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ABSTRACT

In our previous work, a new feature compensation approach to robust
speech recognition was proposed by using high-order vector Taylor
series (HOVTS) approximation of an explicit model of distortions
caused by additive noises, and evaluation results were reported on
Aurora2 database. This paper extends the above approach to deal
with both additive noises and convolutional distortions, and reports
evaluation results on Aurora2, Aurora3, and Aurora4 tasks.

Index Terms— robust speech recognition, feature compensa-
tion, vector Taylor series, distortion model.

1. INTRODUCTION

Most of current automatic speech recognition (ASR) systems use
MFCCs (Mel-Frequency Cepstral Coefficients) and their derivatives
as speech features, and a set of Gaussian mixture continuous den-
sity HMMs (CDHMMs) for modeling basic speech units. It is well
known that the performance of such an ASR system trained with
clean speech will degrade significantly when the testing speech is
corrupted by additive noises and convolutional distortions. One type
of approaches to deal with the above problem is the so-called fea-
ture compensation approach using explicit model of environmental
distortions (e.g., [13, 12]), which is also the topic of this paper.

For our approach, it is assumed that in the time domain, the
“corrupted” speech y[t] is subject to the following explicit distortion
model:

y[t] = x[t] � h[t] + n[t] (1)

where independent signals x[t], h[t] and n[t] represent the tth sam-
ple of clean speech, the convolutional (e.g., transducer and trans-
mission channel) distortion and the additive noise, respectively. By
ignoring correlations between different filter banks, the distortion
model in log power-spectrum domain can be expressed approxi-
mately as

exp(y) = exp(x + h) + exp(n) (2)

where y, x, h and n are log power-spectrums in a particular channel
of the filterbank of noisy speech, clean speech, convolutional term
and noise, respectively. The nonlinear nature of the above distortion
model makes statistical modeling and inference of the above vari-
ables difficult, therefore certain approximations have to be made.

Understandably, a simple linear approximation, namely the first-
order vector Taylor series (VTS) approximation, has been tried in
the past (e.g., [13, 12]). There are also efforts in using high-order
VTS (HOVTS) to improve the above first-order VTS approximation.
In [11], the nonlinear distortion function for additive noise only is

first expanded using HOVTS. Then a linear function is found to ap-
proximate the above HOVTS by minimizing the mean-squared error
incurred by this approximation. Given the linear function, the re-
maining inference is the same as in using the traditional first-order
VTS to approximate the nonlinear distortion function directly. In [5],
HOVTS is used to approximate the nonlinear portion of the distor-
tion function by expanding with respect to n − x instead of (x,n).
Both approaches work for each feature dimension independently by
ignoring correlations among different channels of filterbank. In [16],
the above nonlinear distortion function is approximated by a second-
order VTS. Using this relation, the mean vector of the relevant noisy
speech feature vector can be derived, which naturally includes a term
related to the second-order term in HOVTS. In [6], we extended the
above works in the following ways: 1) the nonlinear distortion func-
tion for both additive noise and convolutional distortion can be ap-
proximated by HOVTS with any order, 2) the required sufficient sta-
tistics are derived for estimating model parameters of additive noise
and convolutional distortion, and clean speech feature vector, 3) cor-
relations among different channels of filterbank can be considered.
So far, we have only published in [7] the formulation for dealing with
additive noises, and the corresponding evaluation results on Aurora2
database. In this paper, we present a more general formulation that
can deal with both additive noise and convolutional distortion, and
report evaluation results on Aurora2, Aurora3, and Aurora4 tasks.

The rest of the paper is organized as follows. In Section 2, we
give an overview of the general formulation of our feature compen-
sation approach. In Section 3, we report experimental results and
finally we conclude the paper in Section 4.

2. FEATURE COMPENSATION APPROACH

The flowchart of our feature compensation approach is illustrated in
Fig. 1. In the training stage, a Gaussian mixture model (GMM),
p(xc

t) =
∑M

m=1 ωmN (xc
t ; μ

c
x,m,Σc

x,m), is trained from clean
speech using MFCC features without cepstral mean normalization
(CMN), where μc

x,m, Σc
x,m, and ωm are mean vector, diagonal co-

variance matrix and mixture weight of the mth component, respec-
tively. Let’s assume that for each sentence, the noise feature vector
nc in cepstral domain follows a Gaussian PDF (probability density
function) with a mean vector μc

n and a diagonal covariance matrix
Σc

n. Let’s further assume that the term hc corresponding to convo-
lutional distortion is an unknown deterministic vector. In the recog-
nition stage, the above unknown distortion model parameters can be
estimated as follows:

Step 1: Initialization:
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Fig. 1. Flowchart of our feature compensation approach.

We first estimate the initial noise model parameters in cep-
stral domain by taking the sample mean and covariance of
the MFCC features from the first several (10 in our experi-
ments) frames of the unknown utterance, and set hc as a zero
vector.

Step 2: Define a new random vector, zc = xc + hc, whose PDF
can be derived as follows:

p(zc
t) =

M∑
m=1

ωmN (zc
t ; μ

c
x,m + hc,Σc

x,m).

Then transform all parameters from cepstral domain to log-
power-spectral domain as follows:

μl
z,m = C+(μc

x,m + hc) (3)

Σl
z,m = C+Σc

x,m(C+)� (4)

μl
n = C+μc

n (5)

Σl
n = C+Σc

n(C+)� (6)

where C+ is the Moore-Penrose inverse [10] of the discrete
cosine transform (DCT) matrix C, the superscript ‘l’ and ‘c’
indicate the log-power-spectral domain and cepstral domain,
respectively.

Step 3: In log-power-spectral domain, use HOVTS approximation
to calculate the relevant statistics, μl

y,m, Σl
y,m, Σl

zy,m,
Σl

ny,m, which are required for re-estimation of distortion
model parameters and estimation of clean speech.

Step 4: Transform the above statistics back to cepstral domain as

follows:

μc
y,m = Cμl

y,m (7)

Σc
y,m = CΣl

y,m(C)� (8)

Σc
zy,m = CΣl

zy,m(C)� (9)

Σc
ny,m = CΣl

ny,m(C)� . (10)

Step 5: Use the following updating formulas (extended from e.g.,
[15, 12]) to re-estimate the distortion model parameters:

μn =

∑T
t=1

∑M
m=1 P (m|yt)En[nt|yt, m]∑T
t=1

∑M
m=1 P (m|yt)

(11)

Σn =

∑T
t=1

∑M
m=1 P (m|yt)En[ntn

�
t |yt, m]∑T

t=1

∑M
m=1 P (m|yt)

− μnμ�
n

(12)

h =

[
T∑

t=1

M∑
m=1

P (m|yt)Σ
−1
x,m

]−1

[
T∑

t=1

M∑
m=1

P (m|yt)Σ
−1
x,m(Ez[zt|yt, m] − μx,m)

]

(13)
where

P (m|yt) =
ωmpy(yt|m)∑M
l=1 ωlpy(yt|l)

. (14)

In the above equations, we have dropped the cepstral do-
main indicator “c” in relevant variables for notational con-
venience. Furthermore, py(yt) =

∑M
m=1 ωmpy(yt|m), is

the PDF of the noisy speech yt, where the true py(yt|m) is
approximated by a Gaussian PDF, N (yt; μy,m,Σy,m), via
“moment-matching”. En[nt|yt, m], En[ntn

�
t |yt, m] and

Ez[zt|yt, m] are the relevant conditional expectations eval-
uated as follows:

En[nt|yt, m] = μn + Σny,mΣ−1
y,m(yt − μy,m) (15)

En[ntn
�
t |yt, m] = En[nt|yt, m]E�

n [nt|yt, m]+

Σn − Σny,mΣ−1
y,mΣyn,m (16)

Ez[zt|yt, m] = (μx,m + h) + Σzy,mΣ−1
y,m(yt − μy,m) .

(17)

Step 6: Repeat Step 2 to Step 5 several times.

Given the noisy speech and the estimated distortion model pa-
rameters, the minimum mean-squared error (MMSE) estimation of
clean speech feature vector in cepstral domain can be calculated as

x̂t = Ex [xt|yt] =
M∑

m=1

P (m|yt)Ex [xt|yt, m] (18)

where Ex [xt|yt, m] is the conditional expectation of xt given yt

for the mth mixture component and can be evaluated as follows:

Ex[xt|yt, m] = Ez[zt|yt, m] − h . (19)

The other modules in Fig. 1 are self-explained.
To calculate the required statistics, μl

y,m, Σl
y,m, Σl

zy,m,
Σl

ny,m, readers are referred to Section 3 of our previous paper [7].
A small modification, namely replacing x by z in the relevant equa-
tions, has to be made though.
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3. EXPERIMENTS AND RESULTS

3.1. Experimental Setup

In order to verify the effectiveness of the proposed approach, a series
of experiments are performed for the small-vocabulary task of recog-
nition of connected digit strings on Aurora2 and Aurora3 databases,
and the large-vocabulary continuous speech recognition (LVCSR)
task on Aurora4 database. The Aurora2 and Aurora4 databases con-
tains speech data in the presence of additive noises and linear convo-
lutional distortions, which were introduced synthetically to “clean”
speech derived from TIDigits and WSJ databases, respectively. The
Aurora3 database contains utterances of digit strings recorded in real
automobile environments for Danish, Finnish, German and Spanish,
respectively. A full description of the above databases and the cor-
responding test frameworks are given in [8, 1, 2, 3, 4, 9, 14].

In our ASR systems, the feature vector we used consists of
13 MFCCs (including C0) plus their first and second order deriv-
atives. The number of Mel-frequency filter banks is 23. MFCCs
are computed based on power spectrums. The mixture number of
clean-speech GMM for feature compensation is 256. For Aurora2
and Aurora3 tasks, each digit is modeled by a whole-word left-to-
right CDHMM, which consists of 16 emitting states, each having
3 Gaussian mixture components. For Aurora4 task, triphones are
used as basic speech units. Each triphone is modeled by a CDHMM
with 3 emitting states, each having 8 Gaussian mixture components.
There are in total 2800 tied states based on decision trees. A bigram
language model (LM) for a 5k-word vocabulary is used in recogni-
tion.

For experiments on Aurora2 and Aurora4 databses, “clean-
training” is used, where 8kHz data is used for Aurora4. For Aurora3
experiments, we focus on high-mismatch (HM) “training-testing”
condition, where training data includes utterances recorded by close-
talking (CT) microphone, which can be considered as “clean”, while
testing data is recorded by hands-free (HF) microphone. For re-
estimation of distortion model parameters, 4 EM iterations are used.
Our baseline systems used CMN for feature compensation. In all the
experiments, tools in HTK [17] are used for training and testing.

Experiments are designed to compare the following three
HOVTS-based methods:

• VTS(N): only consider additive noise (i.e., the method in [7]);

• VTS(N,H): consider both additive noise and convolutional
distortion as described in Section 2;

• CMN+VTS(N,H): CMN is applied first before using
“VTS(N,H)” for additional feature compensation. In this
case, the clean-speech GMM is also trained using the CMN-
processed MFCCs.

In the following subsection, we report the experimental results.

3.2. Experimental Results

Table 1 summarizes a performance (word accuracy in %) compar-
ison of the baseline system and several robust ASR systems using
HOVTS-based feature compensation on Aurora2 database. The per-
formance is averaged over SNRs between 0dB and 20dB on test
Set A, Set B and Set C respectively. Several observations can be
made. First, all the robust systems using HOVTS-based feature com-
pensation outperform the “Baseline” system. Higher the order in
VTS approximation, better the performance, especially in VTS(N)
case. Second, 3rd-order VTS(N) achieves the best overall perfor-
mance. But for the channel mismatch case (i.e., Set C), VTS(N,H)

Table 1. Performance (word accuracy in %) comparison of the base-
line system and several robust ASR systems using HOVTS-based
feature compensation, averaged over SNRs between 0dB and 20dB
across all noise conditions on three different test sets of Aurora2
database.

Methods Set A Set B Set C Overall
Baseline 66.36 71.43 67.20 68.55

1st-order 86.21 85.24 82.65 85.11
VTS(N) 2nd-order 87.18 86.61 84.90 86.49

3rd-order 87.65 87.01 85.39 86.94
1st-order 86.37 84.72 84.17 85.27

VTS(N,H) 2nd-order 86.97 85.70 85.14 86.09
3rd-order 87.32 86.13 85.62 86.50

CMN 1st-order 85.22 84.60 84.07 84.74
+ 2nd-order 84.95 85.15 84.52 84.94

VTS(N,H) 3rd-order 85.41 85.49 84.77 85.32

Table 2. Performance (word accuracy in %) comparison of the base-
line system and several robust ASR systems using HOVTS-based
feature compensation in the high-mismatch (HM) condition on Au-
rora3 database.

Methods German Danish Finnish Spanish
Baseline 83.77 54.78 77.07 80.96

1st 88.85 46.24 82.83 69.95
VTS(N) 2nd 89.73 57.01 84.45 77.95

3rd 90.06 61.01 84.06 78.41
1st 89.87 56.86 83.50 77.83

VTS(N,H) 2nd 90.01 63.40 84.81 79.46
3rd 90.33 66.69 84.66 79.46

CMN 1st 89.59 74.18 84.81 84.39
+ 2nd 89.96 72.14 85.16 84.27

VTS(N,H) 3rd 90.43 73.86 85.69 85.05

is better, which indicates that channel re-estimation is useful. Third,
CMN+VTS(N,H) performs worse than VTS(N,H).

Table 2 summarizes a performance (word accuracy in %) com-
parison of the baseline system and several robust ASR systems us-
ing HOVTS-based feature compensation in the high-mismatch (HM)
condition on Aurora3 database. We made the following observa-
tions:

• For first-order VTS, channel re-estimation is important, espe-
cially on Danish and Spanish databases;

• CMN+VTS(N,H) outperforms VTS(N) and VTS(N,H);

• On Spanish database, the performance of VTS(N) and
VTS(N,H) is even worse than the baseline system. The as-
sumed distortion model seems not good enough to character-
ize the true distortions in this case. However, by applying
CMN first, the HOVTS-based feature compensation works.

Tables 3 and 4 summarize a performance (word accuracy in %)
comparison of the baseline system and several robust ASR systems
using HOVTS-based feature compensation for two different micro-
phones on Aurora4 database. The Sennheiser microphone in Table 3
is also used for recording “clean-training” data. So the results in Ta-
ble 4 are used for demonstrating the effects of both additive noises
and channel mismatch. It is observed that HOVTS-based feature
compensation helps, although the gain is not as big as that achieved
for Auroa2 and Aurora3 tasks. Again CMN+VTS(N,H) achieves the
best performance.
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Table 3. Performance (word accuracy in %) comparison of the baseline system and several robust ASR systems using HOVTS-based feature
compensation for the Sennheiser microphone on Aurora4 database.

Methods Car Babble Restaurant Street Airport Train Overall
Baseline 76.09 52.87 51.30 49.36 54.77 48.05 55.41

1st-order 79.02 58.73 53.63 55.11 59.93 57.43 60.64
VTS(N) 2nd-order 75.45 60.90 56.12 57.20 61.07 60.47 61.86

3rd-order 75.64 61.14 57.05 58.08 61.80 60.60 62.38
1st-order 79.25 59.69 53.76 55.39 59.39 58.40 60.98

VTS(N,H) 2nd-order 76.41 59.65 55.31 56.53 59.80 59.41 61.18
3rd-order 76.44 60.81 56.29 57.67 61.01 59.91 62.02

CMN 1st-order 78.61 61.26 55.35 57.44 60.38 61.16 62.36
+ 2nd-order 76.24 62.75 56.77 58.27 60.94 61.07 62.67

VTS(N,H) 3rd-order 76.72 62.99 57.24 59.22 61.40 61.83 63.23

Table 4. Performance (word accuracy in %) comparison of the baseline system and several robust ASR systems using HOVTS-based feature
compensation for the second microphone on Aurora4 database.

Methods Car Babble Restaurant Street Airport Train Overall
Baseline 65.20 44.22 40.48 36.07 44.80 37.96 44.79

1st-order 73.42 51.37 45.66 46.24 53.63 51.84 53.69
VTS(N) 2nd-order 74.48 55.61 48.51 51.02 56.42 54.81 56.81

3rd-order 74.03 57.35 49.95 50.64 57.24 56.06 57.55
1st-order 77.43 56.59 47.45 51.28 55.99 57.61 57.73

VTS(N,H) 2nd-order 76.57 57.58 50.85 52.05 55.95 56.73 58.29
3rd-order 76.18 58.38 50.46 52.08 57.28 56.72 58.52

CMN 1st-order 77.17 56.88 50.42 53.67 57.71 57.09 58.82
+ 2nd-order 76.82 58.81 52.38 54.25 58.36 57.84 59.74

VTS(N,H) 3rd-order 76.80 58.64 52.46 54.27 58.55 57.65 59.73

4. CONCLUSION

From the above experimental results, mixed observations can be
made for different tasks on different databases. Although perfor-
mance improvement is achieved in many cases by using a higher or-
der VTS-based feature compensation compared with the first-order
VTS, it also requires more computations. The most useful finding
from this study is that the CMN+VTS(N,H) approach works for real
data on Aurora3 task. We therefore recommend our readers to try
out this approach as well in their applications.
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