
Pentagons: A Weakly Relational Abstract Domain for the
Efficient Validation of Array Accesses

Francesco Logozzo & Manuel Fähndrich
Microsoft Research

{ logozzo, maf }@microsoft.com

ABSTRACT
We introduce Pentagons (Pntg), a weakly relational numer-
ical abstract domain useful for the validation of array ac-
cesses in byte-code and intermediate languages (IL). This
abstract domain captures properties of the form of x ∈
[a, b]∧x < y. It is more precise than the well known Interval
domain, but it is less precise than the Octagon domain.

The goal of Pntg is to be a lightweight numerical domain
useful for adaptive static analysis, where Pntg is used to
quickly prove the safety of most array accesses, restricting
the use of more precise (but also more expensive) domains
to only a small fraction of the code.

We implemented the Pntg abstract domain in Clousot, a
generic abstract interpreter for .NET assemblies. Using it,
we were able to validate 83% of array accesses in the core
runtime library mscorlib.dll in less than 8 minutes.

Keywords
Abstract Domains, Abstract Interpretation, Bounds check-
ing, Numerical Domains, Static Analysis, .NET Framework

1. INTRODUCTION
The goal of an abstract interpretation-based static analy-

sis is to statically infer properties of the execution of a pro-
gram that can be used to ascertain the absence of certain
runtime failures. Traditionally, such tools focus on proving
the absence of out-of bound memory accesses, divisions by
zero, overflows, or null dereferences.

The heart of an abstract interpreter is the abstract do-
main, which captures the properties of interest for the anal-
ysis. In particular, several numerical abstract domains have
been developed, e.g., [6, 9, 11], that are useful to check prop-
erties such as out of bounds and division by zero, but also
aliasing [12], parametric predicate abstraction [3] and re-
source usage [10].

In this paper we present Pentagons, Pntg, a new numer-
ical abstract domain designed and implemented as part of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’08 March 16-20, 2008, Fortaleza, Ceará, Brazil
Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

Clousot, a generic static analyzer based on abstract inter-
pretation of MSIL. We intend Clousot to be used by devel-
opers during coding and testing phases. It should therefore
be scalable, yet sufficiently precise. To achieve this aim,
Clousot is designed to adaptively choose the necessary pre-
cision of the abstract domain, as opposed to fixing it before
the analysis (e.g., [8]). Thus, Clousot must be able to dis-
charge most of the “easy checks” very quickly, hence focusing
the analysis only on those pieces of code that require a more
precise abstract domain or fixpoint strategy.
Clousot uses the abstract domain of Pntg to quickly ana-

lyze .NET assemblies and discharge most of the proof obli-
gations from the successive phases of the analysis. As an ex-
ample let us consider the code in Fig. 1, taken from the basic
component library of .NET. Clousot, instantiated with the
abstract domain Pntg, automatically discovers the following
invariant at program point (∗):

0 ≤ num < array.Length ∧ 0 ≤ num2 < array.Length

This is sufficient to prove that 0 ≤ index < array.Length,
i.e., the array is never accessed outside of its bounds.

The elements of Pntg are of the form x ∈ [a, b] ∧ x < y,
where x and y are program variables and a, b are rationals.
Such elements allow expressing (most) bounds of program
variables, and in particular those of array indices: intervals
[a, b] take care of the numerical part (e.g., to check array un-
derflows 0 ≤ a), and disequalities x < y handle the symbolic
reasoning (e.g., to check array overflows x < arr.Length).

Pntg is therefore an abstract domain more precise than the
widespread Intervals, Intv [4], as it adds symbolic reasoning,
but it is less precise than Octagons, Oct [9], as it cannot for
instance capture equalities such as x + y == 22. We found
that Pntg is precise enough to validate 83% of the array
bound accesses (lower and upper) in mscorlib.dll, the main
library in the .NET platform, in less than 8 minutes. Similar
results are obtained for the other assemblies of the .NET
framework. Thus, Pntg fits well with the programming style
adopted in this library. Nevertheless, it is not the ultimate
abstract domain for bounds analysis. In fact, when used on
part of Clousot’s implementation, it validates only 65.6% of
the accesses.

2. NUMERICAL ABSTRACT DOMAINS
Abstract interpretation is a theory of approximations, [4].

It captures the intuition that semantics are more or less
precise depending on the observation level. The observation
level is formalized by the notion of an abstract domain. An
abstract domain D̄ is a complete lattice 〈E,v,⊥,>,t,u〉,

(a) Concrete points (b) Intervals (c) Octagons (d) Pentagons

Figure 2: The concrete points, and some approximations depending on the numerical abstract domain

int BinarySearch(ulong [] array , ulong value)
{

int num = 0;
int num2 = array.Length − 1;
while (num <= num2)
{ (∗)

int index = (num + num2) >> 1;
ulong num4 = array[index];
if (value == num4)
{

return index ;
}
if (num4 < value)
{

num = index + 1;
}
else
{

num2 = index − 1;
}

}
return ˜num;

}

Figure 1: Example from mscorlib.dll. Pntg infers
0 ≤ ((num + num2) >> 1) < array.Length at array access

where E is the set of abstract elements, ordered according
to relationv. The smallest abstract element is ⊥, the largest
is >. The join t, and the meet u, are also defined. When
the abstract domain D̄ does not respect the ascending chain
condition, then a widening operator O must be used to en-
force the termination of the analysis. With a slight abuse of
notation, sometimes we will confuse an abstract domain D̄
with the set of its elements E.

An abstract domain D̄, is related to a concrete domain C
by a monotonic concretization function, γ ∈ [D̄ → C]. A
numerical abstract domain N̄ is an abstract domain which
approximates sets of numerical values, e.g., one such con-
cretization is γ ∈ [N̄ → P(Σ)], where Σ = [Vars → Z] is an
environment, mapping variables to integers.

When designing numerical abstract domains, one wants
to fine tune the cost-precision ratio. Consider the points
in Fig. 2(a). They represent the concrete values that two
variables, x and y, can take at a given program point for all
possible executions. As there may be many such values or
an unbounded number of them, computing this set precisely
is either too expensive or infeasible. Abstract domains over-
approximate such sets and thereby make them tractable.

Intervals
A first abstraction of the points in Fig 2(a) can be made by
retaining only the minimum and maximum values of vari-

ables x and y. This is called interval abstraction. Graph-
ically, it boils down to enveloping the concrete values with
a rectangle, as depicted in Fig. 2(b). The abstract domain
of intervals is very cheap, as it requires storing only two
integers for each variable, and all the operations can be
performed in linear time (w.r.t. the number of variables).
However, it is also quite imprecise, in particular because it
cannot capture relations between variables. For instance, in
Fig. 2(b) the fact that y < x is lost.

Octagons
A more precise abstraction is obtained by using the abstract
domain of Octagons, Oct. Oct keeps relations of the form
±x ± y ≤ k. When applied to our concrete points, the
octagon enveloping them is shown in Fig. 2(c). Oct can cap-
ture relations between two variables—desirable when ana-
lyzing array bounds—but its complexity is O(n2) in space
and O(n3) in time. The cubic complexity is a consequence
of the closure algorithm used by all the domain operations.
Bagnara et al. gave a precise bound for it in [1]. The stan-
dard closure operator on Oct performs 20n3+24n2 coefficient
operations, that can be reduced to 16n3 + 4n2 + 4n with a
smarter algorithm.

While having polynomial complexity, Oct unfortunately
does not scale if many variables are kept in the same oc-
tagon. For this reason the technique of buckets has been in-
dependently introduced in [2] and [13]. The intuition behind
it is to create many octagons, each relating few variables,
e.g., no more than 4. The problem with this technique is
how to choose the bucketing of variables. Existing heuristics
use the structure of the source program.

Pentagons
The approximation of the concrete points with Pntg is given
in Fig. 2(d). Elements of Pntg have the form of x ∈ [a, b] ∧
x < y, where x and y are variables and a and b belong to
some underlying numerical set as Z or Q. A pentagon keeps
lower and upper bounds for each variable, so it is as pre-
cise as intervals, but it also keeps strict inequalities among
variables so that it enables a (limited) form of symbolic rea-
soning. It is worth noting that the region of the plane that
is delimited by a (two dimensional) pentagon may not be
closed. If fact, if the underlying numerical values are in Q,
then x < y denotes an open surface of Q2, whereas if they
are in Z, then x < y is equivalent to x ≤ y − 1, which is a
closed region of Z2.

We found pentagons quite efficient in practice. The com-
plexity is O(n2), both in time and space. Furthermore, in
our implementation we perform the expensive operation (the
closure) either lazily or in an incomplete (but sound) way, so
that the domain shows an almost linear behavior in practice.

Order: [a1, b1] vi [a2, b2] ⇐⇒ a1 ≥ a2 ∧ b1 ≤ b2
Bottom: [a, b] = ⊥i ⇐⇒ a > b

Top: [a, b] = >i ⇐⇒ a = −∞∧ b = +∞
Join: [a1, b1] ti [a2, b2] = [min(a1, a2), max(b1, b2)]

Meet: [a1, b1] ui [a2, b2] = [max(a1, a2), min(b1, b2)]
Widening: [a1, b1]Oi[a2, b2] = [a1 > a2?a2 : −∞, b1 < b2?b2 : +∞]

Table 1: Lattice operations over single intervals

3. INTERVAL ENVIRONMENTS
The elements of the abstract domain of intervals, Intv, are

{[i, s] | i, s ∈ Z ∪ {−∞, +∞}}. The formal definition of the
lattice operations on intervals is recalled in Tab. 1. The
order is the interval inclusion, the bottom element is the
empty interval (i.e., an interval where s < i), the largest
element is the line [−∞, +∞], the join and the meet are
respectively the union and the intersection of intervals. The
widening preserves the bounds which are stable.

The concretization function, γIntv ∈ [Intv → P(Z)] is de-
fined as γIntv([i, s]) = {z ∈ Z | i ≤ z ≤ s}.

The abstract domain of interval environments, Boxes, is
the functional lifting of Intv, i.e., Boxes = [Vars → Intv].
The lattice operations are hence the functional extension of
those in Tab. 1, as shown by Tab. 3.

The concretization of a box, γBoxes ∈ [Boxes → P(Σ)]
is defined as γBoxes(f) = {σ ∈ Σ | ∀x.x ∈ f =⇒ σ(x) ∈
γIntv(f(x))}.

The assignment and the guards in the interval environ-
ment are defined as usual in interval arithmetic.

4. STRICT UPPER BOUNDS
The abstract domain of strict upper bounds Sub is a spe-

cial case of the zone abstract domains, which keeps symbolic
information in the form of x < y. We represent elements of
Sub with maps x 7→ {y1, . . . yn} with the meaning that x is
strictly smaller than each of the yi. The formal definition of
the lattice operations for Sub is in Tab. 2.

Order: s1 vs s2 ⇐⇒ ∀x ∈ s2.s1(x) ⊇ s2(x)
Bottom: s = ⊥s ⇐⇒ ∃x, y ∈ s.y ∈ s(x) ∧ x ∈ s(y)

Top: s = >s ⇐⇒ ∀x ∈ s.s(x) = ∅
Join: s1 ts s2 = λx.s1(x) ∩ s2(x)

Meet: s1 us s2 = λx.s1(x) ∪ s2(x)
Widening: s1Oss2 = λx.s1(x) ⊇ s2(x)?s2(x) : ∅

Table 2: Lattice operations of strict upper bounds

Roughly, the fewer constraints the less information is pre-
sent. As a consequence, the order is given by the (pointwise)
superset inclusion, the bottom environment is one which
contains a contradiction x < y∧ y < x and the lack of infor-
mation, i.e., the top element is represented by the empty set.
The join is (pointwise) set intersection: at a join point we
want to keep those relations that hold on both (incoming)
branches. The meet is (pointwise) set union: relations that
hold on either the left or the right branch. Finally, widening
is defined in the usual way: we keep those constraints that
are stable in successive iterations (if the number of variables
is fixed, the join suffices).

The concretization function, γSub ∈ [Sub → P(Σ)] is de-
fined as γSub(s) = ∩x∈s{σ ∈ Σ | y ∈ s(x) =⇒ σ(x) < σ(y)}.

Order: b1 vb b2 ⇐⇒ ∀x ∈ b1.b1(x) vi b2(x)
Bottom: b = ⊥b ⇐⇒ ∃x ∈ b.b(x) = ⊥i

Top: b = >b ⇐⇒ ∀x ∈ b.b(x) = >i

Join: b1 tb b2 = λx.b1(x) ti b2(x)
Meet: b1 ub b2 = λx.b1(x) ui b2(x)

Widening: b1Obb2 = λx.b1(x)Oib2(x)

Table 3: Lattice operations of interval environments

The Need for Closure
We deliberately skipped the discussion of the closure opera-
tion until now. One may expect to endow the Sub abstract
domain with a saturation rule for transitivity such as

y ∈ s(x) z ∈ s(y)

z ∈ s(x)

and apply it to the abstract values prior to applying the join
in Tab. 2, thereby inferring and retaining the maximum pos-
sible constraints. However it turns out that the systematic
application of the saturation rule requires O(n3) operations,
which voids the efficiency advantage of Pntg. In Clousot, we
chose to not perform the closure, and instead improved the
precision of individual transfer functions. They infer new
relations x < y and use a limited transitivity driven by the
program under analysis. So, for instance:

Jx := y− 1K(s) = s[x 7→ {y}]
Jx == yK(s) = s[x, y 7→ s(x) ∪ s(y)]
Jx < yK(s) = s[x 7→ s(x) ∪ s(y) ∪ {y}]
Jx ≤ yK(s) = s[x 7→ s(x) ∪ s(y)]

because we know that i) if we subtract a positive constant
from a variable we obtain a result strictly smaller 1, that
ii) when we compare two variables for equality they must
satisfy the same constraints, and that iii) for each z such
that y < z, if x < y or x ≤ y then x < z.

5. PENTAGONS
A first approach to combine the numerical properties cap-

tured by Intv, and the symbolic ones captured by Sub is to
consider the cartesian product Intv×Sub. Such an approach
is equivalent to running the two analyses in parallel, with-
out any exchange of information between the two domains.
A better solution is to perform the reduced cartesian prod-
uct Intv ⊗ Sub, [5]. The elements of the reduced cartesian
product satisfy the following relation

∀〈b, s〉 ∈ Intv ⊗ Sub.γIntv⊗Sub(〈b, s〉) ⊆ γIntv(b) ∩ γSub(s)

i.e., the analysis on the reduced lattice is more precise than
the pairwise composition of the two analyses. The Pntg
abstract domain is an abstraction of the reduced product
and is more precise than the cartesian product:

Intv ⊗ Sub ≺ Pntg ≺ Intv × Sub.

The lattice operations are defined in Tab. 4. The functions
sup and inf are defined as inf([a, b]) = a and sup([a, b]) = b.

The order on pentagons is a refined version of the pairwise
order: a pentagon 〈b1, s1〉 is smaller than a pentagon 〈b2, s2〉
iff the interval environment b1 is included in b2 and for all the
symbolic constraints x < y in s2, either x < y is an explicit

1In this paper we ignore overflows. However our abstract
semantics of arithmetic expressions in Clousot takes care of
them.

Order: 〈b1, s1〉 vp 〈b2, s2〉 ⇐⇒ b1 vb b2
∧(∀x ∈ s2∀y ∈ s2(x).

y ∈ s1(x) ∨ sup(b1(x)) < inf(b1(y)))
Bottom: 〈b, s〉 = ⊥p ⇐⇒ b = ⊥b ∨ s = ⊥s

Top: 〈b, s〉 = >p ⇐⇒ b = >b ∧ s = >s

Join: 〈b1, s1〉 tp 〈b2, s2〉 =
let bt = b1 tb b2
let st = λx.s′(x) ∪ s′′(x) ∪ s′′′(x)

where s′ = λx.s1(x) ∩ s2(x)
and s′′ = λx.{y ∈ s1(x) | sup(b2(x)) < inf(b2(y))}
and s′′′ = λx.{y ∈ s2(x) | sup(b1(x)) < inf(b1(y))}

in 〈bt, st〉
Meet: 〈b1, s1〉 up 〈b2, s2〉 = 〈b1 ub b2, s1 us s2〉

Widening: 〈b1, s1〉Op〈b2, s2〉 = 〈b1Obb2, s1Oss2〉

Table 4: The lattice operations over pentagons

constraint in s1 or it is implied by the interval environment
b1, i.e., the numerical upper bound for x is strictly smaller
than the numerical lower bound for y.

A pentagon is bottom if either its numerical component
or the symbolic component are. A pentagon is top if both
the numerical component and the symbolic component are.

For the numerical part, the join operator pushes the join
to the underlying Intv abstract domain, and for the symbolic
part, it keeps the constraints which are either explicit in the
two operators or which are explicit in one operator, and
implied by the numerical domain in the other component.
We will further discuss the join, cardinal for the scalability
and the precision of the analysis below.

The meet and the widening operators simply delegate the
meet and the widening to the underlying abstract domains.
Note that we do not perform any closure before widening in
order to avoid well known convergence problems arising from
the combination of widenings and closure operations [9].

Cost and Precision of the Join
One may ask why we defined the join over Pntg as in Tab. 4.
In particular, a more natural definition may be to first close
the two operands, by deriving all the symbolic and numerical
constraints, and then perform the join. This is for instance
how the standard join of Oct works. More formally one may
want to have a closure for a pentagon 〈b, s〉 defined by:

b∗ =
d

x<y∈s Jx < yK(b)
s∗ = λx.s(x) ∪ {y ∈ b | x 6= y =⇒ sup(b∗(x)) < inf(b∗(y))}

The closure first refines the interval environment by assum-
ing all the strict inequalities of the Sub domain. Then, it
closes the element of the Sub domain by adding all the strict
inequalities implied by the numerical part of the abstract
domain.

As a consequence, the closure-based join t∗p can be defined
as

〈b1, s1〉 t∗p 〈b2, s2〉 = 〈b∗1 tb b∗2, s
∗
1 ts s∗2〉

The complexity of t∗p is Ω(n2), as for getting s∗ we need to
consider all the pairs of intervals in b∗.

Performing a quadratic operation at each join point im-
poses a serious slowdown of the analysis. In our experience,
when used for mscorlib.dll, we got that the running time
of the analyzer went up to more than 45 minutes.

As a consequence we defined a safe approximation of the
join as in Tab. 4. The idea behind tp is to avoid mate-
rializing new symbolic constraints, but just to keep those
which are present in one of the two operators, and implied

if (...)
x = 0; y = 3;

else

x = −2; y = 1;
(a) Non-strict abstraction

if (...)
x = 0; y = 3;

else

x = −2; y = 0;
(b) Strict abstraction

Figure 3: Difference in precision between t∗p and tp

by the numerical part of the other operand. If needed, some
implied relations may be recovered later (hence lazily), af-
ter the join point. The next example illustrates this on an
assertion following a join point.

Example. Let us consider the code in Fig. 3(a), to be
analyzed with some initial pentagon 〈b, s〉 which does not
mention x and y. Using t∗p, one gets the post-state

p1 = 〈b[x 7→ [−2, 0], y 7→ [1, 3]], s[x 7→ {y}]〉.
With tp the result is

p2 = 〈b[x 7→ [−2, 0], y 7→ [1, 3]], s]〉.
Suppose that we’d like to discharge assert x < y following
the conditional. The first pentagon, p1 already contains the
constraint x < y, thus proving the assertion is as complex as
a simple table lookup. On the other hand, the symbolic part
of p2 does not contain the explicit constraint x < y, but it is
implied by the numerical part. Proving the assertion with p2

requires two table lookups and an integer comparison.
One may argue that tp is just a lazy version of t∗p. How-

ever it turns out that the abstraction is strict, in that there
are cases where tp introduces a loss of information that can-
not be recovered later, as shown by the next example.

Example. Let us consider the code in Fig. 3(b), to be
analyzed with some initial pentagon 〈b, s〉, which does not
mention x and y. Using the closure-based join, t∗p one ob-
tains the pentagon

p3 = 〈b[x 7→ [−2, 0], y 7→ [0, 3]], s[x 7→ {y}]〉.
which implies that x and y cannot be equal to 0 at the same
time. On the other hand, tp returns

p4 = 〈b[x 7→ [−2, 0], y 7→ [0, 3]], s]〉.
which does not exclude the case when x = y = 0. As a
consequence, assert x + y 6= 0 cannot be proved using p4,
whereas it can be with p3.

Even if the previous example shows that there may be
some loss of precision induced by using tp, we found it neg-
ligible in practice (see Sect. 6). We also tried a hybrid so-
lution, where we fixed some n. If the cardinality of the
abstract elements to join was n < n, then the we used t∗p,
otherwise we used tp. However, we did not find any values
for n with a better cost-precision trade-off.

Transfer Functions
Analysis precision also heavily depends on the precision of
the transfer functions. Using Pntg we can refine the trans-
fer functions for some MSIL instructions which have a non-
trivial behavior depending on the operators.

Let us illustrate this situation using the rem instruction of
MSIL. Intuitively, rem u d computes the reminder of the divi-
sion u/d. The precise handling of the remainder is important
as many expressions used to access arrays in mscorlib.dll

Bounds Intv Intv × Sub Pntg tp Pntg t∗p
Assembly checked Valid % Time Valid % Time Valid % Time Valid % Time

mscorlib.dll 17 052 12 416 72.79 5:08 14 059 82.42 7:03 14 162 83.02 7:25 14 162 83.02 61:39
System.dll 11 609 9 298 80.09 3:38 9 979 85.95 4:56 9 993 86.07 5:10 - - -

System.Web.dll 14 202 12 313 86.69 3:54 12 952 91.19 5:39 12 964 91.28 5:49 12 964 91.28 18:55
System.Design.dll 10 072 8 854 87.90 3:52 9 562 94.93 5:01 9 586 95.17 5:17 9 610 95.41 43:18

Average 80.99 87.92 88.22 -

Table 5: The experimental results of the analyzer with different abstract domains

include the remainder operation. According to the defini-
tion of rem in Part. III, Sect. 3.55 of [7], the sign of the
result is the sign of u and 0 ≤ |rem u d| < |d| holds. There-
fore in order to derive the constraint rem u d < d one must
know that d ≥ 0.

The transfer function for rem in Intv can infer useful upper
bounds whenever d is finite, but it infers unhelpful bounds
when d is infinite.

The transfer function for rem in Sub cannot infer lower
bounds, and worse, no upper bounds, for it cannot deter-
mine the sign of d.

The transfer function for rem in Pntg has the necessary
information. It uses Intv to determine if d is non-negative in
the pre-state, then constrains the result using Sub, modeling
the assignment more precisely.

Jx := rem u dK(〈b, s〉) =

〈Jx := rem u dK(b), s[x 7→ (inf(b(d)) ≥ 0)?{d} : ∅〉

6. EXPERIMENTS
We have implemented the abstract domain Pntg in our

analyzer for .NET assemblies, Clousot. Prior to the array
bound analysis, Clousot performs heap abstraction and ex-
pression analysis. For arrays, Clousot tries to validate that
(i) the expression for a newarr instruction is non-negative,
and (ii) the index for the ldelem, stelem, and ldelema in-
structions is greater than or equal to zero and strictly smaller
than the length of the array. All experiments were con-
ducted on a Centrino 2 duo processor at 2.16 GHz, with 4
GB of RAM, running Windows Vista.

Tab. 5 summarizes the results of running the analysis on a
subset of the .NET framework assemblies. The analyzed as-
semblies are taken from the directory %WINDIR%\Microsoft\
Framework\v2.0.50727 of our laptop without modification or
preprocessing.

We ran the analysis with four different domains, shown in
the different columns: intervals alone, the cartesian product
Intv×Sub, Pntg without constraint closure, and finally Pntg
with constraint closure.

The table shows that combining Intv with symbolic upper
bounds validates on average almost 7% more array accesses
than Intv alone for only a modest extra cost. Pntg with-
out closure validate an extra 0.3% of accesses at little extra
cost, whereas Pntg with closure produces almost no extra
precision but the analysis time blows up. The time for the
missing run was in excess of 90 minutes. Overall, the results
show that with Pntg, Clousot is able to validate on aver-
age 88.2% of all array accesses in under 7 minutes for the
analyzed .NET assemblies.

As for the memory footprint, the analyzer never exceeded
300 Mbytes of RAM.

7. CONCLUSIONS
We presented a new numerical abstract domain, Pntg. We

described its lattice operations, discussed its complexity and
presented an optimized algorithm for the join operator which
runs in (almost) linear time (instead of quadratic).

This abstract domain sits, as precision and cost are con-
cerned, in between the abstract domains of intervals and
octagons.

We used Pntg to validate on average over 88% of array
accesses in four major .NET assemblies in a couple of min-
utes. We plan to discharge the remaining unproven accesses
by using more precise, yet expensive domains on demand.

Acknowledgments. We would like to thank the Anindya
Banerjee, Pietro Ferrara and the anonymous referees.

8. REFERENCES
[1] R. Bagnara, P. M. Hill, E.Mazzi, and E. Zaffanella.

Widening operators for weakly-relational numeric
abstractions. In SAS’05. Springer-Verlag, Sept. 2005.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne,
A. Miné, D. Monniaux, and X. Rival. A static analyzer for
large safety-critical software. In PLDI’03. ACM Press,
June 2003.

[3] P. Cousot. Verification by abstract interpretation. In
Verification: Theory and Practice. Springer-Verlag, 2003.

[4] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In POPL’77.
ACM press, Jan. 1977.

[5] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In POPL ’79, pages 269–282. ACM
Press, Jan. 1979.

[6] P. Cousot and N. Halbwachs. Automatic discovery of linear
restraints among variables of a program. In POPL ’78.
ACM Press, Jan. 1978.

[7] ECMA. Standard ECMA-335, Common Language
Infrastructure (CLI). http://www.ecma-international.org/-
publications/standards/ecma-335.htm, Ecma International,
2006.

[8] F. Logozzo. Cibai: An abstract interpretation-based static
analyzer for modular analysis and verification of Java
classes. In VMCAI’07. Springer-Verlag, Jan. 2007.

[9] A. Miné. The octagon abstract domain. In WCRE 2001.
IEEE Computer Society, Oct. 2001.

[10] J. Navas, E. Mera, P. López-Garćıa, and M. V.
Hermenegildo. User-definable resource bounds analysis for
logic programs. In ICLP’07. Springer-Verlag, Sept. 2007.

[11] A. Simon, A. King, and J. M. Howe. Two variables per
linear inequality as an abstract domain. In LOPSTR’02.
Springer-Verlag, 2002.

[12] A. Venet. Nonuniform alias analysis of recursive data
structures and arrays. In SAS’02. Springer-Verlag, Sept.
2002.

[13] A. Venet and G. P. Brat. Precise and efficient static array
bound checking for large embedded c programs. In
PLDI’04. ACM Press, July 2004.

