
Vx86: x86 Assembler Simulated in C Powered

by Automated Theorem Proving

Stefan Maus1, Micha l Moskal2, and Wolfram Schulte3

1 Universität Freiburg, Freiburg, Germany
2 European Microsoft Innovation Center, Aachen, Germany

3 Microsoft Research, Redmond, WA, USA

Abstract. Vx86 is the first static analyzer for sequential Intel x86 as-
sembler code using automated deductive verification. It proves the cor-
rectness of assembler code against function contracts, which are ex-
pressed in terms of pre-, post-, and frame conditions using first-order
predicates. Vx86 takes the annotated assembler code, translates it into
C code simulating the processor, and then uses an existing C verifier to
either prove the correctness of the assembler program or find errors in
it. First experiments on applying Vx86 on the Windows Hypervisor code
base are encouraging. Vx86 verified the Windows Hypervisor’s memory
safety, arithmetic safety, call safety and interrupt safety.

1 Introduction

The correctness of operating systems is critical for the security and reliability
of any computer system. However, debugging and testing operating systems is
very difficult: kernel operations are hard to monitor, and algorithms are highly
optimized and often concurrent. These factors suggest that one should verify
operating systems. In fact, there are currently several projects that try to do
just that [21, 15, 10, 19]. However, such projects still leave us far from a practical
methodology for verifying real systems.

One gap is in the verification targets. Existing verification projects often use
idealistic sequential code written in clean programming languages. In contrast,
modern system code is typically multithreaded, racy, written in C and assembler.
Assembler is used (1) to access special instructions that are not available in C
(like CPUID, which returns some important properties of the processor), and
(2) to improve the performance of critical algorithms like interrupt dispatch,
context switch, clearing pages, etc. While several verifiers for C exist [11, 14,
17], we think that it is imperative to verify the assembler portion of a verified
operating system as well.

To address this gap, we developed an automatic static analysis tool, called
Vx86, targeted towards the verification of the Windows Hypervisor [4, 5]. Vx86
proves correctness of Intel x86 assembler code with AMD virtualization exten-
sions against procedure contracts and loop invariants. It does so by building
on top of other tools. First, Vx86 translates annotated assembler code to anno-
tated C code. The C translation makes the machine model explicit and provides

a meaning for the instructions by simulating the instructions on the machine
state. The resulting C code is then passed to VCC, Microsoft’s Verifying C
Compiler [16]. VCC translates the annotated C programs into BoogiePL [9], an
intermediate language for verification. Boogie [1] then generates logical verifica-
tion conditions for the translated C code and passes them on to the automatic
first-order theorem prover Z3 [8] to either prove the correctness of the translated
assembler program or find errors in it.

We found that the simulation approach is a very good fit for our assembler
verification effort. There are two reasons for that, one is technical and the other
one is social. The technical reason is that C and assembler are in fact very
closely related: both use arbitrary pointer arithmetic, both have a very weak
type system (albeit a bit stronger in the case of C). So C verifiers, which are
good enough for verifying low level OS code, should be good enough to deal with
assembler code as well. Mapping assembler code to C thus obviates the need of
implementing a full-blown assembler verifier. The social reason is that the users
of the assembler verifier are likely to also use the C verifier for other parts of the
code, therefore they can get familiar with only one tool instead of two.

This paper presents the design and use of Vx86. Our contributions are

– the development of a translator from annotated assembler code to C (see
Subsection 3.1).

– the development of a semantics of x86 assembler with virtualization exten-
sions by providing a simulator in C (see Subsection 3.2).

– the development of correctness criteria for assembler code (see Subsection 4.2).
– the application of the resulting verifier on the Windows Hypervisor code

base (approximately 4,000 lines of assembler code) (see Subsection 4.3).

Section 2 introduces the challenges in assembler verification; furthermore it pro-
vides some background on VCC. Sections 5 and 6 discuss related work and
conclude.

2 Background

2.1 Running example: SetZero

We will explain the inner workings of Vx86 with the SetZero assembler code (see
Figure 1 on the facing page). It is literally taken from the Windows Hypervisor
code base; it sets a memory block of 4096 bytes to zero.

This code is written in assembler, because it is optimized for branch predic-
tion, cache lines and pipelines of the processor, something that the Microsoft C
compiler cannot achieve.

2.2 Challenges in Assembler Verification

Verifying assembler code is challenging.

2

1 %LEAF ENTRY SetZero, TEXT$00
db 066h, 066h, 066h, 090h
db 066h, 066h, 066h, 090h
db 090h
ALTERNATE ENTRY SetZero

6 xor eax, eax

mov edx, X64 PAGE SIZE / 64
@@:

mov [rcx], rax
mov 8[rcx], rax

11 mov 16[rcx], rax
add rcx, 64
mov (24 − 64)[rcx], rax
mov (32 − 64)[rcx], rax
dec edx

16 mov (40 − 64)[rcx], rax
mov (48 − 64)[rcx], rax
mov (56 − 64)[rcx], rax
jnz short @b
ret

21 LEAF END SetZero, TEXT$00

Fig. 1. Original SetZero assembler code.

– Almost all assembler languages, including Microsoft’s x86 assembler, are un-
typed; however, most of the automatic verification tools use type information
to help with the problems of aliasing, framing, etc.

– Assembler control flow is unstructured, therefore we need to find a place
where to put loop invariants.

– Many assembler instructions have side effects not only on the mentioned
registers but on the whole processor state. For faithful verification all of these
effects have to be captured, since program logic may later depend on them;
conditional jumps, for instance, depend on a flag set in earlier instructions.

– Assembler code often uses bitfields and words interchangeably. For example,
the flag register is typically used as a bitfield, but when saved and restored,
it is used as a single unit.

– The use of general purpose registers is even more demanding; they are not
only used as bitfields and as integers, but also as pointers. A register mask,
for example, is used to select the page of a pointer address.

VCC, a verifier that is currently being developed for verifying the C part of
the Windows Hypervisor, is designed so that it can support weak type systems,
bitvectors, as well as arbitrary goto-systems. This allows us to build Vx86 on
top of VCC because it meets all necessary requirements.

3

2.3 Microsoft’s Verifying C Compiler

VCC is a static analysis tool that uses automatic first order theorem proving
to show formally that a given sequential C program, compiled for the Intel or
AMD x86-32 or x86-64 processors, does what is stated in its specification.

VCC’s specification language includes first-order predicates expressed in pre–
/postconditions, loop invariants, assertions and assumptions. For modular rea-
soning VCC introduces a “region-based” memory management using pure func-
tions and abstract framing to guarantee that functions only write, read, allo-
cate, and free certain locations. VCC also supports ghost state, that consists of
specification-only variables that allow one to argue about values that were saved
before.

VCC uses three formally related semantics. VCC’s base memory model rep-
resents values as bit vectors and accesses memory in individual bytes, a simple
abstraction represents values as mathematical integers and accesses memory in
word sizes, the third model uses the C type system in addition to the second
model to rule out many pointer aliases.

In this paper we show in detail how Vx86 uses VCC to verify the partial
correctness of the SetZero function, as well discuss the results of verification of
a sizable chunk of assembler code from the Windows Hypervisor.

3 Translating Annotated Assembler Code to C

Vx86 processes annotated x86 assembler code, written in the input language for
Microsoft’s Macro Assembler 8.0 (MASM). Vx86 works as follows:

1. the annotated assembler code is preprocessed by MASM, this inlines all
needed assembler macros and definitions;

2. the expanded assembler file is translated to annotated C code;
3. the annotated C code is extended with definitions that (a) make the machine

state explicit, and (b) provide a meaning for the assembler instructions in
terms of the machine state;

4. the annotated and now self-contained C code is passed to VCC for verifica-
tion.

3.1 Specification and Syntax Translation of the Assembler Language

To simplify our translation task and to make the verification of the Hypervisor’s
C code as well as assembler code as uniform as possible, we decided to simply
adopt VCC’s specification language for Vx86. Specification constructs in Vx86
are introduced using special comments, e.g. pre, post conditions, writes clauses
and local ghost variables appear after the assembler header, invariants appear
after labels, assumptions, assertions and assignments to ghost variables can ap-
pear anywhere in the running code. Figure 2 on the next page describes the fully
annotated SetZero Code.

4

;ˆ requires (valid ((U1∗)rcx,X64 PAGE SIZE))
;ˆ requires (rcx+X64 PAGE SIZE < (U8)−1)
;ˆ writes(region((U1∗)(old(rcx)),X64 PAGE SIZE), rcx, edx, rax, rflags)

4 ;ˆ ensures (forall (U4 i; (0 <= i && i < X64 PAGE SIZE/8) ==>

;ˆ ∗((U8∗)(U1∗)(old(rcx)) + i) == 0))
LEAF ENTRY SetZero, TEXT$00

db 066h, 066h, 066h, 090h ; fill for alignment
9 db 066h, 066h, 066h, 090h ;

db 090h ;

;ˆ spec(I8 count = 0);
; a ghost variable

14
ALTERNATE ENTRY SetZero
xor eax, eax

mov edx, X64 PAGE SIZE / 64
@@:

19 ;ˆ invariant (valid ((U1∗)(old(rcx)),X64 PAGE SIZE))
;ˆ invariant (8 ∗ count == (U1∗)rcx − (U1∗)old(rcx))
;ˆ invariant (0 < edx && edx <= (X64 PAGE SIZE/64))
;ˆ invariant ((U1∗)(old(rcx))−64∗edx+X64 PAGE SIZE == (U1∗)rcx)
;ˆ invariant ((U1∗)(old(rcx)) <= (U1∗)rcx)

24 ;ˆ invariant ((U1∗)rcx < (U1∗)(old(rcx))+X64 PAGE SIZE)
;ˆ invariant (rax == 0)
;ˆ invariant (forall (U4 i; (0 <= i && i < count) ==>

;ˆ ∗((U8∗)(U1∗)(old(rcx)) + i) == 0));
mov [rcx], rax

29 mov 8[rcx], rax
mov 16[rcx], rax
add rcx, 64
mov (24 − 64)[rcx], rax
mov (32 − 64)[rcx], rax

34 dec edx

mov (40 − 64)[rcx], rax
mov (48 − 64)[rcx], rax
mov (56 − 64)[rcx], rax

;ˆ spec({ count += 8; })
39 jnz short @b

ret

LEAF END SetZero, TEXT$00

Fig. 2. With contracts annotated SetZero assembler code.

5

The SetZero assembler procedure requires (1) that X64 PAGE SIZE bytes
in the main memory starting at the address pointed to by rcx are valid, i.e.
allocated (let us call that region the page), and that rcx + X64 PAGE SIZE

is not allowed to overflow. SetZero guarantees that it only writes the page, as
well as the registers rcx, edx, rax and rflags. SetZero ensures that the page is
zero. In the body, there is a loop between the label @@ and the jump jnz back
to it. After the alignment a ghost variable count of type signed 64 bit integer is
introduced. This variable, which is updated as part of the loop body, is needed
for describing the loop invariant.

Note that for verification purposes registers and the global memory are con-
sidered to be global variables, except that registers are treated specially; they are
64, 80 or 128 bit variables that lie outside the address range of global memory.

A challenging part of the syntax translation is the introduction of casts. In
x86 assembler every register and memory access can be 8, 16, 32, or 64 bit wide.
The access modes do not only differ in the number of bits they read or write,
but also in the side effects to the higher bits. 8 and 16 bit access modes are just
writing the bits given, leaving the rest of the register unchanged. On the other
hand, 32 bit access mode extends with zeroes to a 64 bit register. For Vx86
we decided to model general purpose registers as 64 bit unsigned integers; all
access modes other than 64 bit are represented in terms of their effect on 64 bit
quantities. Due to VCC’s ability to switch between different memory models,
registers can be viewed as bitvectors or integers.

In assembler, jumps often depend on the value of the status register, i.e. one
instruction sets the status register and the following jump is depending on the
flags. In our running example, dec may set the zero flag and jnz performs the
jump if the zero flag was set. We translate goto systems from assembler directly
into goto systems in C, we only have to resolve symbolic assembler labels, e.g.
@b and @@ in our example are resolved to a unique label.While most verifiers
do not support unstructured goto’s, VCC does. It translates goto systems into
unstructured control flow in Boogie. Next, Boogie translates unstructured goto
systems into a system of equations that represent the verification condition. Vx86
does not make the PC explicit. In x86 assembler it is quite difficult to compute
addresses instead of using labels to jump, because instructions do not have fixed
size.

3.2 Simulator for Assembler

Figure 3 on the facing page provides an excerpt of the simulator for x86 assem-
bler. The figure only provides the definitions which are needed to verify SetZero.
The full file has approximately 8,000 bytes of definitions.

The general purpose registers of the x86 processor are defined as 64 bit global
variables in our C model. Special registers, like the flag register, are represented
using bitfields. Other registers like the floating point registers, which are 80 bit
wide and the multimedia registers, which are 128 bit wide, are modelled with the
help of structs that have the same form as they would have on the real processor.

6

typedef unsigned long long U8;
typedef unsigned long U4;

3 typedef unsigned char U1;
typedef struct Flags t {

unsigned cf : 1; unsigned res1 : 3;
unsigned af :1; unsigned res2 :1;
unsigned zf :1; unsigned sf :1;

8 unsigned res3 :3; unsigned of :1;
unsigned res4 :20; U4 res6;
} flags t ;

// registers
13 register U8 rax, rcx, rdx;

//flags
flags t rflags ;
#define eax rax //casts are introduced automatically where needed
#define edx rdx //casts are introduced automatically where needed

18 //eax and edx are the 32 bit versions of the 64 bit rax and rdx

//flag computations
#define zf comp(a) rflags.zf = (unsigned)(a == 0)
#define sf comp(a) rflags.sf = (a < 0)

23 //instructions
#define xor(a,b) a = (aˆb); zf comp(a); sf comp(a); rflags . af=0; rflags . of=0
#define mov U4(a,b) unchecked(a = (U8)((U4)b))
#define mov(a,b) unchecked(a = b)
#define add(a,b) a = (U8)((U1∗)a + (b)); zf comp(a); sf comp(a)

28 #define dec(a) a = a − 1; zf comp(a); sf comp(a)
#define ret() return

#define jnz(a) if (! rflags . zf) goto a

Fig. 3. Vx86’s machine state and instruction definitions in C

The meaning of each assembler instruction is provided by a simulation on
these newly introduced memory locations. For providing the instruction se-
mantics we relied on the instruction manuals from AMD and Intel. For ex-
ample, the instruction “add rax,rbx” is not only translated to the C construct
“rax=rax+rbx” but also into several statements to report the proper flag changes
like “rflags.zf = (rax == 0)” and “rflags.sf = (rax < 0)”. Note that such flag
changes are performed by most of the assembler instructions.

Unfortunately, the processor instruction manual is not very precise when
it comes to the virtualization extensions. For those instructions, the processor
state after executing certain operations is only partially defined (see also Sub-
section 4.1). On the other hand, the Windows Hypervisor does not contain code
that operates on floating point and multimedia values; they are only used for

7

#include ”vcc.h”
#include ”Assembler.h”

//Page Size
5 #define X64 PAGE SIZE 0x01000ULL

void SetZero()
requires (...) writes (...) ensures (...)

{
10 spec (...);

SetZero:
xor(eax, eax);
mov U4(edx, X64 PAGE SIZE / 64);

l0 :
15 invariant (...)

mov(∗(U8∗)((U1∗)rcx), rax);
mov(∗(U8∗)((U1∗)rcx + 8), rax);
mov(∗(U8∗)((U1∗)rcx + 16), rax);
add(rcx, 64);

20 mov(∗(U8∗)((U1∗)rcx + (24 − 64)), rax);
assert (...);

mov(∗(U8∗)((U1∗)rcx + (32 − 64)), rax);
dec(edx);
mov(∗(U8∗)((U1∗)rcx + (40 − 64)), rax);

25 mov(∗(U8∗)((U1∗)rcx + (48 − 64)), rax);
mov(∗(U8∗)((U1∗)rcx + (56 − 64)), rax);

spec (...);
jnz(l0);
ret ();

30 }

Fig. 4. Vx86 generated C code for SetZero.

saving and restoring the processor state, therefore we do not need to model these
instructions in detail.

Figure 4 contains the translation of the annotated SetZero assembler code
into C (note that we do not include the contracts here, because they are pasted
literally from the assembler code into the C code). This code is then passed to
VCC; it verifies in less than a second. Alternatively, the code can be passed to a
normal C compiler, and then executed or debugged using a regular C debugger.

4 Evaluation

The goal of our verification effort is to verify the assembler portion of the Win-
dows Hypervisor. This section provides some background on Windows Hypervi-

8

sor, explains the properties that we have verified so far and gives performance
data.

4.1 The Windows Hypervisor

The Windows Hypervisor is a thin layer of software written in C and assem-
bler that sits directly on x64 hardware, turning a real multi-processor (MP) x64
machine into a number of MP x64 virtual machines (VMs). These VMs provide
additional machine instructions (hypercalls) to create and manage VMs, hard-
ware resources, and inter-VM communication. VMs are viewed as a key enabling
technology for a variety of services, such as server consolidation, sandboxing of
device drivers, testing, running multiple OSs on a hardware machine, live VM mi-
gration, snapshotting/recovery, and high availability. Moreover, it provides such
functionality in an OS-neutral way, with a trusted computing base 2-3 orders of
magnitude smaller than that of a typical commercial operating system.

The Windows Hypervisor code base is separated into source files written in C
and x86 assembler. Assembler code is mainly used to achieve performance opti-
mizations, which cannot be expressed in C, and to access processor instructions
that do not have corresponding C instructions. For both reasons, it is obvious
that the code should not be changed just to be able to verify it.

The assembler code of the Hypervisor is located in different files, which means
there is no inline assembler in the C code. This allows for modular reasoning:
the assembler code can be verified separately against its specification.

If C code calls assembler functions, a C prototype for the assembler func-
tion has to be provided that expresses the assembler specification not in terms
of registers but in terms of C’s parameters and memory. We assume that the
C compiler translates calls to assembler code using a standard register trans-
fer protocol, where the function’s first parameter is passed in register rcx, the
next in rdx, etc. We also assume that every variable of the calling C function is
marked as volatile, which means that the compiler is not allowed to store vari-
ables temporarily in registers but variables are always read from and written to
main memory.

Intel and AMD have developed hardware support for hypervisor systems.
For example, they can switch to the hypervisor if hardware interrupts occur and
provide multi-stage page tables so that the operating systems do not see that
they are working in translated mode. Unfortunately, both companies have their
own virtualization instructions. Since the AMD instruction set is older and the
implementation in the hypervisor thus (hopefully) has less errors in it, we decided
to first support AMD. In future work, there will also be an implementation of the
Intel virtualization hardware. Both hardware types can be supported at the same
time because they have different instruction names and different processor states.
Compared to standard assembler instructions the virtualization instructions are
very complex. They are used for context switches between the hypervisor (host
system) and the operating systems (guest systems). A typical scenario for a
context switch consists of the following sequence of operations: (1) save the host
state, (2) load the guest state, (3) run the guest, (4) save the guest state, (5) load

9

the host state. Properties about those virtualization instructions include facts
like “the state of the host after the restoring process is the same as it was at the
point of the saving”. Such a property does not only include the values of registers
but also the stack that is administrated by the processor. If the stack has changed
(either the place or the content) then the host will have a completely different
state. Properties involving virtualization typically range over many registers and
memory locations. Additionally, the processor state is usually available twice:
once for the host system and once for the guest system. The verification tool
then has to scale well to handle such complex functions and specifications, and
we have seen verification times for virtualization function degrade (see below).

On the other hand, several functions in the Windows Hypervisor are only
used for optimization reasons. The specifications for those functions are not too
complicated as we have seen before. However, looking at an optimized imple-
mentation is often scary; algorithms are optimized for filling the pipeline most
efficiently, to exploit branch prediction and caching. Verifiers however are good
at keeping track of detail and so these algorithms are a great target for modern
verification technology.

4.2 Well-formedness Properties

So far we verified only assembler code that is guaranteed to be executed se-
quentially; this amounts to approximately 4,000 lines. For these 4,000 lines we
verified memory safety, arithmetic safety, call safety, and interrupt safety.

Memory safety means that all memory accesses are only performed on valid
(i.e., previously allocated and not freed) memory. Therefore, the precondition of
an assembler function needs to include validity of all memory locations that are
accessed. If a function tries to access memory that cannot be proven valid, VCC
reports an error. Similarly, we specify explicitly the set of memory locations
being written to, and it is an error to write to a memory location not listed in
the writes clause. These properties are enforced to be transitive, i.e., if function
f calls g then the writes set of g needs to be contained within the writes set of
f , and also the precondition of g needs to follow from the context at the call site
(including preconditions of f).

Arithmetic safety means absence of overflows, unless otherwise stated.
For operations that can overflow (like addition, multiplication or signed division)
VCC automatically adds assertions that check if the result is in the proper range.
When an overflow behavior is desired, the user can specify this explicitly.

Call safety means that the stack is cleaned up after every function call and
registers are saved before every function call. If f calls g and the postcondition
of g does not guarantee that it restores values of registers, then f needs to
save itself the registers it cares about. The registers are saved on the stack,
therefore it is important to know that g will not modify stack locations above
the current stack pointer (stacks are growing down on x86 architecture), and that
g does not change the stack pointer. This is expressed using the postcondition
ensures(rsp == old(rsp)) and by not including region starting with rsp in the
writes clause of g (or for that matter in its validity preconditions). On the other

10

File Annotated ASM Preproc ASM Translated C Preproc C

zero 7,821 16,781 18,040 31,609
crashdump 5,625 17,791 20,217 31,028

GuestContext 1,422 16,673 18,136 29,297
Trap 82,316 420,854 444,865 486,510

Fig. 5. File sizes in bytes at different stage of the translation

hand, all accesses of g to the stack (like push) need to be specified in the way we
usually specify memory safety, that is by a precondition like requires(valid(rsp−
40, 40)).

Interrupt safety means that the stack is cleaned up after processing the
whole interrupt. We cannot verify interrupt handlers like regular functions, be-
cause some of their subroutines push some registers on the stack, while only
other subroutines pop them.

For a few functions we also verified functional correctness, like in the SetZero

example shown earlier.

4.3 Experimental Results

We analyzed all assembler files as given, i.e. without a single change except for
adding contracts.

Sizes of Verification Task Table 5 presents the size in bytes of different
files in different processing stages. The column Annotated ASM denotes the
size in bytes of the annotated assembler function, i.e. the files the user edits.
The column Preproc ASM shows the file sizes after assembler macro expansion.
The column Translated C shows the file size after the translation to C. At this
point, we have the syntax translation but we do not have the simulator in the
code, but only included as header file. Finally, column Preproc C presents the
result of the C preprocessing phase. This is the file we finally give to VCC for
verification. Note that the translation is processing instruction by instruction.
The time consumption is only mentionable for the largest file Trap and takes 2
seconds there.

Verification Times Table 6 on the next page gives the verification time in
seconds for different functions. We checked 17 files of the Windows Hypervisor
for all previously mentioned properties, like memory safety, arithmetic safety,
call safety, and interrupt safety. This corresponds to approximately 4,000 lines
of assembler code, which is around 90% of the assembler code that is part of
Windows Hypervisor. The remaining 10% might be executed concurrently, which
we currently cannot handle.

The table shows only the functions of the four files we previously mentioned.

11

Filename Verification Time[s]

zero 1.45
crashdump 3.29

GuestContext < 0.01
Trap 67.20

Fig. 6. Verification times for various files of the Windows Hypervisor

We observe that the time needed for verification increases linearly with size.
This is due to the fact that our verification is modular, i.e. procedure by pro-
cedure. As long as the procedures do not grow too much in size and do not
introduce too many control flow paths, we can verify substantial code. For in-
stance, the procedure ExceptionDispatch, which is part of the Trap file, has
approximately 300 instructions. These 300 instructions turn into several hun-
dred C assignments. Nevertheless, it verifies in approximately 3 seconds. This
shows that our approach cannot be used only for short toy functions but also
for long and complex assembler implementations.

5 Related Work

The CLI stack project in the late 1980s [2] was the first project focussing on the
pervasive verification of computer systems. In total the system consisted of four
levels: starting from a verified FM 8502 microprocessor via a simple assembler
language up to a verified operating system. Later Boyer and Yu [3] refined this
approach and verified MC68020 assembler programs. They used the theorem
prover Nqthm as their verification tool; they formalized the MC68020 as Nqthm
theories, thus in effect giving an interpreter for the processor; assembler programs
are then translated into expressions over this special logic. Vx86 differs in various
dimensions from this early work, Vx86 works on the much more complex x86,
Vx86 incorporates contracts (including framing) into the assembler, Vx86 uses
an automatic theorem prover (ATP), Vx86 has been used to verify parts of a
real industrial strength operating system.

There are various projects to verify micro-kernels. Verisoft [12] is in spirit
similar to the CLI project. Verisoft developed machine-models for assembler,
small step and big step semantics for more abstract programming languages,
and programs for devices, kernels, operating systems and applications. However,
the Verisoft project only dealt with idealistic processors, inline assembler, and
OS. The L4.verifed project [13] aims at the formal verification of an industrial
strength implementation of a L4 micro-kernel, which is highly optimized for
the ARM platform. While the L4 project tries to do low level C verification, it
has – to the best of our knowledge – not yet started verifying assembler code.
Verisoft and the L4 project use the same verification technology. Both systems
use the interactive theorem prover Isabelle and a Hoare calculus embedded in
Isabelle [20] to verify properties of the micro-kernel. The automation was slightly

12

improved with the integration of automatic tools that can verify parts of the
proof obligations [7]. However the resulting system does not yet achieve the
automatization we achieved.

Another approach to guarantee that assembler programs are safe are Typed
Assembly Languages (TAL) [6]. TALs are low-level, statically typed target lan-
guages. TALs guarantee type safety, which typically implies memory safety. How-
ever, TALs do not guarantee arithmetic safety, call safety, interrupt safety or
other functional properties. Furthermore, TALs are often idealistic assembler
languages, they are only used as target languages for compilers; as such they do
not deal with the whole instruction set of the processor. We, however, also have
to deal with instructions like HLT or CPUID and the virtualization instruction
set.

Proof carrying code (PCC) has a similar goal [18]. Instead of defining type
safety for assembler code, PCC adds proofs to untrusted assembler files, which
establish certain properties. The receiver of the untrusted code is then able to use
a simple and fast proof validator to check that the proof is valid and hence the
untrusted code is safe to execute. Like TAL, PCC has focuses on memory safety;
it is not a general verification architecture. However, we think that translating
contracts from source level into assembler and then using Vx86 to discharge
those contracts could be an interesting alternative to extend the reach of PCC.

To our knowledge, there is no other project that tries to verify an existing
code base for an optimized hypervisor or which verifies assembler code using
contract annotations and an ATP.

6 Conclusion and Future Work

Vx86 is a verifier for proving the correctness of sequential Intel x86 assembler
code with AMD virtualization extensions against their contracts. Our approach
has been to (1) provide a C simulator for Intel x86, and (2) to translate the
annotated assembler code into C code for this simulator. Despite the fact that
providing a C simulator seems to be a detour for verifying assembler code, it has
turned out that this still allows us to verify the assembler portion of a complex
industrial program, like Windows Hypervisor, in reasonable time.

In the process of developing Vx86 we heave learnt the following characteristics
of handwritten assembler programs: they might have complex control flow, but
they operate only on a few registers and the memory; the operations on registers
are often low-level, in addition operations have many side effects. Recursive data
structures, which typically need transitivity to describe effects on them, are
rarely used in hand-written assembler. As a consequence, changes to registers
and the memory can often easily be described by enumeration and quantification.

We have also learned that assembler code is particularly well suited for au-
tomated verification:

– Providing an assembler verifier is overdue – except for assemblers there are
no tools to help assembly writers.

13

– Verifying assembler code is beneficial – if assembler code fails systems typi-
cally crash.

– Writing assembler contracts is feasible – the contracts often only mention a
limited amount of objects, furthermore the contracts are often easier than
the highly optimized implementation.

– Discharging assembler contracts is a sweet spot for ATPs – ATPs can deal
well with lots of low level detail, since they often have specialized decision
procedures for them, they can also deal well with quantifiers; however they
often cannot deal well with complex heap structures; luckily user written
assembler programs do not use them.

Vx86’s simulator semantics is currently based on our understanding of the
Intel and AMD instruction manuals. To be more reliable we need a review by
hardware developers. If changes are necessary we should be able to incorporate
them easily, we just need to change the simulator, the rest of the translation is
unaffected.

Vx86 is not yet concurrency aware. Certain parts of the assembler code base
are often concurrent. If the Windows Hypervisor, for example, shuts down the
physical machine, it does so by stopping all its processors, or in more detail:
the last processor which is alive finally has to shut everything down. As soon
as VCC will support concurrency, we will investigate how Vx86 can reuse that
model.

Vx86 is of course not restricted to consume only Windows Hypervisor code,
it can be used to verify other code bases as well. Furthermore, we think that
the presented approach is a viable way to quickly provide verifiers for other
processors. In fact, we were recently asked whether we could provide a verifier
for an ARM assembler as well. We think that this should be possible in a couple
of weeks.

Authors would like to thank Herman Venter for his help with getting Vx86
running and Peter Mueller for his very useful comments about this paper.

References

1. Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A modular reusable verifier for object-oriented programs. In
Frank S. de Boer, Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever,
editors, FMCO, volume 4111 of Lecture Notes in Computer Science, pages 364–387.
Springer, 2005.

2. William R. Bevier, Warren A. Hunt Jr., J. Strother Moore, and William D. Young.
An approach to systems verification. Journal of Automated Reasoning, 5(4):411–
428, 1989.

3. Robert S. Boyer and Yuan Yu. Automated correctness proofs of machine code pro-
grams for a commercial microprocessor. In Deepak Kapur, editor, CADE, volume
607 of Lecture Notes in Computer Science, pages 416–430. Springer, 1992.

4. Ernie Cohen. Validating the Microsoft Hypervisor. In Jayadev Misra, Tobias Nip-
kow, and Emil Sekerinski, editors, FM, volume 4085 of Lecture Notes in Computer
Science, pages 81–81. Springer, 2006.

14

5. Ernie Cohen, Mark A. Hillebrand, Dirk Leinenbach, Thomas In der Rieden, Michal
Moskal, Wolfgang Paul, Thomas Santen, Norbert Schirmer, Wolfram Schulte,
Stephan Tobies, and Burkhart Wolff. The Microsoft Hypervisor verification
project. 2008 (to be published).

6. Karl Crary and J. Gregory Morrisett. Type structure for low-level programming
languages. In Jiŕı Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors,
ICALP, volume 1644 of Lecture Notes in Computer Science, pages 40–54. Springer,
1999.

7. Matthias Daum, Stefan Maus, Norbert Schirmer, and M. Nassim Seghir. Inte-
gration of a software model checker into Isabelle. In Geoff Sutcliff and Andrei
Voronkov, editors, LPAR, volume 3835 of Lecture Noten in Computer Science,
pages 381–395. Springer, 2005.

8. Leonardo de Moura and Nikolaj Bjøner. Z3: An efficient SMT solver. In TACAS,
2008.

9. Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural language
for checking object-oriented programs. Technical Report 70, Microsoft Research,
May 2005.

10. Jan Dörrenbächer. Vamos microkernel: formal models and verification. In Inter-
national Workshop on System Verification, 2006.

11. Jean-Christophe Filliâtre and Claude Marché. Multi-prover verification of C pro-
grams. In Jim Davies, Wolfram Schulte, and Michael Barnett, editors, ICFEM,
volume 3308 of Lecture Notes in Computer Science, pages 15–29. Springer, 2004.

12. Mauro Gargano, Mark A. Hillebrand, Dirk Leinenbach, and Wolfgang J. Paul. On
the correctness of operating system kernels. In Joe Hurd and Thomas F. Melham,
editors, TPHOLs, volume 3603 of Lecture Notes in Computer Science, pages 1–16.
Springer, 2005.

13. Gernot Heiser, Kevin Elphinstone, Ihor Kuz, Gerwin Klein, and Stefan M. Petters.
Towards trustworthy computing systems: Taking microkernels to the next level.
2007.

14. Dirk Leinenbach, Wolfgang J. Paul, and Elena Petrova. Towards the formal ver-
ification of a C0 compiler: Code generation and implementation correctness. In
Bernhard K. Aichernig and Bernhard Beckert, editors, SEFM, pages 2–12. IEEE
Computer Society, 2005.

15. Jochen Liedtke. On microkernel construction. In Proceedings of the 15th ACM
Symposium on Operating System Principles (SOSP-15), Copper Mountain Resort,
CO, December 1995.

16. Micha l Moskal, Wolfram Schulte, and Herman Venter. Bits, words and types:
Memory models for a Verifying C Compiler, 2008.

17. Oleg Mürk, Daniel Larsson, and Reiner Hähnle. KeY-C: A tool for verification of
C programs. In Frank Pfenning, editor, CADE, volume 4603 of Lecture Notes in
Computer Science, pages 385–390. Springer, 2007.

18. George C. Necula. Proof-carrying code. In POPL, pages 106–119, 1997.
19. Zhaozhong Ni, Dachuan Yu, and Zhong Shao. Using XCAP to certify realistic

systems code: Machine context management. In Klaus Schneider and Jens Brandt,
editors, TPHOLs, volume 4732 of Lecture Notes in Computer Science, pages 189–
206. Springer, 2007.

20. Norbert Schirmer. Verification of Sequential Imperative Programs in Isabelle/HOL.
PhD thesis, Technische Universität München, 2006.

21. Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separation
logic. In Martin Hoffmann and Matthias Felleisen, editors, POPL, pages 97–108.
ACM, 2007.

15

