
Composition of Model Programs

Margus Veanes1, Colin Campbell2,�, and Wolfram Schulte1

1 Microsoft Research, Redmond, WA
{margus,schulte}@microsoft.com
2 Modeled Computation LLC, Seattle, WA
colin@modeled-computation.com

Abstract. Model programs are a useful formalism for software testing and
design analysis. They are used in industrial tools, such as SpecExplorer, as a com-
pact, expressive and precise way to specify complex behavior. One of the chal-
lenges with model programs has been the difficulty to separate contract modeling
from scenario modeling. It has not been clear how to separate those concerns in a
clean way. In this paper we introduce composition of model programs, motivate
why it is useful to be able to compose model programs, and what composition of
model programs formally means.

1 Introduction

Model programs are a useful formalism for software testing and design analysis. They
are used in industrial tools like SpecExplorer [1] as a compact, expressive and precise
way to specify complex behavior. Model programs are unwound into transition systems
that can be used in model-based testing, for runtime conformance checking of a system
under test, and for design validation [4,15,16,17].

In practice we have observed two distinct uses of model programs. The first use is as
a software contract that encodes the expected behavior of the system under test. Here,
the model program acts as an oracle that predicts system behavior in each possible
context. The unwinding of such a contract model is typically infinite, since for many
systems, such as those that allocate new objects at runtime, there are infinitely many
possible states.

The second use is to define the scenarios to be tested or analyzed. Here, the purpose
of the model program is to produce (when unwound) states and transitions of interest
for a particular test or type of analysis. For example, one might want to direct a test
to consider only certain interleavings of actions instead of all possible interleavings.
Another example would be a model that specifies a finite set of input data to be used as
system inputs.

Current practice tends to combine these two roles within a single model program,
even though it is recognized that cleanly separating these concerns would be much
better engineering practice. In addition, we have observed that as contract models grow,
it would be helpful if they could be divided into submodels of manageable size. Up to
now we have lacked the formal machinery to accomplish this.

� The work in this paper was done at Microsoft Research.

J. Derrick and J. Vain (Eds.): FORTE 2007, LNCS 4574, pp. 128–142, 2007.
c© IFIP International Federation for Information Processing 2007

Composition of Model Programs 129

At issue is the separation of design aspects into distinct but related model programs.
If model programs are related exclusively by common action labels, then the desired
system behavior is the intersection of possible traces for each aspect. In classical au-
tomata theory, the technique of achieving intersection of traces is product composition.
We extend this technique here to define parallel composition of model programs.

Not all composition is parallel; sometimes it is useful to think in terms of phases
of system operation. A typical example occurs when there is an initialization phase,
followed by an operational phase with many possible behaviors, followed by a shut-
down phase. We define the serial composition of model programs, which is analogous
to serial composition of finite automata for language concatenation.

The main contribution of the paper is the formalization of the parallel composition
of model programs in a way that builds on the classical theory of LTSs [12]. Our goal
is therefore not to define yet another notion of composition but to show how the com-
position of model programs can be defined in a way that preserves the underlying LTS
semantics.

It is important to note here that the composition of model programs is syntactic.
It is effectively a program transformation that is most interesting when it is formally
grounded in an existing semantics and has useful algebraic properties. This fills an
important semantic gap and makes compositional modeling more practical in tools like
Spec Explorer.

Achieving this goal required us to “rethink” the way actions are treated. Spec Ex-
plorer uses a mixture of a Mealy view and an LTS view that causes a complication in
the definition of conformance. In this paper we adopt a consistent LTS-based view of
action traces. This enables a direct application of the formal LTS based teory of testing
using ioco [3] when the direction (input or output) of actions is specified. A key aspect
of the composition of model programs is that actions are represented by terms that may
include variables and values, and the notion of an action vocabulary is defined using
only the function symbol part of the action. When actions are synchonized, values are
shared through unification and may transfer data from one model program to another.

Model program composition is the cornerstone of the NModel framework that pro-
vides a modeling library for model programs written in C#. NModel is in the process of
becoming an open source project and is the software support for the forthcoming text-
book [11] that discusses the use of model programs as a practical modeling technique.
While this paper provides the foundations of model program composition, the textbook
shows practical techniques and applications, with an emphasis on composition as a
method of layering system behavior into independent features.

The techniques for parallel and serial composition of model programs, as we will see
below, have characteristics that make them appealing for use in the domain of software
testing and design validation. We begin with an example. Then in sections 3 and 4 we
give a formalization.

1.1 Example

Consider three model programs M1, M2 and M3 that specify, respectively, a GUI-based
application, a dialog box used in that application and a test scenario. The state spaces of
the model programs are disjoint but their action signatures have nonempty intersections.

130 M. Veanes, C. Campbell, and W. Schulte

In the presentation that follows we unwind control state but not data state to produce
control graphs in the spirit of Extended Finite State Machines (EFSMs) [13]. Figures 1-
3 show M1, M2 and M3 using this view.

The model program of the GUI-based application is shown in Figure 1. It has three
control states, p1, p2 and p3. Control state p1 is both the initial state (indicated by
the incoming arrow) and an accepting state (indicated by the double circle). The arcs
between control states are labeled by guarded update rules called actions. These actions
contain enabling conditions (prefixed by requires) and updates in curly braces. The
actions include parameters which are substituted by ground values during unwinding.

p1

p2

p3

OpenDocument()
{SystemFont := Font(“Times”, 12); }CloseDocument()

SelectFont Finish(y)
{SystemFont := y; }

SelectFont Start(x)
requires x == SystemFont;

Fig. 1. Application model M1

The data state of M1 contains one state variable, SystemFont.
Runs of a model program begin in the initial control state and end in an accepting

control state. Every step of the run must satisfy the enabling condition of the action that
produced it.

Note that this model program uses an LTS view instead of a Mealy view for the action
that sets the system font. In an LTS view, inputs and outputs appear as separate transi-
tions, possibly breaking a single logical action into two parts. SelectFont Start takes an
input, namely the current system font given by the data state variable SystemFont. The
parameter of SelectFont Finish denotes the output. Since the SelectFont Finish action
has no enabling condition, any font value could be selected.

Model program M2 that describes a font-choosing dialog box is shown in Figure 2.
The action signature of M2 consists of SelectFont Start, SelectFont Finish, OK, Can-

cel, SetFontName and SetFontSize. Notice that this vocabulary has two actions in com-
mon with M1, the application model, as well as four actions that are not shared.

Once started, the dialog box allows the user to set the font size and the font name in
any order and as many times as desired. Depending on whether the user presses OK or
Cancel either the newly selected font or the prior font is included in the exit label.

Model program M3 gives a scenario of interest for testing. It is shown as Figure 3.
The scenario model shows two use cases for the font dialog. There are only two

possible traces for this machine.
As is typical with scenario models, M3 contains no updates to data state. We also

use SetFontSize(10) as a shorthand for SetFontSize(x) requires x == 10. We use the
underscore symbol (“ ”) to indicate an unconstrained parameter that is not used in any
precondition or update.

Composition of Model Programs 131

q1

q2

q3 q4

SelectFont Start(x)
requires ValidFont(x);
{(DialogFont, SavedFont) := (x, x); }

OK()

SelectFont Finish(y)
requires y == DialogFont;

Cancel()

SelectFont Finish(y)
requires y == SavedFont;

SetFontName(y)
{DialogFont.Name := y; }

SetFontSize(z)
{DialogFont.Size := z; }

Fig. 2. Font chooser dialog model M2

r1

r2

r3

r4

r5

r6

SelectFont Start()

SetFontSize(10)

SetFontName(“SansSerif”)

OK()Cancel()

SelectFont Finish()

Fig. 3. Scenario model M3 showing two ways to use the font dialog

Figure 4 shows the parallel composition of M1, M2 and M3. The diagram omits the
state update rules for brevity.

Under parallel composition, model programs will synchronize steps for shared ac-
tions and interleave actions not found in their common signature. The control states of
the composed model program are a subset of the cross product of the control states of
the component models.

The enabling conditions of the transitions are the conjunction of the enabling condi-
tions of the component models. The data updates are the union of the data updates of the
component programs. There can be no conflicting updates because the data signatures
must be disjoint.

An accepting state under parallel composition occurs when all of component control
states are accepting states. This accounts for the fact that the font may only be selected
exactly one time in the composed model program– the scenario model M3 does not
loop, and its initial state is not an accepting state.

132 M. Veanes, C. Campbell, and W. Schulte

〈p1, q1, r1〉

〈p2, q1, r1〉

〈p3, q2, r2〉

〈p3, q2, r3〉

〈p3, q2, r4〉

〈p3, q3, r5〉 〈p3, q4, r5〉

〈p2, q1, r6〉

〈p1, q1, r6〉

OpenDocument()CloseDocument()

SelectFont Start(Font(“Times”, 12))

SetFontSize(10)

SetFontName(“SansSerif”)

OK() Cancel()

SelectFont Finish(Font(“SansSerif”, 10)) SelectFont Finish(Font(“Times”, 12))

CloseDocument()OpenDocument()

Fig. 4. Parallel composition M4 of the application model M1, the font chooser dialog model M2,
and the scenario model M3. Update rules associated with labels are not shown.

2 Basic Definitions

Let Σ be a fixed signature of function symbols. Some function symbols in Σ, denoted
by Σdynamic, may change their interpretation and are called state variables. The remain-
ing set of symbols, denoted by Σstatic, have a fixed interpretation with respect to a given
background theory B. B is identified with its models that are called states. It is assumed
that all states share the same universe V of values. Without loss of generality one may
identify a state with a particular interpretation (value assignment) to all the state vari-
ables. Note that logic variables are distinct from state variables. Logic variables are
needed below to be able to construct nonground action terms.

Example 1. Consider the application model M1 in Figure 1. SystemFont is a nullary
state variable here. V is fixed and includes at least strings, integers, and fonts. A font
can be constructed using the static binary function Font. M1 has a single nullary state
variable SystemFont.

Terms are defined inductively over Σ and a set of logic variables disjoint from Σ. An
equation is an atomic formula t1 == t2 where t1 and t2 are terms and ‘==’ is the
formal equality symbol. Formulas are built up inductively from atomic formulas using
logical connectives and quantifiers.1 A term or a formula e may contain free logic vari-
ables FV(e); e is ground or closed if FV(e) is empty. A substitution is a finite (possibly

1 In general we may also have relation symbols, or Boolean functions, in Σ and form atomic
formulas other than equations.

Composition of Model Programs 133

empty) map from logic variables to terms. Given a substitution θ and an expression e,
eθ denotes the replacement of x in e by θ(x) for each x in FV(e). We say that θ is
grounding for e if eθ is ground. Given a closed formula ϕ and a state S, S |= ϕ is used
to denote that S satisfies ϕ, or ϕ holds or is true in S.2 A closed formula is consistent
if it is true in some state. We write tS for the interpretation of a ground term t in S.
When an n-ary function symbol f is self-interpreting or a free constructor it means that
f(t1, . . . , tn)S = g(u1, . . . , um)S if and only if f and g are the same function symbol
(and thus n = m) and tSi = uS

i for all i.

Example 2. Consider the signature of M1 again and let t = Font(x, y); t is a term with
FV(t) = {x, y}. The substitution θ = {x �→ “Times”, y �→ 10} is grounding for t
and tθ is the ground term Font(“Times”, 10) denoting the corresponding font, where
Font is a free constructor. Let S be a state where the value of SystemFont is the Times
font of size 12. Then S |= ¬SystemFont == Font(“Times”, 10) because Font is self-
interpreting and 10 �= 12.

A location is a pair 〈f, (v1, . . . , vn)〉 where f is an n-ary function symbol in Σdynamic

and (v1, . . . , vn) is a sequence of values. An update is an ordered pair denoted by
l �→ v, where l is a location and v a value. A set U of updates is consistent if there are
no two distinct updates l �→ v1 and l �→ v2 in U . Given a state S and a consistent set
U of updates, S � U is the state where, for all f ∈ Σdynamic of arity n ≥ 0 and values
v1, . . . , vn,

fS�U (v1, . . . , vn) =
{

w, if 〈f, (v1, . . . , vn)〉 �→ w ∈ U ;
fS(v1, . . . , vn), otherwise.

In other words, S � U is the state after applying the updates U to S.
For the purposes of this paper it is enough to assume that all state variables are

nullary, in which case the notions of locations and state variables can be unified.
A program P over Σ when applied to (or executed in) a state S, produces a set of

updates. Often P also depends on formal parameters FV(P) = x1, . . . , xn for some
n ≥ 0. Thus, P denotes a function [[P]] : State × Vn → UpdateSet. It is convenient
to extend the notion of expressions to include programs so that we can talk about free
variables in programs and apply substitutions to them. Given a grounding substitution
θ for P and a data state S, we write [[Pθ]](S) or [[P]](S, θ) for [[P]](S, x1θ

S , . . . , xnθS).

Example 3. Returning to M1 in Figure 1, we have that the transition from p3 to p2 is
associated with the assignment (i.e. a basic program) SystemFont := y, say P , with a
single formal parameter y. Given a substitution θ = {y �→ t} where t is ground, and
any state S, [[Pθ]](S) = {SystemFont �→ tS}.

We also use the notion of a labeled transition system or LTS (S,S0,L, T) that has a
nonempty set S of states, a nonempty subset S0 ⊆ S of initial states, a nonempty
set L of labels and a transition relation T ⊆ S × L × S. Here states and labels are
abstract elements but in our use of LTSs the notion of LTS states and first-order states
as introduced above will coincide. A run is a transition sequence (Si, Li, Si+1)i<k , of

2 We have in mind standard Tarski semantics for first order logic.

134 M. Veanes, C. Campbell, and W. Schulte

some (possibly infinite) length k, and if k > 0 then S0 ∈ S0; if k is finite and nonzero
then Sk is called the end-state of the run. An S-run for a given initial state S is a
nonempty run as above where S0 = S. An S-trace of an S-run as above is the label
sequence (Li)i<k of length k. Intuitively, a trace is the sequence of labels of a run; the
states are not part of a trace. A finite run or trace has finite length.

3 Model Programs

A guarded program (over Σ) is a pair [ϕ]/P where ϕ is a formula and P is a program.
Let G be a guarded program [ϕ]/P . Intuitively, G denotes the restriction of [[P]] to those
states and input parameters where ϕ holds. Let FV(G) def= FV(ϕ) ∪ FV(P).

Definition 1. Σaction denotes a fixed subset of the free constructors of Σstatic called ac-
tion symbols. An action term is a term f(t1, . . . , tn) where f is an n-ary action symbol
for some n ≥ 0, and each ti is either a distinct logic variable or a ground term over
Σstatic − Σaction. Given Γ ⊆ Σaction we write A(Γ) for the set of all action terms with
action symbols in Γ . By an action we mean the interpretation of a ground action term.

Notice that the interpretation of a ground action term is the same in all data states.
Notice also that there is essentially no difference between a nullary action symbol and
the corresponding action (term).

Example 4. Consider M1 in Figure 1. There are two nullary action symbols Close-
Document and OpenDocument, and two unary action symbols SelectFont Start and
SelectFont Finish. Font is a free constructor, it is not an action symbol. The terms
SelectFont Start(Font(“Times”, 10)) and SelectFont Start(x) are action terms; the
terms SelectFont Start(SystemFont) and SelectFont Start(Font(“Times”, y)) on the
other hand are not action terms, because in the former SystemFont is not in Σstatic and in
the latter the action parameter Font(“Times”, y) is not a logic variable and not a ground
term.

Definition 2. A model program with explicit control graph M has the following com-
ponents.

1. A signature Σ.
2. An action signature Γ ⊆ Σaction.
3. A finite nonempty set Q of control points.
4. An initial control point qinit ∈ Q.
5. A set of accepting control points Qacc ⊆ Q.
6. A finite control graph δ ⊆ Q × A(Γ) × Q. The elements of δ are called control

transitions.
7. A family R = {rρ}ρ∈δ of guarded programs, where, for all ρ = (q, a, p) ∈ δ,

FV(rρ) ⊆ FV(a); rρ is called the guarded program for ρ.
8. A closed formula ϕentry over Σ called an entry condition.

The guard of the guarded program for a control transition ρ is denoted by ϕρ and the
program is denoted by Pρ. We denote M by the tuple (Σ, Γ, Q, qinit, Qacc, δ, R, ϕentry).

Composition of Model Programs 135

By a model program in this paper we mean a model program with explicit control graph.
A model program can be thought of as a control-flow graph whose edges are anno-

tated by action terms and program segments similar to an EFSM [13].3

We use the special program skip that produces no updates.

Example 5. The model program M1 in Figure 1 has the following components. The
signature is described in Example 1. The action signature is described in Example 4.
The control points are p1, p2 and p3, where p1 is both the initial control point and the
only accepting control point. There are four control transitions in M1. The guard of a
control transition is indicated with the requires keyword or omitted if true. The program
of a control transition is written within braces or omitted if skip. This is the Spec# [16]
syntax of model programs.

A state of M as above is a pair 〈S, q〉 where S is a Σ-state and q ∈ Q. S is called the
data component of S or a data state, whereas q is called the control component of S or
a control state.4 An initial state is a state whose control component is an initial control
point and whose data component satisfies the entry condition. An accepting state is a
state whose control component is an accepting control point.

Definition 3. The labeled transition system underlying M LTS(M) has the actions of
M as its labels. The (initial) states of LTS(M) are the (initial) states for M . There is a
transition (〈S, q〉, b, 〈S′, q′〉) in LTS(M), if there is a control transition ρ = (q, a, q′) in
M and a substitution θ such that:

– b = aθS ,
– S |= ϕρθ,
– [[Pρθ]](S) is consistent and S′ = S � [[Pρθ]](S).

A transition of LTS(M) is called a step of M . Given a state S and an action a, we write
δ(S, a) for the set of all states X such that (S, a, X) is a transition of LTS(M). Given a
state S and a finite sequence (ai)i<k of actions, we let

δ̂(S, (ai)i<k) =
⋃

{δ(X, ak−1) : X ∈ δ̂(S, (ai)i<k−1)},

δ̂(S, ()) = {S}.

Thus, δ̂(S, α) is the set of all end-states of all S-runs whose trace is α. An action
sequence α is an accepting S-trace if δ̂(S, α) contains an accepting state.

Definition 4. Let M be a model program with initial control state q0. An S-run of M
is an 〈S, q0〉-run of LTS(M). An S-trace of M is an 〈S, q0〉-trace of LTS(M). The set
of all S-traces of M is denoted by Traces(S, M). An S-trace α of M is accepting if it
is finite and δ̂(〈S, q0〉, α) contains an accepting state.

3 In general, the control graph of a model program may itself be a control program and the set
of generated control states may be infinite. We do not use this generalization in this paper.

4 Formally, let pc be a fixed nullary function symbol not in Σ and let Σ′ = Σ ∪ {pc}. Then
〈S, q〉 stands for a Σ′-state where pc〈S,q〉 = q and f 〈S,q〉 = fS for all f ∈ Σ.

136 M. Veanes, C. Campbell, and W. Schulte

Example 6. The example shows how traces can depend on the data component of states.
A possible accepting trace of M1 from any initial state is:

OpenDocument,

SelectFont Start(Font(“Times”, 12)),
SelectFont Finish(Font(“SansSerif”, 10)),
SelectFont Start(Font(“SansSerif”, 10)),
SelectFont Finish(Font(“Times”, 10)),
CloseDocument

The argument to SelectFont Start is the current system font recorded in the data state
of M1. When font selection finishes the new font is recorded in the state, i.e., in the
action SelectFont Start(font), the font argument acts like an input argument and in
SelectFont Finish(font) the font argument acts like an output argument of a font se-
lection procedure.

4 Composition of Model Programs

The main operator underlying parallel composition of model programs is the product
of two model programs. We will also use the following action signature extension op-
eration over model programs.

Definition 5. Let M be a model program as above with action signature Γ . Let Γ ′ be
a set of action symbols. We write M+Γ ′

for the model program whose action signa-
ture is extended with Γ ′ and M+Γ ′

has the following additional extensions for each
action symbol f ∈ Γ ′ − Γ , let af denote a fixed action term f(_, . . . ,_) where each
occurrence of _ stands for a fresh logic variable,

– for all control states q, δ is extended with the control transition, (q, af , q),
– for each new control transition (q, af , q), r(q,af ,q) = [true]/skip.

The intuition is that for each new action symbol any corresponding action is enabled
in every state and produces a self-loop in that state. This is also easily seen in the
LTS semantics of M+Γ ′

. This construct is used mainly to interleave actions that are not
shared between two model programs being composed in a product. Notice that an action
does not belong to a model program (or the underlying LTS) if its function symbol is
not in the action signature of the model program.

Example 7. Consider M1 in Figure 1 and let Γ2 be the action signature of the font
chooser dialog model M2 in Figure 2. The only action symbols that M1 and M2 have in
common are SelectFont Start and SelectFont Finish. Thus M+Γ2

1 has for example the
new control transitions (pi, SetFontSize(_), pi) for 1 ≤ i ≤ 3 that are enabled in all
states.

Composition of Model Programs 137

4.1 Product Composition

We first define the product of two model programs that share the same signature and
the same action signature. We then define parallel composition of model programs by
using signature extension and product composition.

Due to the restricted form of action terms, two action terms a1 and a2 unify if and
only if they have the same action symbol of some arity n ≥ 0, and for all i, 1 ≤ i ≤ n,
the i’th argument of a1 and the i’th argument of a2 either denote the same value or at
least one of them is a logic variable. If a1 and a2 unify there is trivially a most general
unifier θ = mgu(a1, a2), i.e., any action that is both an instance of a1 and an instance
of a2 is an instance of a1θ (or a2θ).

We assume that logic variables used in two model programs are distinct so that we do
not need to worry about variable renaming. Given two guarded programs r1 = [ϕ1]/P1

and r2 = [ϕ2]/P2 we write r1 ‖ r2 for the guarded program [ϕ1 ∧ ϕ2]/P1 ‖ P2, where
the parallel composition P1 ‖ P2 produces the union of the updates of P1 and P2, i.e.
[[P1 ‖ P2]](S, θ) = [[P1]](S, θ) ∪ [[P2]](S, θ).

Definition 6. Let Mi = (Σ, Γ, Qi, q
init
i , Qacc

i , δi, {ri
ρ}ρ∈δi , ϕ

entry
i), for i = 1, 2, be two

model programs. The product of M1 and M2, denoted by M1 × M2, is the model
program

(Σ, Γ, Q1 × Q2, 〈qinit
1 , qinit

2 〉, Qacc
1 × Qacc

2 , δ, {rρ}ρ∈δ), ϕ
entry
1 ∧ ϕentry

2),

where δ and {rρ}ρ∈δ are constructed as follows. For all ρ1 = (q1, a1, p1) ∈ δ1 and
ρ2 = (q2, a2, p2) ∈ δ2 such that θ = mgu(a1, a2) exists,

– ρ = (〈q1, q2〉, a1θ, 〈p1, p2〉) ∈ δ, and
– rρ = rρ1θ ‖ rρ2θ.

If M1 and M2 are model programs with different action signatures Γ1 and Γ2 then
M1 × M2

def= M+Γ2
1 × M+Γ1

2 .

One can show that the product operator is commutative and associative as far as trace
semantics of the final model program is concerned. This is made explicit in the follow-
ing statement.

Proposition 1. Let M1, M2 and M3 be model programs with the same signature and
action signature, and let S be a data state. Then Traces(S, M1×M2) = Traces(S, M2×
M1) and Traces(S, M1 × (M2 × M3)) = Traces(S, (M1 × M2) × M3).

Example 8. The model program M4 in Figure 4 shows the product M1 × M2 × M3.
Let Γi denote the action signature of Mi. In this case Γ2 = Γ3 but Γ1 has the addi-
tional actions for opening and closing a document, and does not include the action for
changing the font name/size and the OK and Cancel actions. If we first construct the
product M2 × M3, we get a specialization M23 of the font chooser dialog model M2

where we first set the font size to be 10 and then set the font name to be SansSerif. The
product M1 × M23, i.e. M4, corresponds intuitively to a hierarchical refinement of M1

with a particular use of the font dialog model as described by M23. The actions that are

138 M. Veanes, C. Campbell, and W. Schulte

specific to the font selection model are considered as self-loops in M1, and conversely,
closing and opening of a document are considered as self-loops in M23. The final prod-
uct M4 is therefore M+Γ2

1 × M+Γ1
23 . As an example of a guarded update program of

M4 consider the control transition

ρ = (〈p2, q1, r1〉, SelectFont Start(Font(“Times”, 12)), 〈p3, q2, r2〉)

If we follow the definitions exactly and do not simplify the formulas and the programs
then the guard associated with ρ is

requires Font(“Times”, 12) == SystemFont
∧ true
∧ ValidFont(Font(“Times”, 12)),

and the program associated with ρ is

skip ‖ ((DialogFont, SavedFont) := (Font(“Times”, 12), Font(“Times”, 12)) ‖ skip) .

4.2 Parallel Composition

When the product composition is used in an unrestricted manner the end result is a new
model program, which from the point of view of trace semantics might be unrelated to
the original model programs. Essentially, this problem occurs if two model programs
can read each others state variables.

Let SV(e) denote the set of all state variables that occur in e, where e is either
an expression, a program or a model program. Given a Σ1-state S and a signature
Σ2 ⊆ Σ1, we write S�Σ2 for the reduct of S to Σ2. An ASM program is “honest” about
its state dependencies in the sense that state variables that are not explicitly mentioned
in the program do not influence its behavior and cannot be updated (e.g. there is no
implicit stack and the programs cannot change the control state). Formally, we use the
following fact:

Lemma 1. Let S be a data state over Σ, let SV ⊆ Σdynamic, and let P be a program
such that SV(P) ⊆ SV. Let Σ′ = Σstatic ∪ SV. Then [[P]](S) = [[P]](S�Σ′).

Definition 7. Let M1 and M2 be model programs with action signatures Γ1 and Γ2,
respectively. M1 and M2 are composable in parallel if they have the same signature but
disjoint state variables, in which case the parallel composition of M1 and M2, denoted
by M1 ‖ M2, is defined as the product M1 × M2.

The following theorem shows that parallel composition of model programs corresponds
to parallel composition of the underlying LTSs. Such composition has the desired
language-theoretic property that the traces produced by the composite model program
are the intersection of the traces produced independently by the composed model
programs.

Theorem 1. Let M1 and M2 be model programs that are composable in parallel and
have the same action signature. Then

Traces(S, M1 ‖ M2) = Traces(S, M1) ∩ Traces(S, M2).

Composition of Model Programs 139

Proof. Let Mi = (Σ, Γ, Qi, q
init
i , Qacc

i , δi, {ri
ρ}ρ∈δi , ϕ

entry
i), for i = 1, 2, be two model

programs such that SV(M1) ∩ SV(M2) = ∅. Let S be a data state. Let M = M1 ×M2.
We only show that Traces(S, M1 × M2) ⊆ Traces(S, M1)∩ Traces(S, M2). The other
direction is similar by using the same definitions in the opposite direction. Consider a
trace (ai)i<k ∈ Traces(S, M1 × M2). There is a corresponding S-run

(〈Si, 〈qi, pi〉〉, ai, 〈Si+1, 〈qi+1, pi+1〉〉)i<k

where 〈q0, p0〉 is the initial control state of the product model program and S = S0.
Fix an arbitrary step i in the run. The following holds by Definition 3: there is a control
transition ρi = (〈qi, pi〉, ti, 〈qi+1, pi+1〉) in M and a substitution θ such that

– ai = tiθ
Si ,

– Si |= ϕρiθ, and
– [[Pρiθ]](Si) is consistent and Si+1 = Si � [[Pρiθ]](Si).

By Defininition 6, there are control transitions ρ1
i = (qi, t

1
i , qi+1) in M1 and ρ2

i =
(pi, t

2
i , pi+1) in M2 such that

– σ = mgu(t1i , t
2
i) exists and ti = t1i σ,

– ϕρi = ϕρ1
i
σ ∧ ϕρ2

i
σ, and

– Pρi = Pρ1
i
σ ‖ Pρ2

i
σ.

Let Σ1 = Σ−SV(M2) and Σ2 = Σ−SV(M1). Since SV(M1) and SV(M2) are disjoint
and the guards in Mj may only contain state variables from SV(Mj), it follows that
Si�Σ1 |= ϕρ1

i
σθ and Si�Σ2 |= ϕρ2

i
σθ. Also, since [[Pρiθ]](Si) = U1∪U2 is consistent,

so are U1 and U2, where U1 = [[Pρ1
i
σθ]](Si) and U2 = [[Pρ2

i
σθ]](Si). By using Lemma 1

and the disjointness of SV(M1) and SV(M2) we know that U1 = [[Pρ1
i
σθ]](Si�Σ1) and

U2 = [[Pρ2
i
σθ]](Si�Σ2). By using Si+1 = Si � U1 ∪ U2, we get that Si+1�Σ1 =

Si�Σ1 � U1 and Si+1�Σ2 = Si�Σ2 � U2.
Since i was chosen freely, we can construct the run

(〈Si�Σ1, qi〉, ai, 〈Si+1�Σ1, qi+1〉)i<k

for M1 and then expand all states in the run to Σ in such a way that the first state is S.
We know also that S |= ϕentry

1 because S |= ϕentry
1 ∧ ϕentry

2 . It follows that (ai)i<k ∈
Traces(S, M1). Symmetrical argument applies to M2. ��
Example 9. Consider M1, M2, M3 from above. The state variables of each Mi are
clearly disjoint; M1 has the single state variable SystemFont, M2 has the state vari-
ables DialogFont and SavedFont, and M3 has no state variables. Thus M4 is a parallel
composition of M+Γ2

1 , M+Γ1
2 and M+Γ1

3 , where Γ1 and Γ2 are as in Example 8.

4.3 Serial Composition

In scenario control it is often useful to compose two model programs serially (i.e. in a
sequence). Intuitively, a serial composition of two model programs M1 and M2 means
that the control flow may transition from an accepting control point of M1 to the ini-
tial control point of M2. Serial composition is therefore not well-defined for model
programs that share control points. Note that, unlike the parallel case, state variable
signatures need not be disjoint in serial composition.

140 M. Veanes, C. Campbell, and W. Schulte

Definition 8. Two model programs M1 and M2 are serially composable if they have
the same action signature and disjoint sets of control points.

The formal definition of serial composition uses a new nullary action symbol τ for the
transition from M1 to M2. The τ transition corresponds to an internal control transition
from any accepting control point of M1 to the initial control point of M2 whose guard
is the entry condition of M2.

Definition 9. Let Mi = (Σ, Γ, Qi, q
init
i , Qacc

i , δi, {ri
ρ}ρ∈δi , ϕ

entry
i), for i = 1, 2, be two

serially composable model programs and let τ be a fresh action symbol not in Γ . M1

followed by M2 using τ , denoted by M1;τ M2, is the model program

(Σ, {τ} ∪ Γ, Q1 ∪ Q2, q
init
1 , Qacc

2 , δ1 ∪ δ2 ∪ {(q, τ, qinit
2) : q ∈ Qacc

1 }︸ ︷︷ ︸
δ

, {rρ}ρ∈δ, ϕ
entry
1),

where rρ = r1
ρ, if ρ ∈ δ1; rρ = r2

ρ, if ρ ∈ δ2; rρ = [ϕentry
2]/skip, otherwise.

It is easy to see that an S-trace of M1;τ M2 has the form ατβ where α is an accepting
S-trace of M1 and β is an S′-trace of M2 for some S′ ∈ δ̂M1(S, α). Elimination of τ
can be done at the expense of introducing nondeterminism. For parallel composition of
two model programs, τ -actions in each one are always considered as distinct actions and
are interleaved. One could also introduce τ as a special action that is always interleaved
in a parallel composition as is done for example in the definition of LTSs [14].

5 Conclusions and Related Work

There is a tradeoff between how much of the global state should be encoded as control
state and how much should be encoded as data state. In pure abstract state machines,
states are completely encoded as data states, and there is no separate notion of control
state [2,9]. Model programs defined in [16] adopt this view. While this view is more
concise and sufficient for many purposes it forces one to encode the control state as data
state, and this may not be natural from the point of view of control flow as understood
in traditional programming. Not having the distinction between control and data state
makes also the definition of certain forms of composition, such as serial composition,
harder to formalize because data states are shared whereas control states are disjoint in
serial composition.

The approach that we have taken is similar to extended finite state machines (EFSMs)
where a finite part of the state is separated as control state. In general, the control part
does not need to be finite in model programs, but may encorporate the local stack of a
program. Model programs are similar to parameterized EFSMs [13], except that EFSMs
are a generalization of Mealy machines, whereas model programs do not distinguish a
priori between inputs and outputs and incorporate the notion of accepting states like
classical automata. The distinction between inputs and outputs becomes relevant for
defining conformance, but is not relevant for the composition operators discussed in
this paper that are used for scenario control and for composing aspects of a system
model.

Composition of Model Programs 141

An important change from our prior approach of using model programs as a mixed
Mealy and LTS view, taken in SpecExplorer, is the introduction of intermediate control
states between the input part and the output part of an action. In other words, the un-
derlying semantics is given by an LTS. This separation is also used with FSM based
approaches where it is sometimes more convenient to formulate composition using
IOTSs [6]. One of the key reasons for us to separate the inputs from the outputs as sep-
arate actions, rather than using a Mealy view, was to be able to have a simple definition
of conformance relation that allows output nondeterminism when dealing with reactive
systems. This is important for using ioco [3] or refinement of interface automata [5] for
formalizing the confomance relation.

Further differences from EFSMs are that accepting states in model programs are used
for serial composition and for defining validity of traces, and labels are not abstract ele-
ments but structured terms that allow sharing of arbitrary data values through unification.
The trace semantics of model programs is based on the unwinding of model programs
as labeled transition systems [14] where states are considered to be abstract points.

The separation of control state from data state, while allowing communication with
terms that can incorporate data values, is important in the model-based testing appli-
cations of model programs, e.g. for scenario control and visualization of model pro-
grams. The definitions of parallel and serial composition of model programs are related
to similar operations on classical automata (see e.g. [10]). There is a large body of
work using FSMs and variations of LTSs that use the classical parallel composition of
automata where shared actions are synchronized and other actions are interleaved asyn-
chronously. It is important therefore that the semantics of composed model programs is
based on the same notion of composition.

Model programs are also related to symbolic transition systems that have an ex-
plicit notion of data and data-dependent control flow [7]. Model program composition
as defined in this paper is independent of the mechanism of exploration used. Various
approaches, including explicit state exploration as well as exploration with symbolic
labels and states, may be applied. For example, action machines [8] rely on symbolic
techniques. The main difference compared to composition of action machines is that
composition of model programs is syntactic, whereas composition of action machines
is defined in the style of natural semantics using inference rules and symbolic com-
putation that incorporates the notion of computable approximations of subsumption
checking between symbolic states. The computable approximations reflect the power
of the underlying decision procedures that are being used.

More about model-based testing applications and further motivation for the compo-
sition of model programs can be found in [4,8,17,16]. The most recent work related
to model programs where composition is discussed from a practical perspective is the
forthcoming textbook [11].

References

1. Spec Explorer. released (January 2005) URL:
http://research.microsoft.com/specexplorer

2. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System Design and
Analysis. Springer (2003)

http://research.microsoft.com/specexplorer

142 M. Veanes, C. Campbell, and W. Schulte

3. Brinksma, E., Tretmans, J.: Testing Transition Systems: An Annotated Bibliography. In:
Summer School MOVEP’2k – Modelling and Verification of Parallel Processes. LNCS,
vol. 2067, pp. 187–193. Springer, Heidelberg (2001)

4. Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N., Veanes, M.: Test-
ing concurrent object-oriented systems with Spec Explorer (extended abstract). In: Fitzger-
ald, J.A., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 542–547. Springer,
Heidelberg (2005)

5. de Alfaro, L.: Game models for open systems. In: Dershowitz, N. (ed.) Verification: Theory
and Practice. LNCS, vol. 2772, pp. 269–289. Springer, Heidelberg (2004)

6. El-Fakih, K., Petrenko, A., Yevtushenko, N.: Fsm test translation through context. In: Uyar,
M.Ü., Duale, A.Y., Fecko, M.A. (eds.) TestCom 2006. LNCS, vol. 3964, Springer, Heidel-
berg (2006)

7. Frantzen, L., Tretmans, J., Willemse, T.: A symbolic framework for model-based testing. In:
Havelund, K., Núñez, M., Roşu, G., Wolff, B. (eds.) Formal Approaches to Software Testing
and Runtime Verification. LNCS, vol. 4262, pp. 40–54. Springer, Heidelberg (2006)

8. Grieskamp, W., Kicillof, N., Tillmann, N.: Action machines: a framework for encoding and
composing partial behaviors. International Journal on Software and Knowledge Engineer-
ing 16(5), 705–726 (2006)

9. Gurevich, Y.: Evolving Algebras 1993: Lipari Guide. In: Börger, E. (ed.) Specification and
Validation Methods, pp. 9–36. Oxford University Press, Oxford (1995)

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading (1979)

11. Jacky, J., Veanes, M., Campbell, C., Schulte, W.: Model-based Software Testing and Analysis
with C#. Cambridge University Press (Submitted to publisher) (2007)

12. Keller, R.: Formal verification of parallel programs. Communications of the ACM, pp. 371–
384 (July 1976)

13. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines – a survey.
Proceedings of the IEEE 84(8), 1090–1123 (1996)

14. Lynch, N., Tuttle, M.: Hierarchical correctness proofs for distributed algorithms. In: Pro-
ceedings of the sixth annual ACM Symposium on Principles of distributed computing, pp.
137–151. ACM Press, New York (1987)

15. Tretmans, J., Brinksma, E.: TorX: Automated model based testing. In: 1st European Confer-
ence on Model Driven Software Engineering, pp. 31–43, Nuremberg, Germany (December
2003)

16. Veanes, M., Campbell, C., Grieskamp, W., Nachmanson, L., Schulte, W., Tillmann, N.:
Model-based testing of object-oriented reactive systems with Spec Explorer, Tech. Rep.
MSR-TR-2005-59, Microsoft Research. (To appear as a book chapter in Formal Methods
and Testing) (2005)

17. Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model programs.
In: ESEC/FSE-13: Proceedings of the 10th European software engineering conference held
jointly with 13th ACM SIGSOFT international symposium on Foundations of software en-
gineering, pp. 273–282. ACM, New York (2005)

	Introduction
	Example

	Basic Definitions
	Model Programs
	Composition of Model Programs
	Product Composition
	Parallel Composition
	Serial Composition

	Conclusions and Related Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

