
TapGlance: Designing a Unified Smartphone interface for
Personal Information Management

Daniel C. Robbins
Microsoft Research

One Microsoft Way

Redmond, WA 98052

dcr@microsoft.com

ABSTRACT

Finding a photo on a mobile phone should be as easy as finding a

phone number. Comparing the date of one calendar appointment

to the due date of a task should be equally easy. And seeing where

a set of friends are on a map should be as easy as checking the

local weather. All of these are information tasks and all of them

are migrating to an emerging class of mobile device we call

smartphones. Currently, these types of tasks are restricted in their

fluidity by separate applications and strong object typing. We

propose ways of re-conceptualizing these constructs so that users

can fluidly create, edit, manage, and share personal information.

We are presenting TapGlance, a design proposal for how to

support common Personal Information Management (PIM) on a

smartphone. This paper presents extensions to our previous design

work on TapGlance (to be presented at DIS 2008). TapGlance is a

reworking of the entire smartphone user experience (UX). In the

initial TapGlance work we focused on adapting the interface to

the various levels of attention that a user had, presenting

information in a feed style, and coupling all of that with a faceted

search system. Our current work focuses on how tasks, tagging,

and commands can be woven into the TapGlance UX. Our new

design centers on methods for creating, organizing, and

disseminating information. This information encompasses many

different types, from text to photos to people. User interactions are

consistent across information types and independent of origin and

storage of the information. This TapGlance design proposal is the

first step before we engage in prototyping and user evaluation.

General Terms

Design, Human Factors

Author Keywords

Mobile devices, smartphones, faceted metadata, search interfaces,

visual interaction, zoomable user interfaces, peripheral displays,

personal information management

ACM Classification Keywords

H5.m Information interfaces and presentation (e.g., HCI):

Miscellaneous.

1. INTRODUCTION
Traditionally PIM has been done on the desktop where there is a

great deal of screen real-estate, a full keyboard, and guaranteed

network connectivity. The performance constraints for mobile

phone based PIM are much tighter. Because people exist in

divided attention situations the underlying system has to be much

more judicious in terms of which information is presented.

Organizing data is much harder in a mobile situation because the

length of working sessions is much shorter and it’s very difficult

to provide an overview of a large information corpus on a very

small screen. We have spent several years developing a series of

smartphone based user interfaces – all with the lofty goal of

unifying the user experience across multiple applications and

contexts. We have very recently made significant changes to the

overall TapGlance interface design as an attempt to better address

the needs of personal information management.

Several key principles underlie the design of TapGlance. Firstly,

our smartphone based system must respect the user’s degree of

attention. To accomplish this, the information feeds on the

smartphone are presented at various levels of abstraction.

Secondly, a user should be able to pivot information retrieval

around any and all available dimensions: time, location, person

being the primary dimensions. This information retrieval must be

available across all information that the phone encounters,

whether that be local to the device or accessible over the network.

Because the context within which the device is used is very fluid,

there must be multiple ways to initiate a given task. And lastly,

the interface should optimize itself for the common PIM oriented

tasks of information creation, editing, retrieval, and sharing.

2. RELATED WORK
Previous work that served as the building blocks for this project

comes from the following high-level areas: Mobile phone search

interfaces, mobile phone information navigation interfaces,

Figure 1: Overview of the TapGlance UI: (1) the locked screen

shows glanceable overview information, (2) the default set of

HomeTiles, (3) zoomed into the Calendar.

http://www.gsmworld.com/documents/universal_access_full_report.pdf

generalized faceted search interfaces, and peripheral awareness

displays.

Faceted search involves the use of top level categories to filter

large sets of structured information. Marti Hearst has many useful

recommendations for the design of faceted search interfaces [2].

She suggests that, when possible, only provide those facets which

apply to the most number of items in the dataset. Users have

shown themselves to be adept at understanding the context of a

sub-facet, so the entire hierarchy need not be displayed at all

times. Her work also suggests that keyword searching be applied

first across the facets themselves, then the metadata, and lastly the

content itself. The Phlat project [1] used categories common to a

user’s own data as a front-end to a desktop search system. mSpace

Mobile [10] is an extension of the desktop mSpace faceted search

interface, geared especially for mobile devices. Users are

presented with “fish-eyed” tiled panes, each pane returning

information from a particular facet or view. mSpace Mobile

currently relies on touch screen devices with fairly high resolution

displays.

The FaThumb project [3] applied used faceted search interface to

search across one particular database. FaThumb used a taxonomy

of facets that was directly tied to the typical number keypad of a

mobile phone. Zooming and animation imparted valuable

perceptual feedback for navigation through the facet hierarchy.

The idea of segmenting the screen and tying different regions to

the number keys is based on the work in ZoneZoom [8]. The idea

of a zoomable tile set has also made it into the Zumobi mobile

application [11]. The current Live Search Mobile application [4]

presents hierarchical facets although only in successively arranged

lists which do not take advantage of spatial memory.

In terms of glanceable interfaces – displays that can be

apprehended with a minimum of attention, Pousman and Stasko

[6] provide a good overview of desktop systems. Matthews et al

has gone into depth on the tradeoffs between high-fidelity and

abstraction in the design of peripheral displays [5]. The Scope

project [9] used a very abstract set of cues to represent dynamic

information sources (“feeds”) on the desktop but its compete

reliance on iconography limited its usability. Sideshow was a

precursor to the many gadgets or widget based desktop

notification systems. Most of the existing research has focused on

glanceable displays that lie in the user’s periphery on a desktop

PC. These interfaces need to get a user’s attention with “just

enough” prominence, while at the same time not distracting the

user from highly focused tasks. Our focus, though, is on the

mobile phone where the device (and display) are for short periods,

front-and-center.

3. DESIGN GOALS
There are several areas which we are not going to address in detail

in the TapGlance design proposal. It is beyond the scope of this

paper to provide detailed designs for the classic PIM applications

such as Email, Calendar, and Tasks. Instead, this paper discusses

how the existing TapGlance design can be adapted to support

these kinds of applications and in turn, how these applications can

be adapted to fit into the TapGlance framework.

Each of the canonical PIM applications bursts with functions. We

are not proposing a new set of manipulation and recall features

but are instead concerned with how given set of features – ideally

hierarchically arranged in levels of abstraction – can be accessed

through a faceted search mechanism.

In addition, any real PIM system must work hand-in-hand with a

server or cloud-based storage and retrieval system. We are not

going to describe the changes needed in those parts of the

infrastructure.

Our design goals for the TapGlance are as follows:

 Text is king: if in doubt use text as a representation

 Always show results: do not let the user create a query

that results in zero results.

 Stable spatial layout: keep common options and

information items in stable locations in the interface.

 Short lists of items: when possible, only show enough

items to fill the screen. Provide tools for paging through

grouped sets of results.

 Don’t rely on short-term memory: provide a means of

easily squirreling away the results of a work session.

 Choose really good defaults: the phone has to work out

of the box and the PIM features have to make sense.

 Optimize for a 12-key smartphone: this is the phone

form-factor that billions of people in the world are

going to have for the foreseeable future.

Beyond that, a detailed discussion of glanceability and unification

in the smartphone UX is discussed in the previous TapGlance

work [7].

4. THE TAPGLANCE USER INTEFACE
The original TapGlance work consisted of a design proposal for a

unified smartphone user interface. This paper describes ways in

which we have adapted the TapGlance design to better suit PIM

tasks. We refined the home screen to itself have different modes.

Instead of just presenting nine tiles, each with a different

information source, we now combine some of the tiles to show

fewer tiles and give more real-estate to a few of the more

important tiles. In this redesign, we have also made a distinction

between the locked and unlocked modes for the phone. In the

locked mode, the text-entry field is hidden and a top-most status

area is increased in size to make the time and date very easy to

read. When someone pulls the phone out of their pocket, the most

common thing they want to see is the time. In the previous design,

time was relegated to the smallest portion of the topmost status

bar.

The TapGlance interface consists of a large central pane that

contains a combination of nine information readouts and quick

access buttons, called the HomeTiles [Figure 1(2)]. Above the

HomeTiles is a rich text-entry region called the TopBar. A thin,

standard cell-phone style status readout is at the very top of the

display and the very bottom carries labels for the phone soft-keys.

As the user shifts between the different major modes, animation is

used to give more or less screen real-estate to each of these

sections. We choose the nine tiles because this maps to the

number keys on the vast majority of mobile phones. For touch

enabled devices we anticipate that restricting the display to nine

tiles would ensure that each tile is an easy finger target. For

devices with full QWERTY keypads, an alternate home screen

would probably be appropriate. But, as said previously, our main

focus is on 12-key phones as this is the most prevalent world-

wide.

4.1 Scenario driven design
The aforementioned TapGlance user interface is motivated by a

set of PIM centered scenarios. These scenarios not only help drive

the initial design but also act as “test cases” for the validity of the

designs. In this section I will briefly list a few scenarios and then,

in the space allotted, relate how two of them could be

accomplished with the proposed TapGlance user interface design.

As mentioned elsewhere, there intentionally are many ways to

accomplish these same tasks; some are better suited for quick

interactions and some are better suited to sit-down-and-

concentrate on the phone sessions.

4.1.1 Scenario #1
Scott is at the store and remembers that he will need to call the

baby-sitter later on in the evening.

Please refer to Figure 7 for a visual guide to this process. After

unlocking the phone, Scott would just start typing “call

babysitter” into the TopBar, using any of the available text input

methods. If Scott single-taps the left soft-key, he is presented with

a standard “Save” menu of choices. By double-tapping Scott can

take a short-cut past the pop-up menu and select the most

common menu choice of “Save to Scratchpad.” Scott could leave

it that and if he hadn’t handled too many other items on the phone

in the meantime, the text-note might still be near the top of the

scratchpad.

But Scott might want to add more metadata to this item, such as a

due date. Before shifting focus away from the TopBar, Scott

would open the main menu, select the “Tag” option, then “Date”,

and then “Tonight.” Scott does not have to specify that this is the

due-date for the item. What Scott is doing is creating a

relationship between the calendar and the text note. Heuristics

built into TapGlance would by default create a reminder when an

item is given time information. If Scott was in a very exacting

mood, he could alternatively navigated from the main menu into

the “Property” sub-facet, found the specific “Due date” property,

and then added then manually added an exact value. The

takeaway from this is that a user should be able to very quickly

create information and, when needed, add metadata at various

levels of specificity.

4.1.2 Scenario #2
Mike is in a meeting and he quickly wants to gather a list of all

emails related to Project Beta that include Brad.

Mike moves the focus from the TopBar to the HomeTiles by

tapping the right soft-key once. He then opens the Inbox

HomeTile and it zooms up to replace the home set of HomeTiles.

Mike immediately realizes that the emails he needs to gather are

not displayed on the screen. When Mike chooses “Find” from the

main menu, the FacetPane (faceted search interface) slides up to

cover the bottom third of the Inbox pane and the focus is shifted

to the FacetPane. Mike navigates into the Tag facet and chooses

the “Recent” sub-facet. This in turn gives Mike a list of recently

used tags, among which is the “Project Beta” tag. Mike then taps

the left soft-key to apply the “Project Beta” tag as a filter. A visual

token (“breadcrumb”) appears in the TopBar to reinforce the

current filter. Mike taps the right soft-key which causes the

FacetPane to navigate back to its root display of the top level

facets. Mike now navigates into the “People” facet then applies

the “Co-workers” filter. Tapping the right soft-key brings the

focus back to the TopBar. Mike starts to type “Brad” and as he

types, the set of emails shown in the Inbox is filtered to just show

those emails which have are related to both Brad and Project Beta.

At this point Mike could read through the emails or he could save

this query via selecting “Save” from the main menu and then

“Query” from the “Save” sub-menu. That query would then be

available for recall from the “Favorites” facet.

4.1.3 Additional Scenarios
Following are several other PIM related scenarios that the

TapGlance design can stretch to accommodate. These are useful

in that they point to the broad array of situations in which PIM

occurs in the mobile world.

Doug is at a construction work-site and he needs to quickly get a

list of nearby supply stores that are open late in the day.

Pat takes pictures of a bunch of products at a supply showroom

and quickly tags those items which best meet her criteria.

Tim is getting out of a movie downtown and he wants to get a list

of highly rated restaurants that are near the movie theatre.

Jack wants to show a friend digital images of the two of them.

5. LEVELS OF ABSTRACTION
Most smartphone applications arrogantly assume that at all times

they deserve the user’s full attention. This contradicts how people

use phones in the real-world – where the phone is just one of

many stimuli vying for our attention. Central to the TapGlance

design proposal is an interface that gracefully adjusts its

presentation to match the amount of attention that a user wants to

devote to the phone. The lightest-weight mode we call glance-

mode and in this mode only the most important, non-interactive

information is shown in a very readable manner. In inspection-

mode, the user sees information from a wider array of sources. In

the peek-mode, a user can temporarily get more details about an

item from a particular information source. And in interaction-

mode, a user can fully engage with a tailored application or

document.

In glance-mode – when the user just quickly pulls the phone out

of their pocket – the top half of the display is taken up by an

enlarged status display [Figure 1(1)]. Below that, the visible

HomeTiles are devoted to updates from important contacts,

information about the user’s next appointment, and a readout of

any currently playing media (such as music).

When the user unlocks the phone and thus enters the inspection-

mode, the upper status readout shrinks to reveal both the TopBar

and all of the HomeTiles [Figure 1(2)]. In addition to the

previously mentioned information sources, we anticipate that the

default set of nine tiles will include information and access to the

user’s inbox, favorite applications, data-feeds (such as weather),

and additional people oriented notifications. For the most part,

each HomeTile’s contents are populated by standing queries.

Initially the TopBar has keypad focus so that phone numbers can

be immediately typed. In inspection-mode, the user cycles the

focus between the TopBar and the HomeTiles by repeatedly

tapping the right soft-key.

The exact choice for default home tiles is not the focus of this

paper and is most certainly a matter of great debate. We hope that

by the time we roll out our first prototype, we will have picked a

reasonable set. In picking these top-level tiles we tried to achieve

a balance between dynamically updated information sources (such

as “Inbox” and “Weather”) and typical mobile computing tasks

such as “Search” and “Photo-taking.” We wanted the most

commonly used tasks to be as few clicks away as possible. While

this may seem inconsistent, we really believe that usefulness –

having the most common information and tasks readily available

– outweighed pure uniformity. Choosing the default tiles and how

they each render themselves is critical to the success of this

project. Lab-testing will help with our first pass, but we are even

more excited to do in-the-field deployments once we have a

prototype system up and running.

If the user wants to quickly peek at more detail about an item in

one of the HomeTiles the user presses-and-holds the number key

that corresponds to the grid location of the desired HomeTile.

While holding that number key, the HomeTile zooms to nearly fill

the display and shows more information. For example, the small

glanceable version of the calendar tile only has room to show the

time, and portions of the name and location of the next meeting.

But by using peek-mode, the user would see the duration, full

name of the appointment, and a list of attendees. When the user

releases the number key, the peek view shrinks back down so that

all nine tiles are visible.

If the user wants to give the phone more of their attention, they

enter inspection-mode. To get an overview of their whole day or

schedule a new appointment, the user would tap the number key

that corresponds to the calendar tile [Figure 1(3)]. The calendar

tile would then zoom to fill the entire screen and the extra screen

real-estate would be used to show a broader view of the user’s

day. We estimate that a zoomed-in tile, on a typical smartphone,

could display two lines of text about four appointments. We

anticipate that a user would be able to configure the overall font

size and contrast ratios to suit their own perceptual abilities.

At first glance the TapGlance screen may appear to very dense.

While the fonts are small, they are in-fact the standard text size

from a typical smartphone with a 240x320 resolution display. It is

almost certain that our font sizes, icon-density, and color choices

will be refined once we create a prototype and proceed with user

testing. When the user first uses a TapGlance enabled device, each

home tile would display a descriptive label, such as “Mail” or

“Calendar” [Figure 2(1)]. These labels coupled with the stable

location of the default tiles will help users learn the default set. As

a user visits these tiles and the tiles become populated with user-

specific information, the descriptive titles would be deprecated to

make more room for dynamic information [Figure 2(2)]. We can

think of this as “progressive densification.” Even though we use

the nine-grid layout throughout the user-interface, we can

differentially adjust the sizes of each tile so that more space is

given to more important tiles [Figure 2(3,4)]. Not only does this

draw attention to important information, it may also aid in

distinguishing different states in the UI. To be sure, a balance

needs to be struck between stable didactic information (labels)

and dynamic information (updates). Different existing mobile

interfaces exhibit different takes on this balance. Some

smartphones, such as the Windows Mobile smartphone, show

arbitrarily long lists of dynamic information including the details

for a user’s next appointment. Other smartphones, such as the

iPhone and Blackberry, typically show a set of static labeled

icons, each representing a different information source or

application.

5.1 Intelligent Visualization of Feeds
The richness of each HomeTile lies in the underlying query

coupled with an adaptable view style. A view style is a

combination of sorting, filtering, grouping, and layout styles. For

example, when the media tile is shown in its smallest “glance”

mode, only one item that matches the query (the currently playing

song) is displayed. This is a very tight filter coupled with a

summary layout style. Much of the power of the tiles comes from

intelligence built into the various layouts. When a song is

currently playing, the most important piece of information is the

name of the song and the artist. If there isn’t a currently playing

song, the most recently “touched” media items are displayed. If

those items are photos, then two photos can be displayed in the

double-wide media tile on the default home screen.

When the user zooms into the media tile, the default view style

shows nine cells to match the hardware number keys on the phone

[Figure 6]. Some of these cells are populated with individual

items (such as a thumbnail for a photo) but other cells may

reference a grouping of items, such as multiple photos associated

with a particular event. In essence, in the default summary layout

style, each cell progressively shows broader and broader

collections of information, usually as cast onto the time axis. In

the case of media, the first row of cells shows the three most

recently taken photos. Each cell in the second row represents a

collection of images that are closely related on the time axis, e.g.

Figure 2: HomeTiles in different configurations: (1) as displayed when the user first runs TapGlance, (2) after repeated use each

tile is populated with specific information, (3) each tile is given different amounts of space, and (4) the “Person 1” tile is shown

enlarged because it has urgent information in it.

they were taken together. This logarithmic lens also shows up in

other dimensions. The location Filter facet (facets are discussed

later) is made up of sub-facets that are labeled with successively

broader durations of distance: one block, neighborhood, city,

state, country, and etc. Likewise for the time facet: today, last

week, last month, last year, and before last year.

5.2 Information Creation
A primary aspect of personal information management is that

user’s also need to both create new atomic items and to create

additional information in existing items. Creating information

consists of activities such as taking a photo, jotting down a note,

and associating a phone number with a person. In a very

intentional way, each of these tasks can be accomplished through

a variety of workflows. This is a thread that runs throughout

TapGlance – that depending on context, a user will conceive of

multiple ways to accomplish the same thing. These multiple

methods can be seen in Figure 4. Sometimes a user may want to

access the phone’s camera from a photo-browsing context. At

other times the user might want to start with an applications list

and then find the camera. And at another time, a user might

indicate to the system that they want to create something and then

be offered a set of choices such as “create a photo”, “create a

video”, or just “create a note.” Part of the reason for having this

plethora of entry-points is that it shouldn’t take too many

navigation steps to get to a specific creation task, no matter what

activity the user is currently engaged in.

In the TapGlance design, jotting down a note is an even easier

task. In current phones, a user has to navigate to a note taking

application, create a new note, then save the note. In TapGlance a

user unlocks the phone and just starts typing. The typing, whether

it is multi-tap or T9 text entry gets simultaneously interpreted in

multiple ways and the possible interpretations are reflected back

to the user [Figure 8]. The typed digits are shown in various way:

the number itself (so a phone call can be made), matches against

numbers in the phone’s address book, the T9 or multi-tap text is

matched against all items in the phone’s database, and the text is

also left as free-text. At any point the user can choose to dial the

direct phone number by hitting the hardware call button. If one of

the other matches is more desirable, then the user moves the focus

to the results list and scrolls down to that match entry and hits the

left soft button to initiate either a “save” or an “open” (depending

on the item type).

5.3 Navigation and Menus
From the scenario explanation and the previous description of

how to save a note, it may seem like there is a great deal of

navigation in the TapGlance design. But the number of button

presses is not a true measure of navigational complexity.

Navigation complexity is gated by how much cognitive

processing a user has to do when traversing from one context to

another. If the steps to get from one “place” to another are

predictable, then the cognitive complexity is lowered. If there is a

menu that a user uses often and the most commonly used menu

choice is already primed for selection, then the button press to

activate the desired menu choice can happen very easily. This is

akin to reaching out one’s hand to where you think a light switch

should be (right next to a doorway) and finding the light switch

there – we don’t have to think about it. The TapGlance main

menu system uses a spatially arranged numerically accessed set of

nine choices – nine choices consistently laid out in a grid. Each

time the user visits a particular menu, the choices are always in

the same place. As much as possible, in the TapGlance menu

structure, we place the most commonly used sub-menu choice

directly under the parent menu position, i.e. if the user pressed the

6 key from the main menu to select the “Send” option, the

“Scratchpad” option will also be located in the number 6 slot on

the sub-menu. A user who is fairly familiar with the menus will be

able to quickly double-tap on the 6 key to send the selected item

via email. While this is several key presses, because it does not

require moving the finger to different keys, the physical effort is

decreased. In some sense the double-tap becomes like double-

clicking on a mouse button. Another short-cut past menu

navigation is available if the user presses-and-holds the Action

button. In this case, the menu doesn’t even appear and the default

menu-choice is activated.

5.4 The Scratchpad
There are times when a user is not interested in a set of items that

is the result of a query. The user may have a set of songs they

want to listen which don’t really share any distinguishable meta-

data. Likewise, a user may want to collect a bunch of emails

together that wouldn’t otherwise be returned from a query. There

may also be times when a user wants to compare items from

across multiple queries, e.g. “let me flip back and forth between

looking at my calendar for a particular day and the content of a

particular email.”

In a desktop PIM environment, a user would typically open each

desired item in a new window. Then the user carefully arranges

the separate windows side by side on a large display. In a typical

smartphone based PIM system, this is really not possible. The user

has to navigate through the various PIM apps to find a particular

piece of information. If they then want to make a comparison

across types (or even across time as when comparing two different

days) the user has to initiate a great deal of navigation to traverse

between the different items.

In the TapGlance design proposal we borrow from desktop photo

management and web based mapping applications. As a user is

browsing their photo collection, they add individual photos to the

scratchpad by several means: dragging the photo into a separate

part of the UI, clicking on a pushpin on the photo, or merely shift-

selecting several items. Online mapping applications allow, with

one click, users to add a point-of-interest to an online collection.

As discussed in the scenario section, a scratchpad is primary to the

TapGlance interface.

At first glance, it might appear that the “flagging” functionality in

many email applications effectively gives a scratchpad behavior.

In actuality this is too heavy weight and causes some other

problems. The scratchpad is special in that it is specific to a user

session. It is generally only useful during one uninterrupted

interaction sequence. Relying on a flagging system is problematic

because the flags are persistent. If the user flags a few items,

changes their context, say from email to calendar, then wishes to

see their list of flagged items, they will see every flagged item, not

just items flagged from the current interaction session. Likewise,

web browsers let users add the current page to a list of “Favorites”

or “Bookmarks.” Just as with the flag, this mixes together short

term with long term lists of items.

In TapGlance we propose that a user would explicitly add items to

a scratchpad via a simple menu operation. The user can even

choose to have the scratchpad be one of the nine HomeTiles. In

this case, each time the user inspects the phone display, they

would be greeted with a list of the most recent scratchpad items.

5.5 Faceted Search with a Loose Taxonomy
In most PIM systems items are related via their metadata. The

main purpose in maintaining metadata is to aid in information

retrieval. If the user knows the exact name or identifier for an item

in the database, that’s great. But that is not often the case and it is

often ambiguous as to what the name of an item is. In an email

message, is the name the subject, the name of the sender, the first

line of the body of the message, or a GUID (Globally Unique

Identifier) assigned arbitrarily by the underlying system? We can’t

know ahead of time how a user will remember an item or how

specific their memory of the item is. Because of this, any PIM

system needs to support a rich notion of metadata. A user might

remember who sent a photo but not when. Another user might

remember that an email message contained a link to something

about new display technologies but not the actual text of the

message. All of these ways in which a user remembers an item

needs to be supported as a means of recall. Thus, metadata, along

with full content indexing, are the keys to information retrieval.

5.5.1 Existing Metadata systems
In general, most PIM systems present one of three kinds of

organizational structures for relating metadata in their database. In

a hierarchical system, every item in the database exists within a

strict pre-authored tree, typically based on the file-type property.

For example, all email items are in one branch of the tree, all

calendar items in another, and tasks segregated as well. In a

faceted system, items are related by how their metadata fits into

multiple overlapping trees. In a faceted system, all the property

types are composed into a hierarchical tree but items themselves

are not placed in a hierarchy. A user retrieves items by browsing

the property tree and choosing property values from within the

tree. These choices act as filters across the entire item database. In

a tagsonomy (or Tag cloud), there is no relationship between the

property values – there is only a flat “bag of tags.” Items are

related by sharing tags. This is used in many online photo-sharing

and collaboration sites. Users add tags to photos and then can later

retrieve photos that share a particular set of tags.

Each of these systems has its own pros and cons. The strict

hierarchy has a degree of predictability but its lack of flexibility

hinders retrieval when a user may not know enough information

about an item. A faceted system allows for many item types and

supports fluid browsing. The problem is that in standard faceted

systems an attribute can only live in one place in the faceted

hierarchy. This means that a user’s understanding of how

information is organized has to match how the initial author of the

taxonomy conceived of the corpus. This is not a big deal when

using faceted search on the desktop as a there is sufficient screen

real estate to simultaneously show multiple sub-facets at the same

time. In effect, users can simultaneously pear deep and broad into

the metadata tree without having the engage in much navigation.

On a small device, though, there is not the space to show more

than one facet a time. The user does not have the opportunity to

easily gain an overview of the taxonomy. A tag cloud does not

require a user to learn and navigate a taxonometric structure but at

the same time, the only way to access the tag cloud is via search

or ponderous browsing. The organization of tags (when a

hierarchy is present) is usually based on statistical methods. Most

tag clouds, though, only apply to user generated free-text

categorizations. They do not encompass arbitrary properties that

exist on a collection of items – properties such as size, date, and

author.

5.5.2 Loose faceted hierarchies of metadata in

TapGlance
TapGlance uses a hybrid approach where all properties and

property values are stored in one connected graph. “October 21st,

2005” is a value that is related to the “Date” property. For a

particular item in the database, such as an email, “October 21st,

2005” is related to that item via the “sent” property. In some

sense, the value “October 21st, 2005” is an item itself in the

database. Eventually, in this kind of graph structure, every item is

in some way connected to every other item via relationships

between item metadata.

This is a very flexible system but browsing an arbitrary graph is

hard on a desktop system and next to impossible on a smartphone.

TapGlance uses several strategies to facilitate metadata

navigation. In the TapGlance proposal, the user is presented with

a set of pre-authored attribute hierarchies – much like a standard

faceted search system. The departure is that the hierarchy is very

loose. Again, because we believe that different users (and the

same user in different contexts) conceive of a metadata structure

in different ways, attributes are distributed in many places in the

tree structure. We anticipate that the initial arrangement of

metadata in the tree would be generated by a combination of

statistical methods and hand-tuning by the application developer

(derived from typical PIM tasks). For instance, the property

“Creation Date” would live both as a child of the top-level

“Property” facet and as a child of the “Date” facet. The sub-facet

of “friends” would live both under the “People” facet and under

the “Property/Author” facet. A first pass at the TapGlance facet

hierarchy can be seen in Figure 3. While a typical user would

never edit this loose hierarchy but we have explored ways of

enabling customization.

The construction of this tree structure on top of an arbitrary graph

is at the heart of TapGlance. Since there are an arbitrary number

of properties, hard choices have to be made as to which properties

are most salient in the interface. The tree that TapGlance presents

is geared toward typical PIM tasks. Status oriented properties such

as “Not/Done”, “Un/read”, and “For Follow-up” are not buried in

a property tree, instead “Status” gets its own top-level facet.

Likewise, the default people sub-facets include designations that

are useful to PIM tasks such as “Co-workers”, “Team-mates”, and

“Family.” As we mention in section 7, we look forward to doing

user test where we can refine this taxonomy. A proposal for how

this might look in TapGlance can be seen in Figure 5.

While there is an initial set of sub-facets that are presented to the

user, the user can edit the tree itself. To do this the user selects a

“configure” option from the main menu and then proceeds to

navigate (or search) for properties that are most important to

them. The user then assigns these properties to slots in the

hierarchy. A user might decide that for their particular style of

working it’s much more important to have ready access to the

“Bit-rate” property for items rather than the “Version” property.

To make this change the user would navigate into the “Properties”

facet. After seeing that there wasn’t a specific sub-facet labeled

“bit-rate,” they could select the “More...” sub-facet to get a listing

of all the available properties. Alternatively, the user could select

“Search” from the main menu when the focus was in the facet

pane. Upon doing that, the focus would be temporarily shifted to

the TopBar where any text entered would be used to search

against the names of properties in the Facet hierarchy. After

choosing “Configure Facets” from the “Settings” option on the

main-menu, the user would then choose a slot for the new

property. And this is why interactive prototypes are often better

than textual descriptions.

5.5.3 Using a faceted hierarchy to access commands
Typical faceted search systems are used to grant access to

properties for objects. In the TapGlance proposal, we also use the

facets to access commands. A top-level facet labeled “Tasks”

gives hierarchical access to any commands that would have

bearing on the current set of items in the result pane. If there

currently is no query, then a default set of PIM related tasks is

shown. These commands are arranged into very high-level, PIM

task oriented groupings and are generally independent of item

type. The default tasks include (among others) Create, Edit, Share,

and Remind. The generality of our hierarchy is illustrated by the

common task of a user wanting to print a document from the

smartphone to a nearby networked printer. The user could choose

“Tasks/Create/Printer Version” or “Share/With Printer.” Both are

valid ways of conceptualizing the task of printing and the flexible

nature of the proposed TapGlance facet hierarchy would allows

for this.

5.5.4 Adaptive Refinement of Item Definition
The flexible metadata system proposed in TapGlance allows other

interesting functionality as well. It tends to blur the distinctions

between different item types. In typical PIM systems items are

exposed to the user as belonging to particular types, e.g. only

email items can have a “from” attribute. In the proposed

TapGlance system, most properties can be added to any item. If a

photo was sent via an email or other transport system, it gains a

“from” attribute. Sometimes these are direct relationships as when

properties are directly written to an item: a text note becomes an

appointment when it is assigned a start and end date. In other

cases, the properties might not be directly assigned to an item but

because of a relationship between two items, that property can be

used to find both items. If the aforementioned appointment also

has a photo linked to it, the photo gains a degree of relatedness to

the time axis. The photo does not itself have a start and end date

but because it is related to the appointment, the photo could be

plotted on a time axis. Again, this serves to illustrate that in the

proposed TapGlance system, every item is related to every other

item via their properties.

A user can also take advantage of the loose hierarchical structure

of our metadata to iteratively refine the tags on an item. For

example, when a user first encounters a set of emails they might

want to first just tag them all as pertaining to work. Later on, the

user can refine the work tag for individual email items by adding

particular “project” tags to specific items. And this works in both

directions: an item may have very specific, detailed tags on it but

the user may not remember the exact specific tags. In a traditional

tag-cloud system, that would be the end of the story. If the user

doesn’t remember the specific tag, there is no way to recall that

set of items. In the TapGlance system, though, all tags, no matter

how specific, are cast into multiple places in a loose hierarchical

structure. An appointment on the user’s calendar may have a very

specific tag about a feature review. The user might not remember

the name of that feature so in a traditional PIM system, it would

be hard to find that item. In the proposed TapGlance system,

though, users have the option of specifying how that new tag

relates to existing tags. In this case, the particular feature tag

could be related to an overall project. At recall time, if the user

searched for the name of the project, the appointment for the

detailed feature review would be returned as a faceted search

result.

6. OBSERVATIONS
There is an emerging breed of new PIM applications that also try

to blur the distinctions between strict information types. The new

Chandler system is a fair representative. It is useful to make a

comparison between our proposed TapGlance user interface and

the just recently released first version of the Chandler PIM

system. Even though Chandler is not currently a mobile optimized

application, we choose it for comparison because of similarities in

intent between our systems. Both of our systems believe that the

traditional divisions between object types need to be jettisoned.

Both systems believe that users should be able to iteratively add

more detail to an item’s definition, and both believe that there are

archetypal workflows that a user engages in during their normal

workday to keep on top of their projects, commitments, and

communications. Both systems firmly believe in providing a layer

of abstraction over the vast array of attributes that a heterogeneous

system by necessity has to support.

The differences, though, lie more in how actions are initiated in

the two systems. Let us consider the example of emailing out a

text note. In Chandler the user first has to add the relevant

metadata before the “send” buttons become available. The user

has to first add a recipient and then the “send” button becomes

active. In our TapGlance proposal, the action is the key itself. The

user selects an information item, such as a text note and then from

the main menu chooses an action category such as send. Once that

has happened, the system asks the user for a recipient’s address

and or name. This is possible in the TapGlance system because we

provide a hierarchical composition of PIM centered actions,

actions that are defined from the more general to the more

specific.

Another difference is that Chandler gives primacy to just a few of

the common facets: Type, Action, Tag, and When. Each of these

facets gets prime real-estate in the Chandler desktop application.

The other canonical facets, who and where, seem to be relegated

to second-class citizen status. In the TapGlance design, all of

these canonical facets have equal prominence and dedicated view

types for visualizing information from each of these dimensions.

7. CONCLUSIONS AND FUTURE WORK
As this has only been a proposal, in essence a design on paper, our

next obvious steps are to prototype these designs and start user

testing. We will be very curious to see if short training on the

general metaphor of TapGlance will enable positive transfer: will

users who learn how to use a few applications within TapGlance

have an easy time of learning new TapGlance enabled

applications?

The designs from TapGlance serve as one of the first steps for the

cPhone mobile computing project within Microsoft Research.

This project aims to define and prototype a future class of mobile

computing and communication device. As part of the cPhone

project we are considering how to best use various sensor data to

inform the user interface. The information displayed in the home

screen TapGlance tiles could be optimized based on GPS, audio,

and video sensors and as yet unexplored sensors. This sensor data

could also be used to geo-code user actions and semi-suggest

appropriate meta-data.

Our TapGlance design proposes a way in which users can

combine and visualize data from across multiple silos. A

hierarchical faceted search interface can be used throughout the

TapGlance experience to filter any of the structured information

available from the smartphone. Commonly used commands can

be invoked from a spatially arranged menu system. All of this is

consistently accomplished by tapping phone number keys to zoom

into and amongst spatially stable sub-regions of the display. Our

organization of the most salient information into 9 high-level

feeds ensures that users need only glance at the TapGlance home-

screen to learn what items most need attention. We have applied,

in a novel way, segmented spatial zooming to both faceted search

and application navigation.

We have presented TapGlance, a unified smartphone user

interface where users can accomplish many mobile personal

information management tasks, at various levels of detail, via a

common interface. TapGlance combines segmented zooming

navigation and ubiquitous faceted search across common

information source feeds.

8. ACKNOWLEDGMENTS
This design rests on very fruitful collaborations with Bongshin

Lee and Roland Fernandez, and Ed Cutrell. Lastly, thanks family

for letting me focus on this paper while life continued around me,

and greeting me with open arms when I emerged, even after many

deadline extensions.

9. REFERENCES
[1] Cutrell, E., Robbins, D., Dumais, S., and Sarin, R. 2006.

Fast, flexible filtering with phlat. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems (Montréal, Québec, Canada, April 22 - 27, 2006). R.

Grinter, T. Rodden, P. Aoki, E. Cutrell, R. Jeffries, and G.

Olson, Eds. CHI '06. ACM Press, New York, NY, 261-270.

[2] Hearst, M., Design Recommendations for Hierarchical

Faceted Search Interfaces, in the ACM SIGIR Workshop on

Faceted Search, August, 2006.

[3] Karlson, A. K., Robertson, G. G., Robbins, D. C.,

Czerwinski, M. P., and Smith, G. R. 2006. FaThumb: a facet-

based interface for mobile search. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems (Montréal, Québec, Canada, April 22 - 27, 2006). R.

Grinter, T. Rodden, P. Aoki, E. Cutrell, R. Jeffries, and G.

Olson, Eds. CHI '06. ACM Press, New York, NY, 711-720.

[4] Live Search Mobile smartphone application,

http://mobile.search.live.com/about/download/default.aspx,

© 2007, Microsoft Corp.

[5] Matthews, T., Blais, D., Shick, A., Mankoff, J., Forlizzi, J.,

Rohrbach, S., Klatzky, S., Evaluating glanceable visuals for

multitasking. EECS Department, University of California,

Berkeley, Technical Report No. EECS-2006-173, 2006.

[6] Pousman, Z. and Stasko, J. 2006. A taxonomy of ambient

information systems: four patterns of design. In Proceedings

of the Working Conference on Advanced Visual interfaces

(Venezia, Italy, May 23 - 26, 2006). AVI '06. ACM Press,

New York, NY, 67-74.

[7] Robbins, D.C. 2007. TapGlance: Designing a Unified

Smartphone Interface. To be published in Proceedings of

Designing Interactive Systems (Cape Town, South Africa,

February 25th – 27th, 2008). DIS 2008. ACM Press, New

York, NY.

[8] Robbins, D. C., Cutrell, E., Sarin, R., and Horvitz, E. 2004.

ZoneZoom: map navigation for smartphones with recursive

view segmentation. In Proceedings of the Working

Conference on Advanced Visual interfaces (Gallipoli, Italy,

May 25 - 28, 2004). AVI '04. ACM Press, New York, NY,

231-234.

[9] Van Dantzich, M., Robbins, D., Horvitz, E., and Czerwinski,

M., Scope: Providing Awareness of Multiple Notifications at

a Glance. Proceedings of AVI 2002. pp. 157--166.

[10] Wilson, M., Russell, A., schraefel, m. c., and Smith, D. A.

2006. mSpace mobile: a UI gestalt to support on-the-go info-

interaction. In CHI '06 Extended Abstracts on Human

Factors in Computing Systems (Montréal, Québec, Canada,

April 22 - 27, 2006). CHI '06. ACM Press, New York, NY,

247-250.

[11] Zumobi, Zumobi web site, http://www.zumobi.com.

Figure 3: Initial TapGlance Facet Hierarchy (with loose, overlapping membership)

Figure 5: Loose Hierarchical Faceted Web Search

Figure 4: Multiple entry points for common application activation (Camera)

 Figure 6: Media Filtering

Figure 8: Typing Interpretation

Figure 7: Scenario 1: Calling the babysitter

	INTRODUCTION
	Related Work
	Design Goals
	The TapGlance User Inteface
	Scenario driven design
	Scenario #1
	Scenario #2
	Additional Scenarios

	Levels of Abstraction
	Intelligent Visualization of Feeds
	Information Creation
	Navigation and Menus
	The Scratchpad
	Faceted Search with a Loose Taxonomy
	Existing Metadata systems
	Loose faceted hierarchies of metadata in TapGlance
	Using a faceted hierarchy to access commands
	Adaptive Refinement of Item Definition

	Observations
	Conclusions and Future Work
	ACKNOWLEDGMENTS
	REFERENCES

