Foundations of Statistical Natural Language Processing: A Case Study of Text Input System Jianfeng Gao, Hisami Suzuki Microsoft Research

Weihai, 8/23/2007

Who should be here?

- Interested in statistical Natural Language Processing
 - What is NLP? NLP = AI? What is the role of *Pr* in NLP?
- Want to develop a simple and useful NLP system by yourself
 - For fun, course project, mind exercise?
- Look for topics for your master/PhD thesis
 - A difficult topic: very hard to beat simple baseline
 - An easy topic: others cannot beat it either
- Start NLP/IME business and compete with MS

Outline

- Probability: a brief refresher
- Input Method Editor (IME): problems and solutions
- Modeling: capture language structure
- Training: learn model parameters from data
- Search: predict using model (won't discuss in detail)
- Do It Yourself (DIY) tips

Probability: a brief refresher (1/2)

- Probability space: $x \in X$
 - $P(x) \in [0,1]$
 - $\sum_{x \in X} P(x) = 1$
 - Cannot say P(x) > P(y) if $y \notin X$
- Joint probability: *P*(*x*, *y*)
 - Probability that *x* and *y* are both true
- Conditional probability: P(y|x)
 - Probability that y is true when we already know x is true
- Independence: P(x, y) = P(x)P(y)
 - *x* and *y* are independent

Probability: a brief refresher (2/2)

- *H*: assumptions on which the probabilities are based
- Product rule –from the def of conditional probability
 - P(x, y|H) = P(x|y, H)P(y|H) = P(y|x, H)P(x|H)
- Sum rule a rewrite of the marginal probability def
 - $P(x|H) = \sum_{y} P(x, y|H) = \sum_{y} P(x|y, H)P(y|H)$
- Bayes rule from the product rule
 - P(y|x, H) = P(x|y, H)P(y|H) / P(x|H)

Input method editor (IME)

• Software to convert keystrokes (Pinyin) to text output

mafangnitryyixoazegefanfa nit yu xia zhe g fang fa 法 ma fang 麻 方 麻 yi xia zeng 增 nitu fang ma fan 泥土 妈 yi xia zhe ge fang fa 以下 这个 方法 ti ma fan 替 麻 烦

A Bayesian approach to IME

• Find the best output *W* of a given input *A* via

 $W = \operatorname{argmax}_{w} P(W|A)$ $W = \operatorname{argmax}_{w} \frac{P(A|W)P(W)}{P(A)}$ $W = \operatorname{argmax}_{w} P(A|W)P(W)$

P(A|W): typing (translation) model
Dealing with typing error, e.g., zh → z
P(W): language model (LM), e.g., trigram model

Three fundamental research tasks

- Modeling: capture language structure/dependencies via the probabilistic model
 - $Pr(W|A) = P_{\theta}(W|A) = P(W|A, \theta)$
- Training: estimation of free parameters using training data
 - $\theta = \operatorname{argmax}_{\theta} P(W|A, \theta)$
- Search: finding "best" conversion given the model
 - $W = \operatorname{argmax}_{W} P(W|A, \theta)$
- Additional important tasks
 - Data/dict acquisition and processing (word segmentation)
 - Evaluation methodology

Development of IME: data

- Dictionary mapping from Pinyin to Chinese words
- Training data, (W) and (W, A)
 - Chinese text LM training
 - Obtained from Chinese web pages
 - Pinyin and Chinese text pairs discriminative training
 - Check our website
- Data processing
 - Word segmentation
 - Training/dev/test split (cross-validation)
 - Gold standard

Development of IME: evaluation

• Perplexity – quality of LM

- Geometric average inverse probability
- Branching factor of a doc: predicting power of LM
- Lower perplexities are better
- Character perplexity for Chinese $pplx = 2^{H}$ where $H = \frac{1}{|W|} \log P(W)$
- Character error rate (CER) quality of IME
 - Test set (*A*, *W**)
 - CER = edit distance between converted W and W*
 - Correlation with perplexity

Development of IME: build it bit by bit

Baseline

- Straw-man versus state-of-the-art
- IME: Trigram LM, MLE, Viterbi search
- Improve the baseline via
 - Better training data: dictionary (OOV), segmentation, balanced corpus etc.
 - Better modeling: capture richer linguistic information?
 - Better training: lead to better CER/perplexity?
 - Better search (decoding): less search error and faster

Modeling

- Goal: how to incorporate *language structure* into a probabilistic model
- Task: next word prediction
 - Fill in the blank: "The dog of our neighbor _____"
- Starting point: word *n*-gram model
 - Very simple, yet surprisingly effective
 - Words are generated from left-to-right
 - Assumes no other structure than words themselves

Word N-gram model

- Word based model
 - Using chain rule on its *history* (=preceding words)

P(the dog of our neighbor barks) = P(the | <s>) ×P(dog | <s>, the) × P(of | <s>, the, dog)

XP(barks | <s>, the, dog, of, our, neighbor)
XP(</s> | <s>, the, dog, or, our, neighbor, barks)

$$\begin{array}{l} P(w_{1}, w_{2} \dots w_{n}) = P(w_{1} \mid ~~) \\ \times P(w_{2} \mid ~~w_{1}) \\ \times P(w_{3} \mid ~~w_{1}w_{2}) \\ \dots \\ \times P(w_{n} \mid ~~w_{1}w_{2} \dots w_{n-1}) \\ \times P(~~ \mid ~~w_{1}w_{2} \dots w_{n}) \end{array}~~~~~~~~$$

Gao and Suzuki, Weihan-2007

Word n-gram model

- How do we get probability estimates?
 - Get text and count! $P(the | <s>) \approx C(<s> the)/C(<s>)$
- Problem of using the whole history
 - Rare events: unreliable probability estimates
 - Assuming a vocabulary of 20,000 words,

model	# parameters
unigram $P(w_1)$	20,000
bigram $P(w_2 w_1)$	400M
trigram $P(w_3 w_1 w_2)$	8 x 10 ¹²
fourgram $P(w_4 w_1 w_2 w_3)$	1.6 x 10 ¹⁷

From Manning and Schütze 1999: 194

Word N-gram model

- Markov independence assumption
 - A word depends only on *N-1* preceding words
 - $N=3 \rightarrow$ word trigram model
- Reduce the number of *parameters* in the model
 - By forming *equivalence classes*
- Word trigram model

 $P(w_i \mid \langle s \rangle w_i, w_2 \dots w_{i-2} w_{i-1}) = P(w_i \mid w_{i-2} w_{i-1})$

$$P(w_{1}, w_{2} \dots w_{n}) = P(w_{1} | ~~)~~$$

$$\times P(w_{2} | ~~w_{1})~~$$

$$\times P(w_{3} | w_{1}w_{2})$$
...
$$\times P(w_{n} | w_{n-2}w_{n-1})$$

$$\times P(| w_{n-1}w_{n})$$

Gao and Suzuki, Weihan-2007

But language has structure!

- Other ways to form equivalence classes
 - Morphological
 - Stemming: bark~barked~barks~barking

Gao and Suzuki, Weihan-2007

Microsoft^{*}

Research

But language has structure!

- Other ways to form equivalence classes
 - Semantic
 - Cluster semantically related words: *dog~husky~poodle*
- Challenge
 - How to incorporate linguistic structure in a probabilistic model effectively

Modeling: basic idea

- Introduce language structure *s* as hidden variable
 - Assignment of *s* must be predicted given *h*

$$P(w \mid h) = \sum_{s} P(w, s \mid h) = \sum_{s} P(s \mid h) P(w \mid s, h)$$

$$=\sum_{s} P(s \mid h) P(w \mid \Phi(s,h))$$

- Define mapping function Φ
 - Φ maps word history into equivalence classes

$$P(w_i | w_1...w_{i-1}) = P(w | h) = P(w | \Phi(h))$$

Word trigram if $\Phi(h) = (w_{i-2}w_{i-1})$

Finding all possible assignment of s

- Detect s via parsing: an independent NLP problem
 - POS tagging, dependency graph, word clusters...
 - Traditional NLP tasks: tools available
 - Finding all possible assignment of *s* is often not realistic
- N-best and Viterbi approximation $P(w|h) = \sum_{s} P(s|h)P(w|\Phi(s,h))$ $\approx \sum_{s} \frac{P(s|h)}{\sum_{s} P(s|h)}P(w|\Phi(s,h)) \leftarrow \text{N-best approximation}$ $\approx \max_{s} P(w|\Phi(s,h)), \text{ where } s = \arg\max_{s} P(s|h) \leftarrow \text{Viterbi}_{approximation}$

Defining Φ

- *s* is a chunk sequence
 - $\Phi(s) \rightarrow$ two previous headword
 - Headword trigram model (Gao et al., 2002b)
- *s* is a dependency graph
 - $\Phi(s) \rightarrow$ linked word to its left
 - Dependency LM (Gao and Suzuki, 2003)
- *s* is a word cluster sequence
 - $\Phi(s) \rightarrow$ two previous word clusters
 - Cluster LM (Gao et al., 2002c)

Headword trigram model (HTM)

- *s* is a chunk sequence
- Chunk (Abney, 1991)
 - Base phrase, typically contains one content word (*headword*) plus any number of function words.
 - Flat, non-hierarchical and span the word sequence
 - Closely related to the notion of *bunsetsu* in Japanese
 - Define Φ(s) as two previous headwords
- Example
 - [The <u>dog</u>] [of our <u>neighbor</u>] [<u>barks</u>] [every <u>night</u>]

Headword trigram model (HTM)

- *s* is a chunk sequence
- Chunk (Abney, 1991)
 - Base phrase, typically contains one content word (*headword*) plus any number of function words.
 - Flat, non-hierarchical and span the word sequence
 - Closely related to the notion of *bunsetsu* in Japanese
 - Define Φ(s) as two previous headwords
- Example
 - [The <u>dog</u>] [of our <u>neighbor</u>] [<u>barks</u>] [every <u>night</u>] h_{i-2} h_{i-1} w_i

Headword trigram model (HTM)

- Using headword *H* and function word *F*
 - 2-step model: generate class first, then generate words given the class (chain rule)
 - $P(w_i | \Phi(w_1...w_{i-1})) = P(H_i | \Phi(w_1...w_{i-1})) \times P(w_i | \Phi(w_1...w_{i-1})H_i) + P(F_i | \Phi(w_1...w_{i-1})) \times P(w_i | \Phi(w_1...w_{i-1})F_i)$
- Incorporating assumptions using headword
 - Dependency between headwords (*dog~barks*)
 - Headword dependency is permutable (*barks~dogs*)

$$P(w_{i} \mid \Phi(w_{1}...w_{i-1})H_{i}) = \lambda_{1} (\lambda_{2}P(w_{i} \mid h_{i-2}h_{i-1}H_{i})) + (1-\lambda_{2})P(w_{i} \mid h_{i-1}h_{i-2}H_{i})) + (1-\lambda_{2})P(w_{i} \mid w_{i-1}h_{i-2}H_{i})) + (1-\lambda_{2})P(w_{i} \mid w_{i-2}w_{i-1}H_{i})$$
Gao and Suzuki, Weihan-2007

Detecting Headwords

- Assumed a one-to-one mapping between POS and word category (H/F)
- Generated a mapping table from POS-tagged text
 - Chose the more frequent category in case of ambiguity
- Accuracy of H/F detection: 98.5%
 - This is good enough

- *s* is a dependency graph among headwords
- Constraint on dependency structure D
 - Planar: no line crossing
 - Acyclic: contains no cycle
 - Define $\Phi(s)$ as the linked word on the left
- Example

• [The <u>dog</u>] [of our <u>neighbor</u>] [<u>barks</u>] [every <u>night</u>]

- *s* is a dependency graph among headwords
- Constraint on dependency structure D
 - Planar: no line crossing
 - Acyclic: contains no cycle
 - Define $\Phi(s)$ as the linked word on the left
- Example

- *s* is a dependency graph among headwords
- Constraint on dependency structure D
 - Planar: no line crossing
 - Acyclic: contains no cycle
 - Define Φ(s) as the linked word on the left
- Example

- Advantage
 - Capture *long-distance* dependency

Gao and Suzuki, Weihan-2007

Microsoft

Dependency parsing

- The most probably dependency *D* is generated by $D^* = \arg \max P(D|W) = \arg \max \prod P(d|W)$
- $D^* = \arg \max_{D} P(D | W) = \arg \max_{D} \prod_{d \in D} P(d | W)$ • Parsing algorithm (approximation algorithm)
 - Operates L to R
 - Link w_j to each of its previous words w_i , and push the generated dependency d_{ij} into a stack
 - Violation of syntactic constraints (planar and acyclic): resolved by removing the dependency with the lowest probability in conflict
 - Efficient: $O(n^2)$
 - Traditional parser is $O(n^5)$
 - Modified version of Yuret (1998)

$$P(w_{j} | \Phi(W_{j-1}, D_{j-1})) = \begin{cases} \lambda_{1}(P(w_{j} | w_{i}, R)) \\ +(1 - \lambda_{1})P(w_{j} | w_{j-2}, w_{j-1}) \end{cases} w_{j}: \text{ headword} \\ \hline P(w_{j} | w_{j-2}, w_{j-1}) & w_{j}: \text{ function word} \end{cases}$$

$$[The \operatorname{dog}] [of our \operatorname{neighbor}] [\operatorname{barks}] [every \operatorname{night}] \\ w_{i} & w_{j} \end{cases}$$

Gao and Suzuki, Weihan-2007

Cluster language model (CLM)

- *s* is a set of word clusters
- Goal: group similar words
 - Syntactic similarity: POS
 - Semantic similarity
 - WEEKDAY {Monday, Tuesday, Wednesday...}
 - DOG {poodle, husky, lab, dog ... }
 - Define $\Phi(s)$ as two previous word clusters
- Example
 - The <u>poodle</u> <u>barks</u> every <u>night</u>
 - Estimate of *P* (*barks* | *poodle*) may be inaccurate
 - Estimate of *P* (*barks* | *DOG*) may be more reliable

CLM: forms

- Predicted and conditional words in $P(w_3 | w_1 w_2)$
 - *w*₃: predicted word
 - *w*₁ and *w*₂: conditional words
- Three basic cluster trigram models
 - Predictive cluster model $P(w_i | w_{i-2}w_{i-1}) \approx P(W_i | w_{i-2}w_{i-1}) \times P(w_i | w_{i-2}w_{i-1}W_i)$
 - Conditional cluster model

 $P(w_i \mid w_{i-2}w_{i-1}) \approx P(w_i \mid W_{i-2}W_{i-1})$

Combined cluster model

 $P(w_{i} | w_{i-2}w_{i-1}) \approx P(W_{i} | W_{i-2}W_{i-1}) \times P(w_{i} | W_{i-2}W_{i-1}W_{i})$

Finding word clusters (Goodman, 2001)

- Objective function: maximize probability
 - In the case of predictive clustering, maximize

$$\prod_{i=1}^{N} P(W_{i} | w_{i-1}) \times P(w_{i} | W_{i})$$

$$= \prod_{i=1}^{N} \frac{P(w_{i-1}W_{i})}{P(w_{i-1})} \times \frac{P(W_{i}w_{i})}{P(W_{i})}$$

$$= \prod_{i=1}^{N} \frac{P(W_{i}w_{i})}{P(w_{i-1})} \times \frac{P(w_{i-1}W_{i})}{P(W_{i})}$$

$$= \prod_{i=1}^{N} \frac{P(w_{i})}{P(w_{i-1})} \times P(w_{i-1} | W_{i})$$

• Sufficient to maximize $\prod_{i=1}^{N} P(w_{i-1} | W_i)$

Gao and Suzuki, Weihan-2007

Data for Evaluation

- Task: Japanese IME
 - Baseline: word trigram model
 - N-best re-scoring task (N=100)
- Corpus: Newspaper (word-segmented)
 - Training: Nikkei (36 million words)
 - Test: Yomiuri (100,000 words)
- Metric: Character Error Rate (CER) #chars wrongly converted

#chars in the target sentence

Results on Japanese IME (Gao and Suzuki, 2004)

Model	Description	CER %	CER Reduction
Baseline	Word trigram model	3.73	
Oracle	In the 100-best list with the minimum number of errors	1.51	59.5%

Modeling: summary

Motivation

- Incorporate linguistic structure in a probabilistic model
- Word trigram model cannot capture long-distance dependency

Three types of structures

- Chunks, dependency, clusters
- Substantial improvement over trigram model
- Challenge
 - Model simplicity vs. capturing structure
 - Modeling vs. training data size

Training: parameter estimation

- Bayesian estimation paradigm
- Maximum likelihood estimation (MLE)
- Smoothing in N-gram language models
- Discriminative training (overview)

The Bayesian paradigm

- P(model|data) = P(data|model)×P(model) / P(data)
 - *P*(model|data) Posterior
 - *P*(data|model) Likelihood
 - *P*(model) Prior
 - P(data) Marginal
- Likelihood versus probability
 - *P*(n | u, N), for fixed u, *P* defines a probability over n; for fixed n, *P* defines the likelihood of u.
- Never say "the likelihood of the data"
- Always say "the likelihood of the parameters given the data"

Microsoft

Maximum likelihood estimation

- θ: model; *X*: data
- $\theta = \operatorname{argmax} P(\theta | X) = \operatorname{argmax} P(X | \theta) P(\theta) / P(X)$
 - Assume a uniform prior $P(\theta) = Const$
 - P(X) is independent of θ , and is dropped
- $\theta = \operatorname{argmax} P(\theta|X) \approx \operatorname{argmax} P(X|\theta)$
 - Where $P(X|\theta)$ is the likelihood of parameter
- Key difference between MLE and Bayesian Estimation
 - MLE assume that θ is fixed but unknown,
 - Bayesian estimation assumes that θ itself is a random variable with a prior distribution $P(\theta)$.

MLE for trigram LM

- $P_{ML}(w_3|w_1w_2) = \text{Count}(w_1w_2w_3)/\text{Count}(w_1w_2)$
- $P_{ML}(w_2|w_1) = \operatorname{Count}(w_1|w_2)/\operatorname{Count}(w_1)$
- $P_{ML}(w) = \text{Count}(w)/N$
- It is easy let us get real Chinese text and start counting

 $P_{ML}(barked|the, dog) = \frac{\text{Count}(the, dog, barked)}{\text{Count}(the, dog)}$

• But why this is the MLE solution?

The derivation of MLE for N-gram

- Homework an interview question of MSR [©]
- Hints
 - This is a constrained optimization problem
 - Use log likelihood as objective function
 - Assume a multinomial distribution of LM
 - Introduce Lagrange multiplier for the constraints
 - $\sum_{x \in X} P(x) = 1$, and $P(x) \ge 0$

Sparse data problems

- Say our vocabulary size is |V|
- There are |V|³ parameters in the trigram LM
 - $|V| = 20,000 \Rightarrow 20,000^3 = 8 \times 10^{12}$ parameters
- Most trigrams have a zero count even in a large text corpus
 - Count $(w_1 w_2 w_3) = 0$
 - $P_{ML}(w_3|w_1w_2) = \text{Count}(w_1w_2w_3)/\text{Count}(w_1w_2) = 0$
 - $P(W) = P_{ML}(w_1) P_{ML}(w_2|w_1) \prod_i P_{ML}(w_i|w_{i-2}|w_{i-1}) = 0$
 - $W = \operatorname{argmax}_W P(A | W) P(W) = \dots \text{ oops}$

Smoothing: adding one

- Add one smoothing (from Bayesian paradigm)
- But works very badly do not use this

 $P(w_3|w_2, w_1) = \frac{\text{Count}(w_1, w_2, w_3) + 1}{\text{Count}(w_1, w_2) + |V|}$

- Add delta smoothing
- Still very bad do not use this

$$P(w_3|w_2, w_1) = \frac{\text{Count}(w_1, w_2, w_3) + \delta}{\text{Count}(w_1, w_2) + |V|\delta}$$

Smoothing: linear interpolation

- Linearly interpolate trigram, bigram and unigram prob $P(w_3|w_1, w_2) = \lambda_1 P_{ML}(w_3|w_1, w_2) + \lambda_2 P_{ML}(w_3|w_2) + \lambda_3 P_{ML}(w_3)$ where $\lambda_1 + \lambda_2 + \lambda_3 = 1$
- Allow λ 's to vary value of λ is a function of Count(.) $P(w_3|w_1, w_2) = \lambda_1 (C(w_1, w_2, w_3)) P_{ML}(w_3|w_1, w_2) + \lambda_2 (C(w_2, w_3)) P_{ML}(w_3|w_2) + \lambda_3 (C(w_3)) P_{ML}(w_3)$

where $\lambda_1(C(w_1, w_2, w_3)) + \lambda_2(C(w_2, w_3)) + \lambda_3(C(w_3)) = 1$

How to estimate λ 's

- Split data into training, dev, test
- Optimize λ 's on dev data (i.e., pick the best value of λ)

 $\lambda = \operatorname{argmax}_{\lambda} \sum_{(w_1, w_2, w_3) in \, dev \, data} \log P(w_3 | w_1 w_2)$

- Can use EM (expectation maximization) algorithm to find the λ 's
- Or use a generalized numerical optimization algorithm (e.g., Powell search)
 - The objective function is concave

Smoothing: backoff

- Backoff trigram to bigram, bigram to unigram $P(w_3|w_1, w_2) = \begin{cases} \frac{C(w_1, w_2, w_3) - D}{C(w_1, w_2)}, & \text{if } C(w_1, w_2, w_3) > 0\\ \alpha(w_1, w_2) P(w_3|w_2), & \text{if } C(w_1, w_2, w_3) = 0 \end{cases}$
- *D*∈(0,1) is a discount constant absolute discount
- α is calculated so probabilities sum to 1 (homeworkS)

$$1 = \sum_{(w_1, w_2)} P(w_3 | w_1, w_2)$$

Smoothing: improved backoff

• Allow *D* to vary

- Different *D*'s for different N-gram
- Value of *D*'s as a function of Count(.)
- Modified absolute discount
- Optimizing *D*'s on dev data using e.g., Powell search

 $\mathbf{D} = \operatorname{argmax}_{\mathbf{D}} \sum_{(w_1, w_2, w_3) \text{ in dev data}} \log P(w_3 | w_1 w_2)$

- Using word type probabilities rather than token probability for backoff models
 - Kneser-Ney smoothing

What is the best smoothing?

- It varies from task to task
 - Chen and Goodman (1999) gives a very thorough evaluation and descriptions of a number of methods
- My favorite smoothing methods
 - Modified absolute discount (Gao et al., 2001)
 - Simple to implement and use
 - Good performance across many tasks, e.g., IME, SMT, ASR
 - Interpolated Kneser-Ney
 - Recommended by Chen and Goodman (1999)
 - Best performance on our SMT system (trickier to use, though)

Google's stupid smoothing

Figure 5: BLEU scores for varying amounts of data using Kneser-Ney (KN) and Stupid Backoff (SB).

• Do not do research until you run out of data (Eric Brill)

Discriminative training

- MLE maximizing $P(X|\theta)$
- Discriminative training maximizing P(θ|X)

• E.g., Maximum Entropy (Rosenfeld, 1994), Perceptron (Roark et al., 2004)

Search: basic algorithms

- Search space: lattice
- Find 1-best conversion
 - Time-synchronous Viterbi decoder (left to right)
 - Efficiency the use of beam
- Find N-best conversions
 - Time-asynchronous A* decoder (best-first search + heuristic function)
 - How to estimate future cost (heuristic function)
- 2-pass search
 - First pass: left-to-right search find the 1-best
 - Second pass: A* search using 1-best scores as future cost
- A good text book (Huang et al., 2001)

Search: an example (homework 8)

$\begin{array}{l} P(A < s >) = 0.2 \\ P(B < s >) = 0.15 \\ P(C < s >) = 0.1 \end{array}$	$\begin{array}{l} P(D C) = 0.1 \\ P(E C) = 0.1 \\ P(F C) = 0.15 \end{array}$
$\begin{array}{l} P(D A) = 0.2 \\ P(E A) = 0.15 \\ P(F A) = 0.01 \end{array}$	$\begin{array}{l} P(D) = 0.1\\ P(E) = 0.1\\ P(F) = 0.1 \end{array}$
P(D B) = 0.08 P(E B) = 0.1 P(F B) = 0.05	

Rank	W	-logP(W)
1	<s>, A, D, </s>	2.1
2	<s>, A, E, </s>	2.5
3	<s>, B, D, </s>	2.6
4	<s>, C, D, </s>	2.7
5	<s>, B, E, </s>	2.8
6	<s>, C, F, </s>	2.8
7	<s>, C, E, </s>	3.0
8	<s>, B, F, </s>	3.1
9	<s>, A, F, </s>	3.7

DIY: tools and data

- LM Toolkit
 - CMU SLM (probably out-of-date, still usable)
 - SRILM (most popular, implementation of KN smoothing)
 - MSR SLM (forthcoming, check our website)
- Training data
 - Crawl Chinese web pages
 - Discriminative training data, check our website
- Word segmentation
 - LDC word breaker
 - MSRSeg, check our website
- Visual Studio 2005

DIY: get your hands dirty

- Data preparation
 - Dictionary, pinyin-to-word mapping?
 - Training data acquisition and processing
- Baseline IME system
 - Train a trigram model using existing SLM toolkit
 - Code a Viterbi decoder
 - Access dictionary to generate lattice (define search space)
 - Access trigram probability to find the best word string given input:
 W = argmax P(W|A) ≈ argmax P(W)
- Evaluation
 - Quality of LM: perplexity
 - Quality of IME: CER

DIY: your research topics

- Better modeling
 - Latent semantic LM (Bellegarda, 2004)
 - Structured language model (Chelba and Jelinek, 2000)
- Better training
 - A Bayesian approach (Teh, 2006)
 - Discriminative training (Gao et al., 2007)
- Best IME system
 - Keep it as simple as possible
 - Excellent Engineering
 - Data, data, data!

What we did at MSR

- Better training data: 1999-2001
 - unified approach to Chinese SLM
 - Gao et al., (2002a)
- Better model form: 2002-2004
 - introduce language structure into SLM
 - Gao et al., (2002b, 2002c), Gao and Suzuki (2003, 2004)
- Better training method: 2005-present
 - directly minimize error rate
 - Gao et al., (2006, 2007)
- YOU CAN DO BETTER THAN US!

Better training data: Chinese IME results (Gao et al., 2002a)

	Baseline	MSR-Bigramı	MSR-Bigram2	MSR-Trigramı	MSR-Trigram2
Training Set	IME	Total	Total	Total	Total
Lexicon & Segmentation Optimization	NO	YES	YES	YES	YES
Training Set Filtering	NO	YES (seed set: Total)	YES (seed set: Total)	YES (seed set: Total)	YES (seed set: Total)
Training Set Domain Adaptation	NO	NO	YES (seed set: IME training set)	NO	YES (seed set: IME training set)
Pruning Method	Count Cutoff	Predict Cluster + Stolcke	Predict Cluster + Stolcke	Stolcke	Stolcke
Table 10: Summary of techniques used in system evaluation					

Better training data: Chinese IME results (Gao et al., 2002a)

Better modeling: Japanese IME results (Gao and Suzuki, 2004)

Model	Description	CER %	CER Reduction
Baseline	Word trigram model	3.73	
Oracle	In the 100-best list with the minimum number of errors	1.51	59.5%
HTM	Equation (3) with $\lambda_1 = 0.2$ and $\lambda_2 = 1$	3.41	8.6%
PHTM	Equation (3) with λ_1 =0.2 and λ_2 =0.7	3.34	10.5%
C-PHTM	Equation (3) with $\lambda_1 = 0.3$ and $\lambda_2 = 0.7$	3.17	15.0%
4-gram	Higher-order <i>n</i> -gram model with a modified version of	3.71	0.5%
5-gram	Kneser-Nev interpolation smoothing	3.71	0.5%
6-gram	Kneser (vey interpolation shootining	3.73	0.1%
ATR-I	Equation (6)	4.75	-27.3%
ATR-I+	ATR-I interpolated with Baseline	3.67	1.6%
ATR-II	Equation (7)	3.65	2.1%
DLM-1	Equation (8) with $\lambda_1 = 0.1$ and $\lambda_2 = 0$	3.49	6.4%
DLM-2	Equation (8) with $\lambda_1 = 0.3$ and $\lambda_2 = 0.7$	3.33	10.7%

Gao and Suzuki, Weihan-2007

Better training: Japanese IME results (Gao et al., 2007)

	CER	# features	time (min)	# train iter
Baseline (MAP)	7.98%			
MaxEnt/L2	6.99%	295,337	27	665
MaxEnt/L1	7.01%	53,342	25	864
AvePerceptron	7.23%	167,591	6	56
Boosting	7.54%	32,004	175	71,000
BLasso	7.20%	33,126	238	250,000

References

- Abney, Steven. 1991. Parsing by chunks. In: Robert Berwick, Steven Abney and Carol Tenny (eds.), *Principle-based parsing*. Kluwer Academic Publishers, Dordrecht.
- Brants, Thorsten, Ashok C. Popat, Peng Xu, Franz J. Och, Jeffrey Dean. 2007. Large language models in machine translation. In EMNLP.
- Bellegarda, J. R. 2004. Latent semantic language modeling for speech recognition. *Mathematical foundations of speech and language processing*. Johnson, M et al. (Eds.), Springer, pp.73-103.
- Chelba, Ciprian and Frederick Jelinek. 2000. Structured language modeling. *Computer Speech and Language*, 14(4): 283-332.
- Chen, S. F., and Goodman, J. 1999. An empirical study of smoothing techniques for language modeling. *Computer Speech and Language*, 13:359-394, October.
- Gao, Jianfeng, Galen Andrew, Mark Johnson and Kristina Toutanova. 2007. A comparative study of parameter estimation methods for statistical natural language processing. In *ACL*.
- Gao, Jianfeng, Hisami Suzuki and Wei Yuan. 2006. An empirical study on language model adaptation. ACM Trans on Asian Language Information Processing, 5(3): 207-227.
- Gao, Jianfeng and Hisami Suzuki. 2004. Capturing long distance dependency for language modeling: an empirical study. In *IJCNLP*.
- Gao, Jianfeng and Hisami Suzuki. 2003. Unsupervised learning of dependency structure for language modeling. In ACL.
- Gao, Jianfeng, Joshua Goodman, Mingjing Li and Kai-Fu Lee. 2002a. Toward a unified approach to statistical language modeling for Chinese. ACM Transactions on Asian Language Information Processing, 1-1: 3-33.
- Gao, J., H. Suzuki and Y. Wen. 2002b. Exploiting headword dependency and predictive clustering for language modeling. In *EMNLP*.
- Gao, J, J. Goodman, G. Cao, H. Li. 2002c. Exploring asymmetric clustering for statistical language modeling. ACL.
- Gao, J. Goodman, J. and Miao, J. 2001. The use of clustering techniques for language model application to Asian language. *Computational Linguistics and Chinese Language Processing*. Vol. 6, No. 1, pp 27-60.
- Goodman, J. 2001. A bit of progress in language modeling. In *Computer Speech and Language*, October 2001, pp 403-434.
- Manning, C., and H. Chutze. 1999. Foundations of statistical natural language processing. MIT Press. Cambridge.
- Huang, X., A. Acero, and H-W Hon. 2001. Spoken language processing. Prentice Hall PTR.
- Roark, Brian, Murat Saraclar and Michael Collins. 2004. Corrective language modeling for large vocabulary ASR with the perceptron algorithm. In *ICASSP*.
- Rosenfeld, Ronald. 1994. Adaptive statistical language modeling: a maximum entropy approach. Ph.D. thesis, Carnegie Mellon University.
- Teh, Yee Whye. 2006. A Hierarchical Bayesian Language Model Based On Pitman-Yor Processes. In ACL.
- Yuret, D. 1998. Discovery of linguistic relations using lexical attraction. Ph.D. thesis, MIT.

Gao and Suzuki, Weihan-2007

Contact information

• Jianfeng Gao,

http://research.microsoft.com/~jfgao/

• Hisami Suzuki,

http://research.microsoft.com/~hisamis/

• The latest version of the slides and papers/tools can be found on our website.

