57]; C(I1)[1.33]; 30E(q1)[0.29]; C(I2)[8.69]; 65E(q1)[0.09]; 4E(q3)[3.17]; D(I1); 199.92 [164.69]
22E(q3)[2.32]; D(I2); 74E(q3)[1.47]

Table 1. Configuration schedules for simple workloads.

0

500

1000

1500

2000

2500

1 11 21 31 41 51

Batch

Es
tim

at
ed

 C
os

t

Index Build

QP Cost

0

500

1000

1500

2000

2500

3000

1 11 21 31 41 51

Batch

Es
tim

at
ed

 C
os

t

OnlinePT

Offline-Set

Offline-Seq

(a) Select Workload, 2GB. (b) Select Workload, 2GB.

0

3000

6000

9000

12000

15000

18000

1 11 21 31

Batch

E
st

im
at

ed
 C

os
t

Index Build

QP Cost

0

1000

2000

3000

4000

5000

1 11 21 31

Batch

E
st

im
at

ed
 C

os
t

OnlinePT

Offline-Set

Offline-Seq

(c) Update Workload, 2GB. (d) Update Workload, 2GB.

Figure 7. Online and Offline schedules for complex TPC-H workloads.

sary. Figure 7(b) contrasts the overall cost of OnlinePT with
that of the offline alternatives. Offline-set incurs a large
overhead at the beginning to create all the necessary in-
dexes, but then serves the workload without further tuning.
Offline-seq is slightly more efficient than Offline-set be-
cause it treats the input as a sequence. Note that when the
physical design for OnlinePT stabilizes, the cost per batch
is almost indistinguishable from that of offline techniques
(i.e., OnlinePT does no harm compared to offline techniques
that have knowledge of the whole workload in advance).

Figures 7(c) and 7(d) repeat the experiment when we add
a disruptive sequence of updates after the first 14 batches
in the original workload. This scenario is particularly at-
tractive for sequence-based approaches (i.e., OnlinePT and
Offline-Seq). Since the disruptive updates mostly touch
the lineitem table, Offline-Set does not recommend any
index on lineitem because the (aggregated) benefit of such
indexes is outweighed by the cost of updating them. In
contrast, OnlinePT and Offline-Seq generate schedules
that begin similar to the ones in Figure 7(a). At batch
14, the algorithms drop the indexes on lineitem and effi-

ciently process the updates (OnlinePT lags behind the of-
fline Offline-Seq). When the normal sequence of batches
is resumed, indexes on lineitem are re-created and ex-
ploited again. In this case, OnlinePT is more efficient than
Offline-Set (even when counting the index creation time).

Figure 8 summarizes the overall cost of all techniques for
the different workloads. As expected, OnlinePT is slightly
worse than Offline-Seq, which knows the future. However,
we see that OnlinePT sometimes results in better perfor-
mance than the offline, set-based technique Offline-Set.

0

20000

40000

60000

80000

100000

OnlinePT Offline-Set Offline-Seq OnlinePT Offline-Set Offline-Seq

Select Workload Update Workload

E
st

im
at

ed
 C

o
st

Index Build

QPCost

Figure 8. Expected cost of tuning alternatives.

4.3 Server Overhead

We now report the overhead of our prototype imple-
mentation of algorithm OnlinePT. Figure 9 shows the av-
erage elapsed time of OnlinePT when evaluating the differ-
ent workloads in the previous sections. We also show the
average overhead fraction over the minimum between opti-
mization and execution time of the queries in the workload
(to use the worst case scenario for OnlinePT). The full al-
gorithm requires an additional 1.7% (0.41% for the simpler
workload) on top of query optimization/execution, which
is rather acceptable. In fact, the critical section of the al-
gorithm (lines 1-8) imposes less that 0.2% overhead over
query processing (as we discuss in Section 3.3, this is the
only module that must be executed for each query – the
others can be throttled down). Our preliminary evaluation
demonstrates the promise of our online tuning approach.

Module TPC-H (|W | = 640) Simple (|W | = 500)
Total 19.8msecs (1.7%) 0.12msecs (0.82%)

Line 1 0.77msecs (0.05%) 0.1msecs (0.65%)
Lines 2-8 0.16msecs (0.01%) 0.02msecs (0.13%)
Lines 9-18 18.9msecs (1.6%) 0.012msecs (0.08%)

Line 18 15.5msecs (1.3%) 0.002msecs (0%)

Figure 9. Server overhead of OnlinePT.

5 Related Work
There has been considerable research on automating the

physical design in DBMSs (e.g., [1, 7, 3, 8, 11]). In contrast
to our work, they focus exclusively in the offline scenario.

References [4, 6] introduce the underlying functionality
that we review in Section 2 and use in our approach. In con-
trast to our work, these references exploit such technology
in the context of an offline tuning tool [4] and an alerting
mechanism that provides lower bounds for the improvement
of a comprehensive tuning tool [6].

Recently, reference [2] presents an offline technique that
finds the optimal physical schedule considering the work-
load as a sequence. While it shares the same problem for-
mulation with our paper, it presents an offline algorithm to
help application developers writing code that takes into ac-
count physical design changes.

Finally, references [9, 10] present brief descriptions of
prototypes that address some aspects of online physical tun-
ing. These references share the same overall goals with our
work, but differ in significant ways. Specifically, in contrast
to our approach, reference [10] requires multiple additional
calls to the optimizer to obtain information about candidate
indexes, and [9] is not fully integrated with the query opti-
mizer. In addition, both references ignore the issue of index
interactions (Section 3.2.1) and do not explicitly provide so-
lutions for the oscillation problem.

6 Conclusions
We introduced an online algorithm designed to be

always-on and able to continuously monitor changes in the
workload and data to refine the physical design. Such archi-
tecture is especially useful when the DBMS needs to adapt
to unexpected changes in workload characteristics. We pre-
sented proposals that address difficult issues such as index
interactions and unwanted physical design oscillations. An-
other key challenge we tackled was to ensure low overhead
on query execution, with promising results. We plan to
build an industrial strength implementation for a broader
understanding of the scope and limitations of our approach
and refine the architecture appropriately.

References

[1] S. Agrawal, S. Chaudhuri, and V. Narasayya. Automated se-
lection of materialized views and indexes in SQL databases.
In Proceedings of the International Conference on Very
Large Databases (VLDB), 2000.

[2] S. Agrawal, E. Chu, and V. Narasayya. Automatic physical
design tuning: workload as a sequence. In Proceedings of
the ACM International Conference on Management of Data
(SIGMOD), 2006.

[3] S. Agrawal et al. Database Tuning Advisor for Microsoft
SQL Server 2005. In Proceedings of the 30th International
Conference on Very Large Databases (VLDB), 2004.

[4] N. Bruno and S. Chaudhuri. Automatic physical database
tuning: A relaxation-based approach. In Proceedings of
the ACM International Conference on Management of Data
(SIGMOD), 2005.

[5] N. Bruno and S. Chaudhuri. Physical design refinement: The
“Merge-Reduce” approach. In International Conference on
Extending Database Technology (EDBT), 2006.

[6] N. Bruno and S. Chaudhuri. To tune or not to tune? A
Lightweight Physical Design Alerter. In Proceedings of
the 32th International Conference on Very Large Databases,
2006.

[7] S. Chaudhuri and V. Narasayya. An efficient cost-driven in-
dex selection tool for Microsoft SQL Server. In Proceed-
ings of the 23rd International Conference on Very Large
Databases (VLDB), 1997.

[8] B. Dageville et al. Automatic SQL Tuning in Oracle 10g.
In Proceedings of the 30th International Conference on Very
Large Databases (VLDB), 2004.

[9] K.-U. Sattler, I. Geist, and E. Schallehn. Quiet: Continuous
query-driven index tuning. In Proceedings of the Interna-
tional Conference on Very Large Databases (VLDB), 2003.

[10] K. Schnaitter et al. Colt: continuous on-line tuning. In Pro-
ceedings of the ACM International Conference on Manage-
ment of Data (SIGMOD), 2006.

[11] D. Zilio et al. DB2 design advisor: Integrated automatic
physical database design. In Proceedings of the 30th Interna-
tional Conference on Very Large Databases (VLDB), 2004.

