
On the Relative Completeness of Bytecode
Analysis versus Source Code Analysis

Francesco Logozzo & Manuel Fähndrich

Microsoft Research
{logozzo,maf}@microsoft.com

Abstract. We discuss the challenges faced by bytecode analyzers de-
signed for code verification compared to similar analyzers for source code.
While a bytecode-level analysis brings many simplifications, e.g., fewer
cases, independence from source syntax, name resolution, etc., it also
introduces precision loss that must be recovered either via preprocess-
ing, more precise abstract domains, more precise transfer functions, or a
combination thereof.
The paper studies the relative completeness of a static analysis for byte-
code compared to the analysis of the program source. We illustrate it
through examples originating from the design and the implementation
of Clousot, a generic static analyzer based on Abstract Interpretation
for the analysis of MSIL.

1 Introduction

We are interested in static program analysis for program verification, where
the goal is to infer invariants that are sufficient to discharge assertions which
appear in the program either explicitly (specified by the user through assertions)
or implicitly (e.g., array bound checks, null dereferences, division by zero, etc.).
Such analyses need to be precise enough to validate the assertions. In this paper,
we will focus our attention on static analyses for program verification and we
call these PSA, Precise enough Static Analyses.

PSA are often designed to work at the program source level, e.g., [5, 17, 18,
6, 26]). There are many reasons for that. The program source provides a uniform
view which abstracts machine details. Source code analysis is also able to directly
exploit program structure, such as loops, to increase the precision via techniques
such as reductive iterations [12], and the narrowing application by re-execution
from a post-fixpoint [8].

As we will see in this paper, the most immediate benefit of source analy-
sis however is that it provides the analysis designer with a large code window,
allowing him/her to specialize transfer functions for extra precision.

The analysis of low level code provides different advantages: 1) it is more
faithful, as it analyzes the code that is actually executed (or closer to), 2) it en-
ables the analysis of libraries when source code is not available, 3) the analyzer
avoids redundant work that the compiler performed, such as name resolution,
type checking, template/generics instantiation, 4) the semantics of high-level

constructs that are expanded by the compiler, such as try . . . catch . . . finally,
delegates, partial classes in C#, or generics in C# and Java, need not be dupli-
cated. As a consequence a low-level code analyzer needs to deal with many fewer
constructs than a source analyzer, reducing its complexity. Finally, 5) the ana-
lyzer can be language independent; e.g., analyzing the common target language
MSIL of the .NET platform provides analysis of C#, VB, Managed C++, F#.

Because of these advantages, plenty of static analyses have been developed for
low-level code. Most of them address non-relational properties like type checking
[14, 16, 25], non-cyclicity [27], nullness [10], etc. Others target numerical proper-
ties, e.g., to check buffer overruns [3] or array accesses [20].

Our observation is that while writing a static analyzer for a low-level language
or bytecode is simpler than writing one for source code due to the above advan-
tages, it is non-trivial to match the precision of a similar analysis performed at
source level, due to the missing high-level structure and the reduced size of the
code window used by transfer functions. The rest of this paper elucidates this
observation with examples and general principles.

Example 1 (Motivating Example). Suppose we analyze a program containing the
high level statement S ≡ assume x− y ≤ 7, using the difference bounds abstract
domain [22]. At source level, the constraint x− y ≤ 7 is a difference constraint,
and it can be represented faithfully by the abstract state. Now consider the
compilation of S into three address code:

0 :t1 ← x− y

1 :t2 ← t1 ≤ 7
2 :assume t2

Analyzing this code sequence with the same domain used at the source level
raises immediate problems:

Expression complexity The assignment at line 0 involves three variables,
which cannot be captured precisely by the difference bounds domain. As
a consequence, the abstract value for t1 is >.

Type complexity At line 1, t2 is assigned the result of a boolean expression1.
At the source level there was no such boolean assignment, and in fact, the
domain used at source level cannot encode the relation between t1 and t2.

As a result, the analysis of the code sequence using the same domain as at the
source level produces an abstract state that contains no information about the
relation of x and y. Several solutions are possible to mitigate the above problems.

– Use a more precise numerical abstract domain for the low-level analysis that
handles relations among more than two variables, such as Octahedra [7], or
Polyhedra [9, 2]. This approach however leads to scaling problems, as these
domains exhibit exponential complexity. No polynomial domains are known
that can handle more than two variables [23].

1 Please note that this case is orthogonal to the previous one, i.e., the problem shows
up even if the assignment was t2 ← (x− y ≤ 7).

2

– Split the current abstract domain in two at the boolean assignment: one
where t2 == true and one where t2 == false. This method has two main
drawbacks: (i) it may lead to exponential explosion by doubling the abstract
states at each conditional branch; and (ii) it still introduces loss of precision,
because the relation to be assumed at line 2 is lost.

– A more general solution which addresses both of the problems and all others
related to the limited code window, is to use a lightweight symbolic abstract
domain to compute available expressions at each program point.

Let us briefly sketch how the use of a symbolic domain to recover expressions
works on the example. At line 2, the analysis first asks the symbolic domain to
refine variable t2. This refinement, using line 1, produces t2 ≡ t1 ≤ 7, which
can be further refined, using line 0, to produce t2 ≡ x−y ≤ 7. The analysis then
passes the refined expression x− y ≤ 7 to the difference bounds domain, which
handles it exactly as the source analysis does. ut

As the example shows, PSA of low-level code requires more than just reusing
the domains suitable for high-level code, otherwise, precision is lost. In this
paper, we investigate the relative completeness of low-level code analysis versus
source code analysis, i.e., what is required for bytecode analysis to be as precise as
source code analysis, without requiring the use of domains with worse complexity.

We present representative issues that crop up when designing precise and
scalable bytecode analyses. We faced those issues during the design and imple-
mentation of Clousot [19], a PSA for .NET based on abstract interpretation.
The issues described are not specific to .NET, but arise for all low-level analy-
ses. They manifest in (i) the precise handling of assignments, tests and branches,
and (ii) the fixpoint iteration strategy, in particular for narrowing and reductive
iterations. We discuss how to overcome these issues, and the solutions we have
adopted in Clousot. In general, quantifing the impact of such issues is hard.
We tried a rough (under-)estimation by switching off some precision refinements
discussed in this paper (not all of them could be switched off, as many are buried
deep in the architecture of Clousot). We obtained a loss of precision of 10% in
the analysis of the array accesses of mscorlib.dll, the main library in the .NET
framework. Such loss of precision is enough to generate more than 1400 false
positives, i.e., to make the analysis de facto unuseful.

2 Languages

We use a while-language as a representative for high-level languages, and a three
address code instruction set as a representative of low-level code.

2.1 While-Language

Our high level language is a simple while-language with no dynamic memory
allocation, shown in Fig. 1. The semantics is standard. We use a single type,
integers. Following widespread convention, we assume that 0 stands for false
and all the other integers for true. Boolean expressions shortcut evaluation.
We also consider assert and assume statements, which enable assume/ guaran-
tee reasoning, e.g., to (abstract) method calls. The statement assert e; checks

3

Stm ::= skip; | Var := Exp; | Stm Stm | while(BExp) {Stm}; | if(BExp) {Stm }else {Stm }; |
assume BExp; | assert BExp;

Exp ::= Lit | Exp op Exp

BExp ::= Lit | Exp relop Exp | !(BExp) | BExp && BExp | BExp ‖ BExp
Lit ::= Var | int Var ::= · · · | x | y | . . . int ::= · · · | −1 | 0 | 1 | . . .
op ::= + | − | ∗ | / relop ::=<|≤|==

Fig. 1. The while-language: a high-level language

IstrStream ::= Label : Istr | Label : Istr ′\n′ IstrStream | ε
Label ::= 0 | ... | 232

Istr ::= Var← ExpTwoOps |
jmp Label | jmpIf Var Label | assert Lit | assume Lit | nop

ExpTwoOps ::= Lit | Lit op Lit | Lit relop Lit | Lit && Lit | Lit ‖ Lit

Fig. 2. Three address code: a low-level language.

if the expression e holds. If it does not, then the program fails. The state-
ment assume e; acts as an execution guard for the following statements. If the
condition does not hold, execution gets stuck.

2.2 Three Address Code

Our low-level language is a three address code instruction set shown in Fig. 2.
This language is higher level than MSIL, Java bytecode, or assembly, but it
simplifies our presentation and is sufficient to exhibit the problems of interest.

An instruction stream is a sequence of labeled instructions. An assignment
instruction x ← e2ops updates the value of the variable x with the result of the
evaluation of the expression e2ops which contains at most two operands. As a
consequence the expressions that can be atomically evaluated and assigned at
low level are a subset of those at higher level, i.e., ExpTwoOps ⊆ Exp ∪ BExp. In
the next sections, we will see how this impacts the precision and performances
of PSA.

2.3 Compilation

We assume two compilation functions: C ∈ [Stm → IstrStream] compiles a
program expressed in the high-level language into a low-level instruction stream
one, and Ce ∈ [(Exp∪BExp)→ IstrStream] compiles expressions into a sequence
of instructions for evaluating them. The result of the evaluation is in a (reserved)
variable res. We expect the functions C and Ce to perform naive compilation,
i.e., a straightforward translation without any program optimization [1].

3 Abstract Interpretation

Abstract interpretation is a theory of approximations [8]. It formalizes the in-
tuition that semantics are more or less precise depending on the observation

4

level. The more precise the abstract semantics, the more precise the properties
about the execution of the program it captures. A static analysis is an abstract
semantics which is rough enough to be computable. A precise static analysis is
a static analysis which is precise enough to capture the properties of interests,
e.g., those needed to prove the absence of certain runtime errors.

3.1 Abstract Domains

An abstract domain D̄ is the complete lattice 〈E,v,⊥,>,t,u〉, where E is the set
of abstract elements, ordered according to the relation v. The smallest abstract
element is ⊥, the largest is >. The join t, and the meet u, are also defined. With
a slight abuse of notation, we will confuse an abstract domain D̄ with the set of
its elements E.

The elements of an abstract domain are related to the concrete domain D
(also a complete lattice), by means of a monotonic concretization function γ ∈
[D̄ → D]. In this paper we assume the concrete domain to be the complete
boolean lattice P(Σ), where Σ = [Var→ Z].

Given two abstract domains, D̄1 and D̄2, their reduced cartesian product is
D̄1 ⊗ D̄2, whose elements are pairs which satisfy the reduction condition:

∀〈d̄1, d̄2〉 ∈ D̄1 ⊗ D̄2. γD̄1⊗D̄2
(〈d̄1, d̄2〉) ⊆ γD̄1

(d̄1) ∩ γD̄2
(d̄2) .

An abstract domain is said to be relational if it keeps relations between
program variables. Otherwise it is said to be non-relational.

The elements of the abstract domain of intervals, Intv, are {[i, s] | i, s ∈
Z ∪ {−∞,+∞}}. The concretization function, γIntv ∈ [Intv → P(Z)] is defined
as γIntv([i, s]) = {z ∈ Z | i ≤ z ≤ s}. The abstract domain of boxes, Boxes,
is the functional lifting of Intv, i.e., Boxes = [Vars → Intv]. The concretization
of a box, γBoxes ∈ [Boxes → P(Σ)] is defined as γBoxes(f) = {σ ∈ Σ | ∀x.x ∈
dom(f) =⇒ σ(x) ∈ γIntv(f(x))}. From the definition of γBoxes, it follows that the
meaning of a variables in Boxes is independent from all the others, which implies
that Boxes is a non-relational abstract domain. The time and space complexity
of the operations on Boxes is O(n), where n is the number of variables.

The abstract domain of Polyhedra, Poly [9], captures linear constraints be-
tween program variables:

∑i<n
i=0 ai ∗ xi ≤ z, with ai, z ∈ Z. The concretization

function γPoly ∈ [Poly → P(Σ)] is defined as the intersection of all the con-
straints : γPoly(P) =

⋂∑i<n
i=0 ai∗xi≤z∈P {σ ∈ Σ |

∑i<n
i=0 ai ∗ σ(xi) ≤ z}. From the

concretization function, it follows that Poly can capture properties between an
arbitrary number of variables, thus it is a relational domain. The complexity of
Poly is O(2n) both in space and time.

3.2 Transfer Functions

Abstract interpreters implement an upper approximation τ̄ of the best abstract
transformer τ̄∗, i.e. ∀d̄ ∈ D̄. τ̄∗(d̄)vτ̄(d̄). An abstract transfer function τ̄ is (i)
usually hand-crafted, and (ii) tuned to maximize the precision/cost trade-off.

5

It is common practice for the implementation of an abstract domain D̄ to
provide two abstract transfer functions: one for the assignment and one for the
handling of tests [5, 18, 28]. The assignment abstract transfer function, D̄.assign,
is an over-approximation of the states reached with the concrete assignment:

∀x, e.∀d̄. {σ[x 7→ v] | σ ∈ γ(d̄), JeK(σ) = v} ⊆ γ(D̄.assign(d̄, x, e)).

The test abstract transfer function, D̄.test, acts as a kind of filter to the input
states:

∀e.∀d̄. {σ ∈ γ(d̄) | JeK(σ) 6= 0} ⊆ γ(D̄.test(d̄, e)).

It is vital for a PSA to provide a precise approximation of test.

4 Relative Completeness of Precise Analysis of Bytecode

In this section, we define a generic abstract semantics for the high level language,
H̄J·K ∈ [Stm → D̄ → D̄], by structural induction. In parallel, we define the
abstract semantics for the low level language, L̄J·K ∈ [IstrStream → D̄ → D̄].
For each kind of statement and expression, we (i) express whether and under
what conditions L̄J·K is complete w.r.t. H̄J·K, i.e., when L̄J·K is as precise as H̄J·K,
and (ii) show how best to overcome precision problems, e.g., by refining the
abstract domain or the transfer functions.

4.1 Notions of Relative Completeness

We distinguish two notions of relative completeness: strong and weak. Strong
relative completeness requires the low-level analysis not to lose information when
using the same abstract domain. Weak relative completeness allows the low-level
analysis to use a refinement of the abstract domain used at source level.

Definition 1 (Strong Relative Completeness). Given statement Stm, ab-
stract domain D̄, and projection function π ∈ [D̄ → D̄], which removes all the
temporary variables introduced by compilation, if

∀d̄ ∈ D̄. π(L̄JC(Stm)K(d̄))vH̄JStmK(d̄), (1)

then L̄J·K is strong-relatively complete w.r.t. to H̄J·K for statement Stm.

Note that the definition above does not require equality of precision, only
subsumption. It may be the case that the analysis at the bytecode level is more
precise in some cases.

Definition 2 (Weak Relative Completeness). Given statement Stm, two
abstract domains D̄ and D̄+ such that D̄+ is more precise than D̄ : D̄+ −−−→←−−−α

γ

D̄, and projection function π ∈ [D̄+ → D̄+], which removes all the temporary
variables introduced by compilation, if

∀d̄ ∈ D̄. α(π(L̄JC(Stm)K(γ(d̄))))vH̄JStmK(d̄), (2)

then L̄J·K is weak-relatively complete w.r.t. to H̄J·K for statement Stm up to the
refined domain D̄+.

6

Weak relative completeness relaxes the previous definition by enabling the
use of a more precise abstract domain for the analysis of the bytecode. It is
evident that strong relative completeness implies weak relative completeness.

4.2 Skip

Handling of skip is straightforward: H̄JskipK = λd̄.d̄. The skip statement is
compiled with a nop: C(skip) = n : nop, and L̄Jn : nopK = λd̄.d̄. As a conse-
quence, in this case the bytecode analysis is trivially strongly complete.

4.3 Sequence

The analysis of a sequence of statements is usually just the composition of the
analyses:

H̄JStm1Stm2K = H̄JStm2K ◦ H̄JStm1K. (3)

The compilation is the juxtaposition of two sequences of instructions:

C(Stm1Stm2) =
[

C(Stm1)
C(Stm2) .

The abstract semantics of a sequence of instructions is the compositions of the
analyses:

L̄Jk : Istr ′\n ′ IstrStreamK = L̄JIstrStreamK ◦ L̄Jk : IstrK. (4)

Assuming that low-level analysis is complete (resp. weakly complete) for the
subsequences, from (i) the fact that projection is an abstraction; and (ii) the
monotonicity of the abstract functions, it follows that the low-level analysis of
the sequence is complete (resp. weakly complete) w.r.t. the high-level analysis.

Note that in general, sequencing may cause loss of precision for both high-
and low-level analysis w.r.t. the concrete semantics.

4.4 Assignments

A source language analysis just passes the assignment to the underlying abstract
domain D̄:

H̄Jx := e;K = λd̄.D̄.assign(d̄, x, e). (5)

The compilation of the assignment generates a sequence of instructions to eval-
uate e, and an assignment of the result to x:

C(x := e;) =
[

Ce(e)
k : x← res

. (6)

Without loss of generality, we will assume in the sequel that the last instruction
of Ce(e) assigns directly to the target variable x instead of res. Thus, the final
assignment is similarly passed to underlying abstract domain:

L̄Jk : x← e2opK = λσ.D̄.assign(σ, x, e2op). (7)

7

If the source expression e is such that e ≡ l or e ≡ l1op l2, where l, l1, l2 ∈ Lit,
and op is as in Fig. 1, then (5), (6) and (7) imply the strong relative completeness
of L̄Jk : x← e2opK. However, this is not the case for more complex expressions,
as the next (counter-) examples show.

Example 2 (Precision Loss using Interval Arithmetic). Suppose we use the Boxes
domain to analyze the assignment A ≡ z := (x+y)∗y. Let b̄0 = [x 7→ [2, 3], y 7→
[−1, 1]] be the abstract input state. Then

H̄Jz := (x + y) ∗ y;K(b̄0) = b̄0[z 7→ [−2, 4]],

using a specialized source transfer function. On the other hand, the compilation
of A is

C(z := (x + y) ∗ y;) =
[

0 : t← x + y
1 : z← t ∗ y , (8)

so that the abstract state after the program point 0 is b̄0[t 7→ [1, 4]], and
hence the abstract post-state is L̄JC(z := (x + y) ∗ y;)K(b̄0) = b̄0[t 7→ [1, 4], z 7→
[−4, 4]]. ut

The example shows that the analysis of the compiled code introduces a loss of
precision w.r.t. to a specialized source level transfer function. Intuitively, it is
caused by the fact that the domain Boxes is non-relational, and hence at program
point 1 it has lost the information that t depends on y, so that two spurious
cases are introduced.

As the incompleteness originates from the use of a non-relational numerical
domain, one may advocate the usage of a relational domain. If we chose to
analyze (8) with Oct, the problem, unfortunately, does not go away. At program
point 0, we have an assignment that involves three variables. The domain cannot
track the relation between t, x and y. As a consequence, no improvement is
obtained at 1 using Octagons.

If we chose instead to analyze (8) with Poly, then the assignment at 0 can
be precisely captured by this domain. So the abstract post-state is p̄ = {2 ≤
x ≤ 3,−1 ≤ x ≤ 1, t − x − y = 0}. The instruction at 1 involves a quadratic
expression (the multiplication of two variables), which a naive implementation
of Poly.assign may simply decide to ignore. However, it is easy to see how a more
refined implementation can figure out that, because of p̄, t = x + y it can use
this equality to simplify the multiplication and infer the tightest lower bound
−2 ≤ z, and hence satisfy (2).

Example 3 (Precision Loss using Octagons). Let us analyze the assignment B ≡
z := 2∗x−y; with the Oct domain. Let the initial abstract state be ō0 = {x−y ≤
1, y − x ≤ −1}. Even if the source expression is not in the octagonal form, the
designer of the domain can refine Oct.assign (i) to replace x in the right hand
side of the B by y− 1, and (ii) to perform the basic algebraic simplifications, so
that

H̄Jz := 2 ∗ x− y;K(ō0) = ō0 ∪ {z− y ≤ 2, y− z ≤ −2}.

8

On the other hand, the compilation of B is

C(z := 2 ∗ x− y;) =
[

0 : t← 2 ∗ x
1 : z← t− y

. (9)

At program point 0, there is no way one can refine Oct.assign to provide
an octagonal constraint for t. For instance, the substitution of x by y − 1
produces t ← 2 ∗ y − 2, which cannot be represented by an octagon con-
straint, too. As a consequence, no constraint can be inferred on t and hence
z: L̄JC(z := 2 ∗ x− y;)K(ō0) = ō0. ut

Intuitively, the precision loss in the previous example is caused by splitting
“large” expressions into smaller chunks, thereby reducing the expression window
seen by the atomic operations in the abstract domain, and hence limiting their
ability to infer relations.

If we chose instead to analyze (9) with Poly, then both assignments at pro-
gram points 0 and 1 are linear constraints that are represented exactly by this
abstract domain. As a consequence, the low-level analysis, when performed on
a more precise abstract domain is (weak-relatively) complete.

Discussion: Choosing the Right Abstract Domain. The previous exam-
ples suggest that we can obtain weak completeness by systematically using Poly.
This is the direction taken by some analyzers for low-level code, e.g., [11, 20,
4]. We do not advocate this approach, as Poly exhibits an exponential complex-
ity in practice (in the number of variables). In order to overcome this issue in
Clousot, we have chosen to not refine directly the numerical domain D̄, but to
combine it with a symbolic domain Symb to propagate expressions, [1, 24]. In
other words the analysis is done on the refined abstract domain Symb⊗ D̄. The
analysis of k : z ← e2op with an abstract element 〈s̄, d̄〉, first uses s̄ to refine
e2op to an expression e2op+, then it performs the assignment over the basic
numerical domain: D̄.assign(d̄, z, e2op+).

4.5 Assumptions and Assertions

We consider just the assume statement, the case for assert being similar. At
source level, the PSA just passes the expression to be assumed to the underlying
domain:

H̄Jassume e;K = λd̄.D̄.test(d̄, e).

The compilation generates code to evaluate the condition e, and it assumes the
result:

C(assume e;) =
[

Ce(e)
k : assume res

. (10)

The bytecode semantics passes the literal to the underlying abstract domain:

L̄Jk : assume lK = λd̄ ∈ D̄.test(d̄, l).

The compilation schema (10), which is common to e.g., the C# and Java com-
pilers, introduces severe imprecision in analyses, as illustrated by Ex. 1 and by:

9

Example 4 (Precision Loss in Tests). Consider the statement D ≡ assume 0 ≤
x; to be analyzed with Oct, in the initial state >Oct = ∅. Then,
H̄Jassume 0 ≤ x;K(>Oct) = {−x ≤ 0}. The compilation of D is

C(assume 0 ≤ x;) =
[

0 : res← 0 ≤ x
1 : assume res

. (11)

At program point 0, res is assigned the result of evaluating the boolean condi-
tion. Since nothing is known in the input state about x, nothing can be concluded
about the truth of 0 ≤ x, and hence res is unconstrained. As a consequence,
L̄JC(assume 0 ≤ x;)K(>Oct) = >Oct. ut

The previous example shows that strong relative completeness does not hold.
If we analyze (11) with Poly, the situation does not change, because even Poly
cannot capture the relation between a variable and the truth value of an ex-
pression. Thus, if we seek weak relative completeness, we need to refine the ab-
stract domain with either an abstract domain for tracking boolean expressions,
or more generally use the symbolic abstract domain Symb introduced in Sect 4.4
to “reconstruct” larger expressions, that can then be passed to the underlying
numerical abstract domain.

Whereas in Sect 4.4 the use of Symb was just an alternative w.r.t. the use of
a more precise numerical domain, it becomes a necessity for handling boolean
expressions. The use of the symbolic domain during low-level analysis requires
a refinement of the transfer functions, as shown by the next example.

Example 5 (Precision Loss Induced by Compilation). Consider a slight modifica-
tion of the previous example: F ≡ assume !(0 ≤ x); to be analyzed with Oct, in
the entry state >Oct. H̄Jassume !(0 ≤ x);K(>Oct) = {x ≤ −1}. The compilation
of F (e.g., by C#) is

C(assume !(0 ≤ x);) =

0 : t← 0 ≤ x
1 : res← t == 0
2 : assume res

. (12)

At program point 2, the analysis of the compiled code, using the refined domain
Symb ⊗ Oct infers the abstract state r̄ = 〈[t 7→ 0 ≤ x, res 7→ t == 0],>Oct〉.
Then, res is refined to the expression res+ ≡ (0 ≤ x) == 0, which can-
not be generated by the syntax in Fig. 1. As a consequence, Oct.assign, de-
signed for the high level, does not understand res+, and hence ignores it:
L̄JC(assume !(0 ≤ x);)K(〈>Symb,>Oct〉) = r̄. ut

Discussion: Refining the Transfer Functions, and Program Transfor-
mations. The example above underlines the fact that, in order to obtain weak
completeness, one must also refine the transfer functions. For instance, in the ex-
ample Oct.assign must be refined to perform the semantic preserving rewritings
(0 ≤ x) == 0 !(0 ≤ x) x < 0.

10

Ce(e)
k : b← res == 0

k + 1 : jmpIf b t

''NNN
NN

wwppp
pp

C(Stm1)

))SSSSSSSS
C(Stm2)

uukkkkkkkk

out : nop

Fig. 3. The control flow graph constructed from C(if(e) {Stm1}else {Stm2};).

In practice, a PSA designer has two choices: perform the rewriting phase
online or offline. In the first case, a transfer function first rewrites the boolean
expressions, e.g., by applying the De Morgan laws, by rewriting e == 0 as !(e),
etc., and then proceeds. In the second case, in a pre-processing step, a program
S is analyzed with just Symb, all the expressions in S are first refined and then
simplified as above, to obtain a refined program S+. Then, S+ is analyzed using
D̄. In Clousot, we have adopted the first approach.

4.6 Conditionals

The analysis of conditional statements (i) refines the input abstract state with
the guard, (ii) analyzes the two branches in the refined state, and (iii) joins the
results at the exit point. Precise handling of guards is essential for a PSA.

H̄Jif(e) {Stm1}else {Stm2};K =
λd̄.H̄JStm1K(D̄.test(d̄, e)) t H̄JStm2K(D̄.test(d̄, !(e))). (13)

One possible compilation is:

C(if(e) {Stm1}else {Stm2};) =

Ce(e)
k : b← res == 0

k + 1 : jmpIf b t
C(Stm1)
jmp out

t : C(Stm2)
out : nop

. (14)

The low level analysis of (14) can be made very similar to (13), provided that
some preprocessing of the bytecode is performed. The first step is to construct the
control flow graph from (14), as in Fig. 3. However, that is not enough, because
one wants to know that !(b) (resp. b) holds at program point k + 2 (resp. t).
Propagating such an information during a dataflow analysis is non-trivial.

A better approach is to provide another view of the code (14), in which the
guard of the conditional is made explicit in the true-branch and the false-branch

11

C(if(0 ≤ i && i < len) {Stm1}else{Stm2}) =

0 : t1 ← 0 ≤ i

1 : b1 ← t1 == 0
2 : jmpIf b1 8
3 : t2 ← i < len

4 : b2 ← t2 == 0

5 : jmpIf b2 8
6 : res ← 1
7 : jmp 9
8 : res ← 0

9 : jmpIf res k + 1
10 : C(Stm2)
k : jmp out

k + 1 : C(Stm1)
out : nop

Fig. 4. The (simplified version of the) code generated by the C#2.0 compiler for the
statement if(0 ≤ i && i < len) {Stm1}else{Stm2}.

as assume statements. This is the direction we have taken in Clousot. In general,
let B the block which computes the truth value of the guard e, T(e) and F(e)
the (compilation of the) two branches of the conditional dominated by (resp.)
assume b and assume !(b), and O be the exit block. Then the low level semantics
can be defined as:

L̄

t B
}}{{ !!CC

T(e)
!!CC

F(e)
}}{{

O

|

=

λr̄ ∈ D̄⊗ Symb.
let r̄1 = L̄JBK(̄r) in
let r̄t = L̄JT(e)K((D̄⊗ Symb).test(̄r1, e)) in
let r̄f = L̄JF(e)K((D̄⊗ Symb).test(̄r1, !(e))) in
in r̄ttr̄f .

(15)
However, incompleteness can still show up if the compilation scheme is dif-

ferent from (14), in particular for the handling of expressions. The next example
is inspired by the way the C# compiler [21], generates code for shortcutting
boolean expressions.

Example 6 (Loss of Precision Induced by Compilation of Shortcut Expressions).
Let G be the code snippet if(0 ≤ i && i < len) {Stm1} else {Stm2}. The
C#2.0 compiler generates code that looks like the one in Fig. 4. Briefly, if one
of the operands of && is false, then it jumps to line 8, which sets res to 0 .
Otherwise, it sets res to 1. The two flows are then merged at program point
9, which implies that res == 0 and res == 1 are joined, i.e., the information
about the truth of the guard, res == 0 ⇐⇒!(0 ≤ i && i < len) and res ==
1⇐⇒ (0 ≤ i && i < len) is lost. So it cannot be further propagated in the two
branches of the conditional. ut

The incompleteness in the previous example can be resolved either by precisely
modeling the relation between boolean variables and boolean expressions with
BDDs as in [15], or by approximating the double implication with a simple
implication, e.g., using trace partitioning, [13]. As a consequence, the underlying
abstract domain must be refined to the reduced cardinal power P(Lit)→ (D̄⊗
Symb), so as to obtain the weak relative completeness for shortcut conditionals.

12

4.7 Loops

The semantics of a loop is given as a least fixpoint over a suitable partial order:

H̄Jwhile(e) { Stm };K = λd̄. let ¯inv = lfpv⊥λX. d̄tH̄JStmK(D̄.test(X, e))
in D̄.test(¯inv, !(e)).

The least fixpoint equals the limit of the increasing iterations starting from ⊥. In
general the iterations may not converge, so that a widening operator [8] is used
to force convergence to a post-fixpoint. Then, a narrowing operator [8] is applied
to recover some precision. An easy yet generic and useful form of narrowing is
given by doing one more iteration starting from the post-fixpoint, as shown by
the next example.

Example 7 (Narrowing by Re-Execution). Let W ≡ z := 0; while(z <
100) { z := z + 1; }; assert z == 100; and let us analyze it with the Intv
abstract domain. The fixpoint iterations produce the increasing chain of inter-
vals [0, 0]v[0, 1]v[0, 2] . . .v[0, n], which is extrapolated by the standard widen-
ing on intervals to [0,+∞], so that invO = [z 7→ [0,+∞]] is an invariant for the
loop. On the other hand, it is not precise enough to prove the assertion after
the loop. By first re-executing the body starting from the fixpoint, one gets
[0, 0]t[1, 100] = [0, 100], so that invM = [z 7→ [0, 100]]. Then, invM intersected
with the negation of the loop guard is enough to prove the assertion. ut

The compilation of a while statement looks like

C(while(e) { Stm };) =

b : Ce(e)
k : b← res == 0

jmpIf b out
C(Stm)
jmp b

out : nop

. (16)

A typical analysis of the unstructured code above first detects the back edges,
in order to find the program points where widening is needed. However, back
edges detection is not enough to ensure relative completeness when extrapolating
operators are used, as shown by the next example.

Example 8 (Narrowing by Re-Execution, continued). The CFG graph for W is
in Fig. 5. A standard back-edges analysis detects that the block starting at 1 is
the target of a back edge, and hence the widening point. Then, we analyze the
program on the domain Intv ⊗ Symb, and we infer the invariant z 7→ [0,+∞] at
program point 1. Now we want to refine it using the re-execution based narrow-
ing. In the source level case, we just proceeded by induction on the structure.
At the low-level, we don’t know which edge leads into the loop, and which edge
leads out of the loop. If we push the invariant first onto the left branch (i.e., on
program point 4), then we obtain the desired refined z 7→ [0, 100], which is then
pushed onto the right branch, where it is enough to prove the assertion is not
violated. On the other hand, if we push the invariant first onto the right branch
(i.e., on program point 6), we obtain no invariant refinement. ut

13

0 : z := 0

��

1 : nop
2 : res← z < 100
3 : b← res == 0

''OOO
OOO

ww
4 : assume !(b)
5 : z := z + 1

77

6 : assume b

7 : assert z == 100

Fig. 5. The enhanced CFG graph for the three addresses compilation for the code in
Ex. 7. Exact narrowing requires the knowledge that the left branch leads to a cycle.

The example shows that applying standard narrowing techniques from source
level analysis is tricky on low-level code, as the necessary high-level loop struc-
tures are not apparent. Symbolic expression recovery is not sufficient, as control
flow is involved. Thus, to obtain relative completeness for loops, some form of
loop recovery must be performed.

5 Conclusions

We have presented a series of issues faced by low-level code analyzers if their
precision is to match the precision typically achieved by a source analysis. We
have formalized the relation between the low-level and high-level analyses via the
concepts of strong and weak relative completeness. By analysis on the program
constructs, we have shown: (i) how strong relative completeness can be obtained
only for trivial cases, and (ii) how weak relative completeness can be obtained
by refining the underlying domain for the analysis, the transfer functions, and
by pre-processing of the program. However, it turns out that the refinement step
must be handled with care by the designer of the precise static analysis, in order
to avoid transforming a polynomial problem (e.g., the analysis of the source
program with Octagons) into an exponential one.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison Wesley, 1986.

2. R. Bagnara, P.M. Hill, and E. Zaffanella. The Parma Polyhedra Library.
http://www.cs.unipr.it/ppl/.

3. G. Balakrishnan and T. W. Reps. Analyzing memory accesses in x86 executables.
In CC’04. Springer-Verlag, April 2004.

4. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie: A
modular reusable verifier for Object-Oriented programs. In FMCO’05. Springer-
Verlag, November 2005.

14

5. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In PLDI’03. ACM
Press, June 2003.

6. F. Bourdoncle. Abstract debugging of higher-order imperative languages. In
PLDI’03. ACM Press, June 1993.

7. R. Clarisó and J. Cortadella. The octahedron abstract domain. In SAS’04.
Springer-Verlag, August 2004.

8. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL’77.
ACM press, January 1977.

9. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL ’78. ACM Press, January 1978.

10. M. A. Fähndrich and K. R. M. Leino. Declaring and checking non-null types in an
Object-Oriented language. In OOPSLA’03, pages 302–312. ACM, 2003.

11. D. Gopan and T. W. Reps. Lookahead widening. In CAV’06. Springer-Verlag,
August 2006.

12. P. Granger. Improving the results of static analyses programs by local decreasing
iteration. In FSTTCS, pages 68–79. Springer-Verlag, 1992.

13. M. Handjieva and S. Tzolovski. Refining static analyses by trace-based partitioning
using control flow. In SAS ’98. Springer-Verlag, 1998.

14. ECMA Int. Standard ECMA-355, common language infrastructure, June 2006.
15. B. Jeannet. Representing and approximating transfer functions in abstract in-

terpretation of hetereogeneous datatypes. In SAS’02. Springer-Verlag, September
2002.

16. X. Leroy. Bytecode verification on Java smart cards. Software - Practice and
Experience (SPE), 32(4), 2002.

17. T. Lev-Ami, R. Manevich, and S. Sagiv. TVLA: A system for generating abstract
interpreters. In 18th IFIP Congress Topical Sessions. Kwuler, August 2004.

18. F. Logozzo. Cibai: An abstract interpretation-based static analyzer for modular
analysis and verification of Java classes. In VMCAI’07. Springer-Verlag, January
2007.

19. F. Logozzo and M. A. Fähndrich. Pentagons: A weakly relational abstract domain
for the efficient validation of array accesses. In ACM SAC’08 - OOPS. ACM Press,
March 2008.

20. M. V. Hermenegildo M. Mendez, J. Navas. An efficient, parametric fixpoint algo-
rithm for analysis of Java bytecode. In Bytecode’07. Elsevier, April 2007.

21. Microsoft Inc. Visual C#. http://msdn2.microsoft.com/en-us/vcsharp/.
22. A. Miné. A new numerical abstract domain based on difference-bounds matrices.

In PADO’01. Springer-Verlag, May 2001.
23. A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis, École Poly-

thechnique, 2004.
24. A. Miné. Symbolic methods to enhance the precision of numerical abstract do-

mains. In Springer-Verlag, editor, VMCAI’06, January 2006.
25. K. Palacz, J. Baker, C. Flack, C. Grothoff, and J. Yamauchi, H.and Vitek. Engi-

neering a common intermediate representation for Ovm framework. The Science
of Computer Programming, 57(3):357–378, September 2005.

26. RopasWork, Inc. Airac5. http://ropas.snu.ac.kr/airac5/.
27. S. Rossignoli and F. Spoto. Detecting non-cyclicity by abstract compilation into

boolean functions. In VMCAI’06. Springer-Verlag, January 2006.
28. A. Venet and G. P. Brat. Precise and efficient static array bound checking for

large embedded c programs. In PLDI’04. ACM Press, July 2004.

15

