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Abstract
We propose a new discriminative learning framework, called
soft margin feature extraction (SMFE), for jointly optimizing
the parameters of transformation matrix for feature extraction
and of hidden Markov models (HMMs) for acoustic
modeling. SMFE extends our previous work of soft margin
estimation (SME) to feature extraction. Tested on the
TIDIGITS connected digit recognition task, the proposed
approach achieves a string accuracy of 99.61%, much better
than our previously reported SME results. To our knowledge,
this is the first study on applying the margin-based method in
joint optimization of feature extraction and acoustic modeling.
The excellent performance of SMFE demonstrates the success
of soft margin based method, which targets to obtain both
high accuracy and good model generalization.
Index Terms: discriminative feature extraction, hidden
Markov model, margin, automatic speech recognition

1. Introduction
Feature exaction is an important component in the automatic
speech recognition (ASR) systems. Most current ASR systems
use Mel-frequency cepstrum coefficients (MFCCs) [1] as their
standard input acoustic features. Usually, lower dimension
MFCCs are got by applying DCT transformation on higher
dimension log filter bank energies and following an optional
cepstrum lifter. The DCT transformation matrix is fixed for all
tasks. It has been demonstrated data dependent transformation
is usually better than data independent one in classification
tasks [2]. Therefore, the DCT transformation may not be the
best choice for specific ASR tasks. We hope to get better
features with more discriminative information, and these
discriminative features will benefit our ASR backend.

Linear discriminant analysis (LDA) [2] may be a choice
for the data dependent transformation. In [3][4], LDA has
been successfully used in ASR systems for feature extraction.
However, there are two major disadvantages of LDA. One is
that LDA assumes the underlying sample distribution is
Gaussian. The other is that it assumes that the class samples
are of equal variance. Heteroscedastic discriminant analysis
(HDA) [5] was proposed to remove the equal variance
assumption. However, HDA is under the framework of
maximum likelihood estimation (MLE). MLE is known to be
optimal for density estimation, but it often does not lead to
minimum recognition error that is the goal of ASR. As a
remedy, several discriminative training (DT) methods have
been proposed in recent years to boost the ASR system
accuracy. Typical methods are maximum mutual information
estimation (MMIE) [6], minimum classification error (MCE)
[7], and minimum word/phone error (MWE/MPE) [8]. These

DT technologies can also be applied to feature extraction.
MCE was used in the work of discriminative feature
extraction [9] to get optimal lifter and was used to adjust
the artificial neural network based feature in [10]. Feature-
space MPE was used to get discriminative feature in [11].

Inspired by the great success of margin-based
classifiers in machine learning, there is a new trend to use
margin to design new DT methods. Several speech
recognizers based on margin maximization were proposed
recently [12-16]. They already have shown advantages over
some DT methods in some ASR tasks [12][14][15]. Among
them, soft margin estimation (SME) [15][16] was proposed
to make direct usage of the successful ideas of soft margin
in support vector machines to improve generalization
capability and decision feedback learning in minimum
classification error training to enhance model separation in
classifier design. In [16], SME was shown to be able to
minimize the approximate test risk from the viewpoint of
statistical learning theory [17]. As a result, SME has shown
its superiority in several ASR tasks [15][16].

All the above mentioned margin-based methods focus
on how to improve the generalization of acoustic models.
In this study, we propose soft margin feature extraction
(SMFE) to apply the idea of SME to jointly optimize the
parameters of feature extraction transformation and the
HMMs. Detailed derivation and implantation are given.
SMFE shows a good improvement over SME. Tested on
the TIDIGITS database [18], even 1-mixture model can
achieve a string accuracy of 99.13%. The 16-mixture
SMFE model attains a string accuracy of 99.61%. To our
knowledge, it is the best result ever reported.

2. Soft Margin Feature Extraction
In this section, the theory of soft margin estimation is first
briefly reviewed. Then we propose soft margin feature
extraction to jointly optimize the feature transformation
matrix and HMM parameters under the framework of SME.
Because the purpose of feature extraction in this study is to
find a transformation matrix to reduce the dimension of log
filter bank energies, dimension reduction and feature
extraction are interchanged frequently in this paper.

2.1 Soft Margin Estimation

Here, we briefly introduce SME. Please refer to [15][16]
for detailed discussion. According to statistical learning
theory [17], a test risk is bounded by the summation of two
terms: an empirical risk (i.e., the risk on the training set)
and a generalization function. The generalization function
is a monotonic increasing function of Vapnik &
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Chervonenkis dimension, or VC dimension (VCdim) [17]. It
can be shown that VCdim is bounded by a decreasing function
of the margin [17]. Hence, VCdim can be reduced by increasing
the margin. This is the key idea of the margin-based method.

As analyzed, we have two targets for optimization, one is
to minimize the empirical risk, and the other is to maximize
the margin. The test risk bound is approximated by combining
these two targets into a single SME objective function:
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Λ denotes HMM parameters, ( )Λ,ii O� is a loss function for

utterance Oi, and N is the number of training utterances. ρ is

the soft margin, and λ is a coefficient to balance the soft
margin maximization and the empirical risk minimization.

The loss function can be defined as:
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with the separation of the models defined as:
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where Fi is the frame set in which the frames have different
labels in the competing strings. I is an indicator function, and
Oij is the jth frame for utterance Oi. ni denotes the number of
frames that have different labels in target and competing

strings for utterance Oi. ( )iij SOp and ( )iij SOp ˆ are the

likelihood scores for the target string Si and the most

competitive string iŜ . Eq. (1) can be solved by using

generalized probabilistic descent (GPD) [19] algorithm as
stated in [15] to find HMM parameters, Λ .

2.2 SMFE for Gaussian Observations

The objective of feature exaction is to find a matrix W to
transform the original n dimension feature vector x into a new
d (d<n) dimension vector y. It is formulated as: y=Wx. To
simplify the formula, we use x to stand for Oij, which is used
in Eqs. (3). To embed W into the framework of SMFE, we

need to express ( ) ( )ii SxpSxp ˆloglog − as a function of W.

We first investigate a simple case, in which the state
observation probability is modeled by a Gaussian distribution.

An n*n dimension matrix V is used to obtain z=Vx (z is a
n dimension vector). If the probability density function (pdf)
of z is modeled by a Gaussian with ),( nnu Σ as the mean and

covariance, the pdf of x can be expressed as:
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For the purpose of dimension reduction, only the first d
dimension feature is needed. Therefore, the n dimension
vector of z and nu can be split into 2 sub-vectors with

dimension d and n-d, respectively. Also, the n*n matrix of V
can be split into two matrixes with dimension d*n and (n-
d)*n, respectively. That is:
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Block approximation for the covariance matrix is made as:
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where Σ and dn−Σ are the matrixes with dimension d*d

and (n-d)*(n-d), respectively.
Let ),( ++ Σ nnu and ),( −− Σ nnu denote the means and

covariance matrixes of Gaussians of the target and
competing labels, respectively. The difference between the
log values of two Gaussian distributions will be:
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is assumed to be a constant, then dnR − is equal to 0. This

assumption makes sense, because the target of dimension
reduction is to discard unnecessary information and this
additional dimension cannot be removed if the n-d
dimension features of different classes are very different.
Similar assumption is used in HDA [5]. Now, we only need
to concern about R, which is a function of W. Therefore, in

Eq. (3), we use R to replace ( ) ( )iijiij SOpSOp ˆloglog − .

2.3 SMFE for GMM Observations

For the case that the state observation probability is
modeled by a GMM, we have
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Here, ( jnjnj uc Σ,, ) are the weight, mean, and covariance

matrix of the jth Gaussian component of GMM. The
Vlog item can still be removed by the subtraction of two
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log values of state observation probabilities of the target and
competing class. By applying the same splitting strategy for
each mixture component of GMMs as Section 2.2 and making
the constant assumption for
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the difference of those log values can be written as:
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where ),,( +++ Σ jjj uc and ),,( −−− Σ jjj uc are the weight,

mean, and covariance matrix of the jth component of GMM
for target and competing classes, respectively. We can also
replace Eq. (4) into Eqs. (1)-(3).

2.4 Implementation of SMFE

In our implementation of SMFE, we simplify the process by
using the same transformation matrix W for the static, first
and second order time derivatives of the log filter bank
energies. Let x denote the static log filter bank energies,

xΔ and xΔΔ denote the first and second order derivatives of
x. Then the new transformed static feature vector is given by:
y=Wx, and the dynamic features of y are: xWy Δ=Δ and

xWy ΔΔ=ΔΔ . The final feature Q is composed of y, yΔ ,

yΔΔ , log energy e and its derivatives eΔ , eΔΔ as Q = (Wx

xWΔ xWΔΔ e eΔ eΔΔ )T. Then, R in Eq. (4) can be expressed:
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Eq. (5) is a function of the matrix W. Now, we can embed R

into Eqs. (1)-(3) to replace ( ) ( )iijiij SOpSOp ˆloglog − and

use GPD to get the final parameters of transformation matrix
W and all the HMM parameters.

3. Experiment
The proposed framework was evaluated on the TIDIGITS
database. There are 8623 digit strings in the training set and
8700 digit strings for testing. The hidden Markov model
toolkit (HTK) was used to build the baseline MLE HMMs.
We used 11 whole-digit HMMs, one for each of the 10
English digits, plus the word “oh”. Each HMM has 12 states
and each state observation density is characterized by a
mixture Gaussian density. Models with 1, 2, 4, 8, and 16
mixture components were trained. The input features were
12MFCCs + energy, and their first and second order time
derivatives. Our SME models were initiated with the MLE

models. Digit decoding was based on unknown length
without imposing any language model or insertion penalty.
The MLE and SME models trained with MFCCs are
denoted as MLE_M and SME_M in Table 1.

In parallel, we used LDA to extract the acoustic
features. For each speech frame, we have 24 log filter bank
energies. LDA was applied to reduce the dimension from
24 to 12. To get the LDA transformation, each HMM-state
was chosen as a class. This dimension reduced feature is
concatenated with energy, and then extended with the first
and second order derivatives to form a new 39-dimension
feature. We also trained MLE and SME models based on
this new LDA-based feature. These models are MLE_L
and SME_L in Table 1.

Finally, initiated with the models MLE_L and the
LDA transformation matrix, SMFE models were trained to
get the optimal HMM parameters and transformation
matrix. The results of SMFE are also listed in Table 1.

Only string accuracies of the TIDIGITS testing set are
listed in Table 1. We believe at this high level of
performance in TIDIGITS, the string accuracy is a strong
indicator of model effectiveness. It is clear that LDA-
based feature outperforms MFCCs for both the MLE and
SME models. Shown in the last column of Table 1, SMFE
models achieved the best performance. Even 1-mixture
SMFE model can get better performance than 16-mixture
MLE models with MFCCs or LDA-based features. SMFE
got 99.61% string accuracy for 16-mixture model. This is a
large improvement from original SME work [15], in which
MFCCs were used. The excellent SMFE performance is
attributed to the joint optimization of acoustic feature and
HMM parameters by directly using soft margin to improve
generalization capability, and using decision feedback
learning to enhance model separation in classifier design.

Table 1: String accuracy comparison with different
methods on the TIDIGITS testing set

MLE_M SME_M MLE_L SME_L SMFE
1-
mix

95.20%
*

98.76%
*

96.82%
*

98.91%
*

99.13%

2-
mix

96.90%
*

98.95%
*

97.82%
*

99.15%
*

99.36%

4-
mix

97.80%
*

99.20%
*

98.51%
*

99.31% 99.44%

8-
mix

98.03%
*

99.29%
*

98.63%
*

99.39%
*

99.56%

16-
mix

98.36%
*

99.30%
*

98.93%
*

99.46%
*

99.61%

For a high accuracy task such as TIDIGITS, it is
interesting to test whether SMFE is significantly better than
other methods. For each mixture model setting, we denote
p1 as the accuracy of SMFE model, and denote p2 as the
accuracy for other models from MLE_M, SME_M,
MLE_L, and SME_L. If we consider p1 and p2 are
independent, then we have the following hypothesis testing
problem [20] with H0: p1= p2 against H1: p1> p2. We can

get the statistic:
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denotes the total number of samples (8700 here).
We make decision according to the following:
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αZ is called upper α quantile. Here, we set α to 0.1. If

hypothesis H0 is rejected, SMFE is significantly better at the
confidence level of 90%. For every mixture setting, the
hypothesis testing was performed according to Eq. (6). In
Table 1, an asterisk is used to denote when the performance of
SMFE is significantly better. It is shown that SMFE is
significantly better than nearly all the other models at the
significance level of 90%. The only exception is the 4-mixture
SME_L model.

4. Conclusion
By extending our previous work of SME, we proposed a new
discriminative training method, called SMFE, to achieve even
higher accuracy and better model generalization. By jointly
optimizing the acoustic feature and HMM parameters under
the framework of SME, SMFE performs much better than
SME, and significantly better than MLE. Tested on the
TIDIGITS database, even 1-mixture model can get string
accuracy of 99.13%. And 99.61% string accuracy was got
with 16-mixture SMFE model. This is a great improvement
comparing to our original SME work that uses MFCCs as
acoustic feature. This SMFE work again demonstrates the
success of soft margin based method, which directly makes
usage of the successful ideas of soft margin in support vector
machines to improve generalization capability, and of
decision feedback learning in minimum classification error
training to enhance model separation in classifier design.

This paper only presents our initial study. We are now
working on many related research issues to further complete
the work of SMFE. In this study, feature transformation
matrix only works on the static log filter bank energies of the
current frame. In [5], great benefits were obtained by using
the frames in context before and after the current frame. We
will try to incorporate these context frames into SMFE
optimization. Secondly, in [16] we have shown that SME also
worked well on large vocabulary continuous speech
recognition task. We will try to demonstrate the effectiveness
of SMFE on the Wall Street Journal task in future work.
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