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Abstract
We present methods of detector design in the Automatic Speech
Attribute Transcription project. This paper details the results of
a student-led, cross-site collaboration between Georgia Institute
of Technology, The Ohio State University and Rutgers Univer-
sity. The work reported in this paper describes and evaluates the
detection-based ASR paradigm and discusses phonetic attribute
classes, methods of detecting framewise phonetic attributes and
methods of combining attribute detectors for ASR.

We use Multi-Layer Perceptrons, Hidden Markov Models
and Support Vector Machines to compute confidence scores for
several prescribed sets of phonetic attribute classes. We use Con-
ditional Random Fields (CRFs) and knowledge-based rescoring
of phone lattices to combine framewise detection scores for con-
tinuous phone recognition on the TIMIT database. With CRFs,
we achieve a phone accuracy of 70.63%, outperforming the base-
line and enhanced HMM systems, by incorporating all of the at-
tribute detectors discussed in the paper.

Index Terms: Detection-based ASR

1. Introduction
The most commonly adopted approach to the task of automatic
speech recognition (ASR) is to train acoustic models for a pre-
scribed alphabet of short linguistic units, usually at the subword
level, and to use dynamic programming techniques to find the
best sequence of words for a given spoken utterance. While much
of the success in the performance of ASR systems is directly at-
tributable to this paradigm and its variants, the approach has a
number of important limitations. Particularly, it is knowledge-
ignorant in that the acoustic models are trained by collecting
large corpora of transcribed speech, and fitting the best parame-
ters of a distribution to the data. As a result, a wide body of expert
knowledge in linguistics and acoustic phonetics is largely unused
in modern ASR systems.

In this paper we discuss the first 3 years of work toward
a new, detection-based paradigm for ASR, proposed to address
some of the limitations of modern ASR systems and to narrow
the significant gap between ASR and human speech recognition.
Specifically, we present methods of detector design in the Auto-
matic Speech Attribute Transcription (ASAT) project, where we
have incorporated detectors of various attributes of the speech
signal (sometimes referred to in the literature as distinctive fea-
tures or phonological features or acoustic-phonetic features) into
our approach to ASR.

Figure 1 illustrates the detection-based ASR paradigm de-
veloped over the course of the ASAT project. At the front
end is a bank of detectors of useful and meaningful attributes
of the speech signal. The outputs of these detectors, typically
confidence scores for each attribute, are fused to infer higher-
level evidences for the speech recognition task. Our selection

of speech attributes is taken directly from the area of linguis-
tics. Detection-based ASR then represents an opportunity to ef-
fectively and methodically incorporate expert knowledge of lin-
guistics and acoustic phonetics into speech recognition systems.

We highlight previous and current work in the ASAT project
as well as the results of a cross-site collaboration (led by student
researchers) between Georgia Institute of Technology, The Ohio
State University and Rutgers University. We also embody in this
paper an appeal to the research community at large for collabora-
tion and input.

The paper is organized as follows: in Section 2 we describe
our methods for designing detectors of speech attributes. In
Section 3 we evaluate the performance of the detectors and the
detection-based ASR systems we have developed. We also dis-
cuss our methods for fusing detectors of speech attributes, namely
conditional random fields and knowledge-based lattice rescoring,
and their results in the continuous phone recognition (CPR) task.
Section 4 discusses ASAT as an open, collaborative platform for
research in ASR and encourages input from researchers in a wide
variety of fields. Finally, conclusions and future work are given
in Section 6.

2. Designing speech attribute detectors

The front end of the ASAT detection-based ASR system is de-
picted in Figure 1 (a). The speech signal is first analyzed by a
bank of detectors, each producing a confidence score or posterior
probability pertaining to some acoustic-phonetic attribute. The
design of these detectors, the optimization of their parameters and
the selection of the set of attributes to detect are all critical design
problems for the detection-based ASR paradigm. In this section
we discuss our approaches to the design of speech attribute de-
tectors.

The ASAT detection-based ASR system is designed to incor-
porate a wide variety of knowledge sources. Detectors of varying
design methodologies and front-end processing techniques each
have their own strengths and advantages and can be easily in-
corporated into our framework. A summary of our attribute de-
tectors, developed independently at multiple remote sites, and the
speech attribute classes we use, is given in Table 1. We use Multi-
Layer Perceptrons (MLPs), Hidden Markov Models, Support
Vector Machines (SVMs) and Time-Delay Neural Nets (TDNNs)
to detect various acoustic-phonetic distinctive attributes of the
speech signal. We also use MLPs to detect boundaries between
phones and phonological features.

All of the speech attribute detectors discussed in this paper
were trained on the TIMIT database.
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(a) Front end. (b) Decoding.Figure 1: ASAT Detection-Based ASR.

2.1. MLP-based attribute detectors

2.1.1. MLP detectors for Sound Pattern of English classes

Using the Sound Pattern of English (SPE) features defined by
Chomsky and Halle [2] as speech attributes, we built and op-
timized a set of Multi-Layer Perceptrons to detect each of the
14 binary-valued SPE features. The 61 TIMIT phonemes are
mapped to the 14 SPE features, and the detection is done on each
utterance frame by frame. We tested this architecture using both
2-layer and 3-layer MLPs using the Netlab and Matlab toolboxes.
The input layer of the MLP has 13 nodes corresponding to 13
MFCC parameters in a single frame, and the output layer con-
tains one node corresponding with one of the 14 SPE features[3].

2.1.2. Multiclass MLPs for Intl. Phonetic Assoc. (IPA) classes

Several multiclass MLPs, each with 1000 hidden nodes and be-
tween 3 and 9 output nodes, were used to detect 44 phonetic at-
tributes as defined by the International Phonetic Association. The
inputs are 13 perceptual linear predictive (PLP) features and their
1st- and 2nd-order time derivatives within a 9-frame window, in-
cluding 4 frames each of preceding and following context. We
trained 8 MLPs separately, each representing one phonological
class from the IPA chart (sonority, voicing, etc) with several pos-
sible values. The Voicing class, for example, has labels: Voiced,
Voiceless and N/A. These labels correspond to the three output
nodes for the Voicing MLP. The N/A label is used to form an ex-
haustive class set when necessary.

Details of the eight MLPs used to detect the IPA attributes are
given in the last row of Table 1. Collectively, the eight MLPs have
44 output nodes. We use each of these outputs as an individual
attribute detector in the ASAT framework.

2.2. HMM-based attribute detectors

Conventional hypothesis testing is based on the Neyman-Pearson
lemma which uses the likelihood ratio to accept or reject a pro-
posed hypothesis. A generalized likelihood ratio is computed
when a test observation O is observed, and then compared against
a decision threshold to decide which of two hypotheses is to be
accepted. In order to conduct the test, one needs knowledge of
two probabilistic models (for the null and alternative hypotheses),
which are conventionally obtained through distribution estima-
tion using pre-labeled data of sufficient amount. For the attribute
detection problem, we model the null and alternative hypotheses
with the well-known hidden Markov model.

We model each of the 17 phonetic attributes listed in Table
1 (last column, second row) with a pair of HMMs. Each target
phonetic attribute and an “anti-target”, is modeled with a 3-state,
16-mixture HMM. A 2-class recognition is first performed on the
speech signal, using just the target HMM, to obtain segments.

Both HMMs are then Viterbi-aligned to each segment. For an ob-
servation O, the detector score is computed as the log-likelihood
ratio LLR(O) = log L(O|λo) − log L(O|λ1) where L(O|λo)
and L(O|λ1) are acoustic likelihoods of the target and anti-target
models, respectively[4, 7].

2.3. SVM-based attribute detectors

Kernel Machines are an increasingly popular family of methods
for pattern recognition. Among Kernel Machines, Support Vec-
tor Machines (SVM) are the most widely used, and have been
applied to many pattern recognition problems, including speech
recognition. In all Kernel Machine methods the input space R

n is
implicitly mapped to a high-dimensional feature space R

nk . Ac-
cording to Mercer’s condition, the inner product 〈φ(x), φ(xk)〉,
where φ(·) : R

n → R
nk is the nonlinear function mapping the

input space to the feature space, can be computed through a ker-
nel K(x, xk). Kernel machine methods can then use linear classi-
fication techniques involving inner products in a non-linear space,
achieving impressive performance in many classification tasks.

We train an SVM classifier for each of the 17 phonetic at-
tribute classes listed in Table 1. We use 13 MFCC coefficients
and the 4 preceding and 4 following frames, giving a 9-frame
window and a 117-dimension feature vector.

2.4. Phonetic boundary detection

Regions near phone boundaries and phonological feature bound-
aries may carry rich and important information for speech recog-
nition. We attempted to extract boundary information and inte-
grate this type of attribute into ASR systems as supportive infor-
mation. Acoustic features (12th order PLP coefficients and their
derivatives), and estimated probabilities of phones and phonolog-
ical features were used as input features to our boundary detec-
tors. For each of the 8 broad phonetic classes listed in Table 1
(last column, third row), a fully connected Multi-Layer Percep-
tron (MLP) with 4 output nodes was developed to detect transi-
tions between the classes, resulting in 32 attributes for phonetic
boundary detection. The 4 output nodes for each MLP classify a
frame of speech as a Left Boundary (LB), Right Boundary (RB),
Non-Left Boundary (NL) or Non-Right Boundary (NR)[9].

2.5. Other detection-based methods

Over the course of the ASAT project, we explored several other
detection-based methods for ASR. We briefly summarize these in
the following sections.

2.5.1. Whole-word detectors

Detector design at different levels is one of the key components
within the framework of a detection-based ASR system. We
have also incorporated acoustic-phonetic knowledge into the de-
sign of HMM-based detectors of whole words. We have used
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Table 1: Summary of detectors, front-end processing methods and speech attributes

knowledge-based attributes in fine analysis and pruning for de-
tected word segments. While word detection in this regard is
similar to wordspotting, our word detectors work well on both
content words and function words.

2.5.2. Time-delay neural nets for voiced-stop classification

Time-Delay Neural Networks (TDNN) have been shown to be
effective in classifying dynamic sounds. For dynamic sounds
such as the voiced stop consonants, their acoustic feature val-
ues change significantly over the duration of the sound. The
TDNN can look for the desired feature changes by duplicated
time-delayed weights, and thus encode the fine temporal struc-
ture within a segment. We built a set of TDNNs to classify the
stop consonants of /b/, /d/, /g/ and /p/, /t/, /k/, which are among
the most difficult consonant classes to classify accurately.

2.5.3. The role of finite state automata (FSAs)

The Finite State Automata (FSA) framework is an efficient and
powerful representation of recognition networks, developed for
ASR during the 1990s. FSAs are a convenient representation
for the detection of multiple events, and can play an important
role in detection-based ASR. Transducers in particular, are a
type of FSA that allows assembly across layers of representa-
tion (acoustic models, phones, words). Similarly, sequences of
detected attributes, at various levels of abstraction, could be rep-
resented as transducers.

3. Evaluating detection-based ASR
In this section we evaluate the stand-alone performance of
our attribute detectors as well as the performance of our
detection-based ASR systems. Specifically, we perform con-
tinuous phone recognition (CPR) and large-vocabulary continu-
ous speech recognition (LVCSR) using conditional random fields
(CRFs) and knowledge-based rescoring of speech lattices. All
experiments are carried out on the TIMIT database.

3.1. Detector performance

A compelling advantage of the detection-based ASR paradigm
and the use of bottom-up knowledge integration is that the stand-
alone performance of low-level detectors of knowledge sources
can be evaluated. In this section we briefly evaluate the per-
formance of detectors of knowledge sources in the context of
detection-based ASR.

The DET curve, much like the well-known Receiver Operat-
ing Characteristics (ROC) curve, plots the locus of a detector’s
accuracy over the complete range of threshold values. This kind
of analysis can be used to examine the trade-off between the num-
ber of false alarms and false rejects a detector will produce, and
was used extensively in the development of speech attribute de-

tectors in the ASAT project.
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Figure 2: Selected Detector Error Trade-off (DET) curves for 2-
class MLP, HMM and SVM detectors.

Selected plots of the Detector Error Trade-off (DET) curve
are given in Figure 2. The plots represent the best and worst per-
forming attributes for the HMM, 2-class MLP and SVM1 detec-
tors. HMMs and SVMs perform best for detecting silence while
2-class MLPs detect the strident attribute best. The best and worst
equal error rates (EER), are given in Table 2. At the EER, the
miss rate and false alarm rate are equal.

Table 2: Minimum and maximum Equal Error Rate (EER).

3.2. Continuous phone recognition
3.2.1. Conditional random fields

Conditional Random Fields (CRFs), are discriminative models
for sequences that attempt to model the posterior probability of
a label sequence conditioned on a set of input observations. A
CRF defines the conditional probability P (Y|X) as: P (Y|X) =
exp
∑

t(
∑

i λifi(Y,X, t))/Z(X) where Y is a sequence of la-
bels, X is a set of input observations, each function f is a f eature
function with an associated λ-weight, and the term Z(X) is a
normalizing term computed over all label sequences.

As in [6], we use CRFs to perform continuous phone recog-
nition on the TIMIT speech database using only the attribute de-
tectors discussed in the previous section as inputs. A non-linear

1The worst performing SVM detector (mid) is not shown in Figure 2
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Table 3: Continuous phone recognition experiments with CRFs
on the TIMIT database

scaling was first applied to the HMM-based detector scores which
are not strictly confined to a finite range. Table 3 gives results
of continuous phone recognition experiments performed using
CRFs with several configurations of speech attribute detectors as
inputs. The results in Table 3 are sectioned into 3 groups. Ex-
periments in the first group involve using just one of the sets of
attribute detectors in Table 1. Among these, the best performance,
a phone accuracy of 68.96%, is achieved with multi-class MLPs.

In the second and third groups in Table 3, two or more sets
of attribute detectors are used as inputs to the CRF system. In the
second group, all detectors are combined with multi-class MLPs,
the best performing attribute detectors from the first group, and
an accuracy of 69.29% is obtained in the best case. Finally, we
incorporate phonetic boundary detectors in the last group in Ta-
ble 3. The best phone accuracy result, 70.63%, is obtained when
HMM-based detectors, multi-class MLPs, 2-class MLPs and pho-
netic feature boundaries are all incorporated, making use of 103
knowledge scores. The results of this first set of experiments are
very encouraging since, in our detection-based framework, there
is always room to incorporate more knowledge sources.

3.2.2. Knowledge-based lattice rescoring

While the ASAT detection-based ASR paradigm aims to perform
automatic speech recognition using only detectors of speech at-
tributes as inputs, it is instructive to use the same detectors to
enhance the performance of state-of-the-art HMM-based speech
recognition systems. We accomplish this for the continuous
phone recognition task by rescoring phone lattices as in [7]. We
use a 32-mixture, HMM with 3 active states per phone to perform
continuous phone recognition, and then use output scores from
speech attribute detectors to rescore lattices. Table 4 gives CPR
results of the baseline system and after rescoring with HMM-
based and multi-class MLP attribute detectors. The baseline per-
formance of 61.16% improves to 64.59% with multi-class MLPs,
which is comparable to [7] and falls slightly with HMM-based
detectors. It is encouraging that the strictly detection-based ASR
system in Section 3.2.1 outperforms a state-of-the-art HMM ASR
system, even with these enhancements.

4. Collaborative Platform for Research
Central to the ASAT project is the goal of fostering an open plat-
form for collaborative research. While we have developed a rich
set of statistical methods and front-end processing techniques for

Table 4: Continuous phone recognition results with knowledge-
based lattice rescoring on the TIMIT database.

attributes of the speech signal, our work represents only the first
step toward building a community for detection-based ASR re-
search.

With this work, we invite the collaborative efforts of the re-
search community at large. As part of the ASAT project, we will
develop online tools and standards which researchers can use to
submit their detector designs and evaluate them in the context
of our detection-based ASR system. The expert knowledge of
researchers in ASR, as well as in linguistics, acoustics, signal
analysis, statistical pattern recognition and other areas can then
be easily incorporated into the ASAT project, providing a lasting
framework for detection-based ASR research.

5. Conclusions and future work
We have presented some of the methods of speech attribute de-
tector design developed during the first 3 years of the Automatic
Speech Attribute Transcription project. We have applied MLPs,
SVMs, and HMMs toward the detection of acoustic-phonetic at-
tributes of speech taken from the linguistics research commu-
nity. We have shown that these attributes can be combined to
provide higher-level evidences useful for the speech recognition
task. Specifically, we have performed continuous phone recog-
nition using only knowledge-based scores as inputs. We have
also integrated detectors of speech attributes into state-of-the-art
HMM-based ASR systems.

Future work for the ASAT project involves building an open
community for collaborative research. Researchers from a variety
of areas are invited to use the tools for detection-based ASR and
information exchange that we have developed and will make pub-
lic. We believe that, through the detection-based ASR paradigm,
input from experts in linguistics, signal analysis and other fields
will be helpful in closing the performance gap between ASR and
human speech recognition.
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