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Abstract

Most system level software is written in C and executed
concurrently. Because such software is often critical for
system reliability, it is an ideal target for formal verifica-
tion. Annotated C and the Verified C Compiler (VCC) form
the first modular sound verification methodology for con-
current C that scales to real-world production code. VCC
is integrated in Microsoft Visual Studio and it comes with
support for verification debugging: an explorer for counter-
examples of failed proofs helps to find errors in code or
specifications, and a prover log analyzer helps debugging
proof attempts that exhaust available resources (memory,
time). VCC is currently used to verify the core of Microsoft
Hyper-V, consisting of 50,000 lines of system-level C code.

1. VCC – A C Verifier

VCC is a fully-automated tool that verifies partial cor-
rectness of annotated C code. Annotated C augments C with
type invariants and pre-/postcondition-style function con-
tracts, similar to, yet more powerful than design-by-contract
assertions known from object-oriented programming lan-
guages like Eiffel.

The annotation language is classical first-order predicate
logic disguised in C-like syntax, such that the annotations
can be kept inline with the production code and developers
can easily comprehend the annotations. Contracts specify
the effect of C functions executing in a concurrent context
(cf. Section 2), such that callers of a function need to know
only the contract of that function to verify their own imple-
mentation. Accordingly, the verification approach is modu-
lar: a function can be verified independently of its use. This
is essential to make the verification scale.

Technically, C preprocessor macros can be used to hide
the annotations from an ordinary C compiler, which is used
when generating the executable code. VCC translates the
C program with its annotations to BoogiePL [4], a simple
intermediate language for verification purposes. This trans-
lation combines features of ordinary C compilation (e.g.,

performing type conversions required by C) and those of a
classical VC generator, e.g., by asserting type-safe memory
access, flagging likely errors like arithmetic overflows, and
weakening of intermediate assertions to compensate for in-
terference from other threads. Boogie translates each func-
tion into a set of verification conditions in first-order logic
and then uses the Z3 [3] automatic SMT solver to prove
these formulas valid.

If Z3 can disprove a verification condition, it generates a
counter-example, which consists of a sequence of program
states with variable assignments. VCC’s Model Viewer
presents the counter-example to the developer. It shows the
trace through the method that leads to the violation of the
verification condition; in addition it shows the memory and
additional attributes on the memory for each different state
of this trace.

The verification task at hand is undecidable. Thus, the
prover may fail by exceeding memory or time resources
and not returning a definitive answer. The Z3 Visualizer
allows to inspect prover logs to determine what the prover
was trying to do while it ran out of resources. This may give
valueable information as to how to help the tool succeed in
proving a verification condition, e.g., by stating additional
assertions that constrain the prover’s search space. VCC is
integrated in Microsoft Visual Studio, allowing developers
to verify code from within their normal work environment
while working on that code.

2. Verification Methodology

Typed memory. Typesafe languages like Java and C# are
relatively verification-friendly: program state consists of
a collection of objects, each with its own fields, some of
which might be pointers to objects. Aliasing, which places
a high burden on the theorem prover, can thus arise only
through two pointers (of the same type) pointing to the same
object. C deviates from this view of state in fundamental
ways. First, C has no real objects; types merely give a way
of interpreting chunks of memory. “Objects” can overlap
arbitrarily (within the limits of object alignment). Second,



there is no distinction between objects and fields. A struct
can contain another struct as a member, and a pointer can
point to a member inside of another struct.

Still, a typed memory model is highly desirable because
it significantly reduces both the burden on the annotator and
the theorem prover. Thus, we introduce a flexible type sys-
tem for C that allows one to treat the (common) case of well-
typed programs efficiently, supressing many forms of trivial
aliasing, while being flexible enough to allow for memory
re-interpretations where this is required by the code. This
allows for sound treatment of arbitrary C code. The type
information is maintained in ghost state (ghost state is for
specification purposes only and does not change program
behavior), where we keep track of the set of “valid” typed
pointers that point to the “real” objects of the state. This
lays the foundation for the use of type invariants, which al-
lows one to express program properties using the program’s
natural abstraction boundaries.
Invariants. As mentioned before, modular verification is
the key to a methodology that scales to real-world systems.
This, of course, also applies to the verification in the pres-
ence of concurrency, where modularity means thread-local
reasoning. As in most approaches to thread-local verifica-
tion, we start from disjoint concurrency, i.e. threads operat-
ing on disjoint portions of the state; this admits ordinary, se-
quential reasoning within a thread. Thus, in any state, each
thread “owns” some portion of the state which it is allowed
to read and write; inter-thread communication thus requires
some transfer of owned state between threads. In most con-
current methodologies, this happens by transferring owner-
ship via some built-in shared objects, such as resources or
locks.

Instead, our methodolgy is capable of verifying the im-
plementation of lock-free data structures that are commonly
used for thread synchronization, like spinlocks or read-
er/writer locks. These objects can then be used to control
ownership transfer between threads without the need for ad-
ditional primitives in our annotation language. The key to
the verification of lock-free data structures is the introduc-
tion of two-state invariants that allow for the atomic modi-
fication of shared objects in a controlled fashion. Two-state
invariants generalize object invariants by allowing reference
to a pre-state and thus constraining atomic changes such that
any two consecutive program states maintain a shared ob-
ject’s invariant.

When a thread has exclusive ownership of an object, it
can temporarily disable the object’s invariant to allow mul-
tiple changes to an object before the invariant can be re-
established, a process called opening and closing of the ma-
nipulated object. Thus, a thread typically modifies a shared
object by taking ownership of the object (from another ob-
ject), opening it, modifying it, closing it, and putting it back
somewhere (usually in its original place).

Claims. Threads can only meaningfully interact with
shared state if they have some guarantees about that state.
Since object invariants hold only when an object is closed,
useful shared state information can be obtained only from
objects that are known to be closed. Our methodology al-
lows to reify this guarantee into claim objects, which, in
their simplest form, are handles that prevent other objects
from being opened, thus allowing the owner of the claim to
rely on the claimed object’s invariant. Claims can be cre-
ated and destroyed dynamically, and thus allow to construct
and tear down complex system configurations.

Technical detail on the memory model, ownership, and
the verification of concurrent code can be found in [1, 2, 5].

3. Verification of Microsoft Hyper-V

Microsoft Hyper-V Server 2008 is Microsoft’s server
virtualization product. Its kernel, which we henceforth call
“the hypervisor”, is a thin layer of software. It sits di-
rectly on x64 hardware, turning a real MP x64 machine into
a number of MP x64 virtual machines for OS virtualiza-
tion. The code base consists of about 55KLOC of C and
about 5KLOC of assembler. It is partitioned into about a
dozen layers, with essentially no up-calls, and the data and
functions within each layer separated into layer-private and
layer-public parts.

VCC is currently used to formally verify the hypervisor
code base as is by annotating code and pushing the anno-
tated code through VCC. This effort is an ongoing collabo-
ration of Microsoft and the University of Saarbrücken, Ger-
many, which is partly funded by the German Ministry for
Education and Research in the project Verisoft/XT [6].
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Figure 1. VCC integration into Visual Studio 2008

Figure 2. Visualization of Z3 error models in the VCC Model Viewer
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Figure 3. Z3 Visualizer
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