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ABSTRACT
In a modern enterprise network of scale, dependencies be-
tween hosts and network services are surprisingly complex,
typically undocumented, and rarely static. Even though net-
work management and troubleshooting rely on this informa-
tion, automated discovery and monitoring of these depen-
dencies remains an unsolved problem. In the system we de-
scribe in this paper computers on the network cooperate to
make this information available to all users of the network.

Constellation uses machine learning techniques to infer
a network-wide map of the complex relationships between
hosts and services using little more than the timings of
packet transmission and reception. Statistical hypothesis
testing on the resulting models provides a guaranteed con-
fidence level for the accuracy of the result. The system is
demonstrated against a substantial packet trace from an en-
terprise network.

1. INTRODUCTION
Shared network services enable great functional richness

and flexibility for distributed applications. As a result appar-
ently simple facilities, such as remote file sharing and email,
invariably rely on multiple network services ranging from di-
rectory functions to authentication. As well as rendering ef-
fective management problematic, the size and sophistication
of networked systems often leads to security vulnerabilities,
inefficient troubleshooting and anomaly detection, and ulti-
mately user frustration. This effect was noted by Lamport
in his famous quote ‘a distributed system is one in which
the failure of a computer you didn’t even know existed can
render your own computer unusable’ [10].

This paper presents Constellation, a tool that automates
discovery of correlations between hosts and network ser-
vices, and proactively infers a network-wide map of these
complex relationships. Constellation is a peer-oriented dis-
tributed system in which peers share information about their
traffic correlations. These correlations are inferred in a
black-box fashion on each computer locally by performing a
∗John is now with Dickinson College, PA. Work done while a Re-
searcher with Microsoft Research. Aleks is with the University
of California, Berkeley, CA. Work done while an intern with Mi-
crosoft Research.
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Figure 1: Small fragment of a constellation depicting the tran-
sitive correlations of a single computer in an enterprise net-
work.

statistical test. As a result, neither application-specific mon-
itoring devices, nor centralized “Reporting Managers”, are
required. Consequently, any computer in the network can
obtain a global view of how its own traffic relies upon, or
is produced by, remote services and computers that may not
obviously be related.

Figure 1 presents a small portion of a traffic visualization
diagram which we term a constellation. The machine “desk-
top” (doubly-circled in the figure) is the root of the constel-
lation. The other nodes represent servers on which the root
depends (either directly or indirectly), while the edges reflect
the corresponding services that are correlated. This picture
was generated by the Constellation GUI, in which hover-
ing the mouse over one edge highlights the related traffic.
Constellation builds these correlation graphs using innova-
tive machine learning techniques. Its lightweight, black-box
approach allows deployment in a network regardless of the
heterogeneity of host operating systems and applications.

The potential for end-users to view what services and
computers they depend upon and hence identify the likely
source of problems is a key advantage of Constellation over
centralized solutions. IT management in a typical enter-
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prise is extremely costly, with entire departments dedicated
to maintaining the corporate network and associated infras-
tructure [9]. Troubleshooting is a particular challenge due to
both the complexity and the opacity of systems that comprise
products from multiple vendors and are frequently upgraded
as technology changes. Furthermore, the problems experi-
enced by end-users may be intermittent and hence difficult
for IT support to track down, or can only be rectified after
enough data is collected to identify the problem by which
time a significant number of users are affected.

Current debugging capabilities for deployed networked
systems are unsatisfactory. Individual applications may pro-
vide the ability to understand their own behaviour; a few
simple general-purpose tools like traceroute, tcpdump and
ping exist, while some systems make a variety of data avail-
able through SNMP. However, there is still a dearth of tools
that enable users, operators and developers to understand the
interactions between the systems they come into direct con-
tact with and those not within their immediate view that are
part of the infrastructure.

Paper outline
In the next section, we motivate Constellation by describing
two case studies, and then in Section 3 introduce its soft-
ware components, which include the processing that takes
place on each computer locally, as well as a distributed
search procedure for building network-wide constellations.
At the core of the system is a method for learning a model
of the relationships between input and output traffic streams,
and applying hypothesis testing to this model to determine
correlation. We describe this technique in Section 4. Sec-
tion 5 presents an experimental validation using a carefully
selected subset of a real network trace for which we have
determined “truth”, while Section 6 gives a qualitative eval-
uation of Constellation’s performance across multiple com-
puters using the same trace (for which we do not know abso-
lute truth). Finally, we discuss some implementation issues
in Section 7 and review related work in Section 8.

2. USAGE CASE STUDIES
Throughout this paper, experimental analysis and results

are obtained using a trace comprising headers and partial
payloads of around 13 billion packets collected over a 3.5
week period in 2005 at Microsoft Research Cambridge. Al-
though the capture site, which has approximately 500 net-
worked machines, is physically distant from company head-
quarters, it is fully within Microsoft’s global corporate net-
work and so runs the same services and applications under
the same global policy as the rest of the company. The trace
covers every packet sent or received by the 500+ nodes on
site and captures conversations with over 28000 off-site IP
addresses.

2.1 End-user diagnosis of web proxy failure
As an example of using Constellation for diagnosis we
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(a) HTTP response times showing a disturbing number of outliers
in bands at 20s and 40s.
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(b) Hour 1: normal operations. HTTP requests are
forwarded through the first-hop proxy to 9 second-
hop proxies.
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(c) Hour 2: proxy07 has stopped responding to
HTTP requests, which are still being forwarded to
it from webproxy .

Figure 2: Investigation of web proxy issues.

explore a sudden increase in HTTP response times for some
clients that we detected in the trace. Figure 2(a) shows the
HTTP response times of all clients during 5 minutes from
this period. The plot suggests the presence of a problem with
a small but significant proportion of HTTP requests that are
observed to take over 20 seconds (and in some cases over
40 seconds) to be served. The way in which we investi-
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Figure 3: Using Constellation for reconfiguration planning.

gated these outlying points is illustrative of how Constella-
tion could be used by an end-user to troubleshoot networking
problems experienced on their desktop computer.

The constellations of Figure 2 are generated at the HTTP
client desktop-77, and show that web traffic that is destined
for the internet is directed first to a proxy called webproxy
and from there forwarded to one of a bank of second-hop
proxies denoted proxy*. In a constellation graph, the ar-
rows denote a correlation, therefore the pictures can be in-
terpreted as showing us that on webproxy incoming HTTP
traffic from desktop-77 is correlated with outgoing HTTP
traffic to proxy01, proxy02 and so on.1 Similarly, incoming
HTTP traffic from the proxy* servers, (which will in fact be
the response packets), is correlated with the outgoing HTTP
response traffic to the client desktop-77. These constella-
tions were produced for one hour time periods both before
(Figure 2(b)) and during (Figure 2(c)) the occurrence of slow
web response times. It is immediately obvious from these
pictures that proxy07 has stopped sending HTTP responses
in the second hour and is the most likely cause of the delays.
For the human user sitting in front of desktop-77 the fault
can be identified at the time of experiencing the problem by
comparing the HTTP-constellation from an hour ago, (when
no problems were apparent), with the HTTP-constellation
for the current time.

This is a straightforward diagnosis for the end-user given
the information exposed by Constellation, but would be
trickier for the system administrator to notice and track
down. Although some clients will have experienced very
slow response times during the outage, the majority received
good service from the eight healthy proxies so the problem
would have only manifested intermittently. To further com-
plicate analysis of the issue, services other than HTTP, in-
cluding Winsock control traffic, actually continued to work
normally on the malfunctioning proxy during this period. In
fact since the same load-balancing algorithm is used by the
1Strictly speaking correlation does not imply causation,
e.g. scheduling artefacts could make two otherwise independent
packet streams appear correlated. However, in the vast majority of
cases that we have examined the presence of correlation strongly
suggests a causal relationship.

proxy server for both HTTP and Winsock control (which is
used to establish non-HTTP tunnels to the external internet
through the gateway proxy* computers), the two Winsock
control constellations from the same client for the same time
periods are both identical to the HTTP constellation of Fig-
ure 2(b). Hence the only symptom is that one in nine web
requests (approximately) experienced poor response times,
while the server itself was still working normally for all other
types of traffic.

Having pinpointed the problem source using Constella-
tion, by manual inspection of the traces we were able to
track it to an apparent IPSEC misconfiguration which caused
proxy07 to stop responding to TCP SYNs on port 80. Af-
ter 20 seconds the proxy software apparently times out the
connect() attempt and tries a different member of the
load balancing group. It is impossible to tell how long it took
the network administrators at the time to become aware of,
to diagnose, and to rectify the problem, however the trace
shows that proxy07 continued to behave badly for over 48
hours.

Note that Constellation is not only empowering the savvy
user but automated monitors can now alert the professional
IT support organization of changes in the different user con-
stellations enabling a faster, more focused, and more accu-
rate diagnosis.

2.2 Reconfiguration planning
To illustrate how Constellation may be used in practice by

a system administrator we use a hypothetical, but realistic,
scenario.

Assume the administrator wishes to move a database run-
ning on server-53 to another computer in a different part
of the network with minimal disruption to its users. The
query log shows only that server-53 is accessed by several
web servers, therefore the administrator cannot tell who the
originators of these requests are and hence how many hu-
man users might be impacted by the planned reconfigura-
tion. Inspection of logs from the relevant web servers would
reveal this information, but in many situations will be a man-
ual process requiring human intervention. For example, the
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Type Service Peer cPort Description
OUTREQ HTTP server1 * HTTP requests to specific server1

INREQ HTTP client1 * HTTP requests from client1
INREQ HTTP client1 1234 HTTP requests on a single 5-tuple
INREQ HTTP * * All HTTP requests (at server)

OUTRES HTTP * * All HTTP responses (at server)
OUTREQ SMB * * All file browsing requests

INRES SQL dbhost * SQL responses from dbhost
OUTREQ DNS * * All outgoing DNS requests

INREQ DNS * * Incoming DNS responses (at server)
OUTRES DNS * * Outgoing DNS responses (at server)

INRES DNS * * Incoming DNS responses (at client)
... ... ... ...

Table 1: Examples of channel specifications.

database administrator may have to email several web server
administrators to request access to, or a search of, their web
logs.

For the purpose of this reconfiguration, the administrator
may also wish to know which remote services the database
makes use of. If server-53 hosts more than one type of ap-
plication server, it can be difficult to determine which re-
mote invocations are triggered by database activity specifi-
cally. This traffic is likely to belong to network management
services, for example we might see various Active Directory
authentication services invoked. Such dependencies can be
almost impossible to discover manually—they are likely to
be either encoded in obscure configuration files or else con-
figured dynamically according to some network-wide policy.

Constellation automates and simplifies finding this in-
formation by allowing the administrator to search “back-
wards” to identify the desktop computers that indirectly ac-
cess the database on server-53, and to search “forwards” to
find which remote services the database makes use of. The
diagram in Figure 3 illustrates how these forwards and back-
wards searches might propagate from the database machine
server-53.

3. BUILDING BLOCKS
The case studies of the previous section described some

of the functions provided by Constellation from the point of
view of the end-user and the system administrator. In this
section we give an overview of the system and describe the
mechanisms that enable this functionality.

Each participating host in the Constellation system runs a
daemon that is responsible for learning the relationships be-
tween the traffic flows it originates or terminates. By query-
ing this information, the system as a whole can explore pos-
sible transitive dependencies throughout the enterprise. Fig-
ure 4 shows the processing stages of a Constellation daemon:
in the following we introduce the role played by each of the
system components that are depicted in the diagram.

Channels
To establish a common vocabulary we first introduce a spe-
cific notion of a channel that we will use throughout the pa-
per. A channel at a given host is a unidirectional flow of
network packets sent or received by that host, identified by

a direction and role (e.g. INREQ or OUTRES), the service,
the remote peer, and the client port. Here, a service could be
a protocol, application or network service, frequently deter-
mined in practice from the well-known TCP/UDP port num-
ber, other information in the packet header, or even from the
operating system of the host. See Table 1 for examples.

Aggregation
Channel aggregation enables the model to treat the traffic of
multiple peers as coming from or destined for a single entity.
This is sometimes, but not always appropriate, depending on
the nature of the traffic and the intended use of the resulting
constellation.

An example of when aggregation is desirable can be seen
in Figure 2. Here it is possible to track correlations for indi-
vidual clients through the proxy, showing, for example, that
client C1 was correlated with servers proxy02 and proxy04,
whereas C2 was correlated with proxy01 and proxy07. How-
ever, for diagnosing the problem described in Section 2.1,
the important information is that clients are correlated with
all the upstream servers, since a request from any client
might be sent to any server. Therefore on webproxy we ag-
gregated all incoming HTTP requests into one channel and
all outgoing responses into another (note however that on the
client, desktop-77, HTTP traffic is not aggregated).

Filtering bursts
Constellation uses packet timing relationships to infer cor-
relations that we actually expect to be exhibited between
messages, i.e., between communications at layers above the
network stack. Although the use of packets enables the Con-
stellation daemon to be lightweight and non-intrusive, it has
the drawback that the message-level semantics can be ob-
scured when a large number of extraneous packets are gen-
erated, for example when transferring a large amount of data.
Consequently, we use a low pass filter that removes “noise”
packets and bursts while keeping the “signal”: the details
are described further in Section 7.3. This burst filtering is
applied to individual flows before channels are aggregated.

Fitting probabilistic models
At the core of the Constellation system is a set of probabilis-
tic models which describe the observed timing relationships
between traffic on input channels and traffic on output chan-
nels. For scalability, each host maintains current and histori-
cal models of its own traffic, and allows other hosts to query
this database.

Fitting models is done via the well-known Expectation
Maximisation (EM) algorithm [5]. For a set of input chan-
nels and output channels we fit models using various priors2

and distribution families. The EM algorithm finds the best
parameters for each model, and by computing the likelihood
each model assigns to the data, Constellation can select the
best of these models.
2Initial parameter estimates.
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Figure 4: Processing stages of a Constellation daemon. Packets with the same service and peer are grouped into channels, which are
optionally filtered and aggregated. Correlations between input and output channels are then inferred from the packet timestamps
by fitting probabilistic models. Each host exports current and historical correlation maps through a query interface, enabling a
network-wide constellation to be constructed from any host by means of a directed search.

Using the models, Constellation decides whether there is
sufficient evidence that packets on an input channel result in
packets on an output channel. Similarly, it can also deter-
mine when a model no longer accurately describes the cur-
rently observed traffic. Both these tasks are achieved using
the likelihood score and statistical hypothesis testing.

Model selection
Due to the nature of machine learning algorithms, we must
fix a particular aggregation strategy before fitting the model.
As explained earlier, there are often multiple choices for ag-
gregation. The model likelihood score can also be used to
compare models fitted using different aggregation strategies
or distributions and choose the one which best captures the
traffic (the dotted lines in Figure 4 indicate that this com-
ponent is under development and is not discussed further in
this paper).

Queries
Using the model database, the Constellation daemon sup-
ports two primitive queries:

• Find outputs correlated with a specified input

• Find inputs correlated with a specified output

Inputs and outputs are specified using the channel syntax
described earlier, and can include wildcards. Queries can
be restricted to a particular time range, and results can be
limited to the N strongest matches, or matches with a confi-
dence grater than C. Executing a query is similar to running
an SQL SELECT over a table of input to output correlation
scores. The results tell us which channels are related on each
machine individually.

Building a constellation
The Constellation client application can also perform a network-
wide search to find related traffic, transitively following se-
lected correlations from machine to machine in a breadth-
first fashion, as well as following local “temporal” correla-
tions on a single machine. The result is a directed graph con-
taining services and computers that are transitively related to
the traffic of the seed computer.

Many of the constellation diagrams throughout this paper,
such as in Figures 1 and 2, show the graph generated by a
forwards search initalized from outgoing traffic of the seed
computer. It is also often useful to run the search backwards
to find all possible transitive causes of a particular output
request channel. We make use of the latter technique later in
this paper (Section 6.1) to explore the relationship between
name resolution and web browsing.

Both forwards and backwards search can involve follow-
ing temporal correlations on the same machine. These oc-
cur when an input response channel is correlated with an
output request channel, and indicate an ordering on service
invocations by the client. Another common idiom for chan-
nel relationships is nesting, where incoming requests trigger
outgoing requests. Nesting occurs on a hierarchical caching
server such as the web proxy described earlier or in a typical
DNS deployment.

Correlation scores are comparable across hosts (because
they represent a measure of confidence), and so the simplest
termination criterion for the search procedure is to stop at the
host that has no outgoing channels correlated with the rele-
vant incoming channel. More sophisticated schemes include
weighting correlation strength according to the number of
hops distant from the seed, or computing a cumulative prob-
ability score of the complete path from the seed to decide
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that candidate inputs packets caused each output.

whether an edge should be added to the graph.

4. HOST TRAFFIC MODELS
Constellation is concerned with inferring the configura-

tion and traffic interactions of individual machines, and
then synthesizing this information to provide a global view.
This section tries to impart an intuitive understanding of the
model used to represent these local traffic interactions and
to explain how it differs from previous work. The model is
a crucial component of the system and so we also present
a more rigorous introduction in Section 4.1. Further de-
tails, including formal properties of the model, are beyond
the scope of this paper (which is focused on the system as a
whole), but can be found in a separate publication [16].

Constellation learns the interactions between services by
observing the timing relationships between their input and
output traffic. In Figure 5, the output packet at time t = 0
may have been caused by any (or none) of the four inputs.
Constellation assigns a probability to each candidate packet
according to the time delta between input and output and
a delay distribution function which is fitted to the observed
samples.

In this example, the packet on input 1 with δ = 2 is the
most likely candidate. The packet on input 2 has δ = 4 but
the majority of observations we have seen previously have a
δ u 5. Input 3 is usually seen very close to δ = 2.3, whilst
input 4 packets are spread thinly across the whole window.
Constellation uses the Expectation-Maximisation (EM) [5]
algorithm to iteratively determine the most likely patterns of
inputs and outputs.

An important difference between Constellation and re-
lated work is that the per-host models fitted by Constella-
tion consider all recent input packets using Bayesian reason-
ing to identify the best explanation of each output packet.
Earlier systems have used pairwise correlation techniques
to determine whether a single input and output flow have
similar timing patterns: Aguilera et. al. [1] used convolu-

tion of incoming and outgoing email timestamps to identify
related messages that exhibited the nesting correlation id-
iom described in the previous section. Sherlock [2] collects
pairwise co-occurrence3 statistics at each host. These are
then submitted to a central inference engine that aggregates
observations across the enterprise and applies Bayesian rea-
soning to identify the most common configurations (e.g. pri-
mary and backup DNS servers) or the most probable root
cause of problems. WAP5 [15] fits application-level input
and output messages to a predetermined delay distribution
that is parameterized in advance for specific applications.

Of course, output traffic is rarely explained perfectly by
input traffic, and frequently there is no relationship at all
(when output packets are “spontaneously” generated). To
quantify the degree of correlation between an input I and
an output O, we fit two models: one using all of the in-
put channels, and another using all of the channels except
I. The difference in accuracy of these two models at pre-
dicting the output traffic is a good metric of the correlation
between I and O. In fact, Constellation applies standard sta-
tistical hypothesis tests to determine if the two models differ
significantly, and this allows us to control the rate of false
positives. This is a second major difference from previous
work.

As a real-world example, Figure 6(a) shows the traffic pat-
terns observed on a web server over the course of a typical
hour. Each horizontal line shows request and response pack-
ets of a particular protocol. Although most human observers
can observe subtle timing correlations between some of the
eighteen protocols, there are also busy periods where it is
difficult to make out any clear pattern. Even though individ-
ual interactions may frequently look ambiguous, evidence
from the rest of the trace rapidly accumulates to identify the
most probable cause.

Figure 6(b) shows a small excerpt of the web server plot
annotated with arrows which show the explanation Constel-
lation has attributed to each output packet. Constellation has
determined that the HTTP request at the bottom left is the
most probable explanation of the LSA (authentication) re-
quest, the SQL query and the SMTP conversation. Inspec-
tion of the configuration of this web server revealed that it
hosts a site used for online booking of taxis which maintains
bookings in a database and sends email when a new booking
is made.

4.1 CT-NOR
The procedure we use for automatically discovering the

dependencies4 between the input channels and the output
channels is well grounded in probability modeling and statis-
tics. It comprises two steps. First we learn from the observed
data a probability model of the interactions between inputs
3i.e. the number of input and output packets within 10 ms of each
other.
4Note that dependence is used here in the statistical sense to mean
that by knowing the inputs we can better predict the outputs.
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Figure 6: Traffic patterns at a web server a) 1 hour overview, b) detail of HTTP request causing SQL and SMTP activity.

and outputs, and then we use statistical hypothesis testing to
establish the relevance of each input channel to each output
channel.

Constellation uses a probabilistic model called Continu-
ous Time NoisyOr (CT-NOR)[16], which considers a single
output channel on a given host and simultaneously analyzes
all of this host’s input channels to determine which chan-
nel(s) best explain the actual observed occurrence of the out-
put packets. Under this model, if ol denotes the time of an
output event then the probability that packet k in input chan-
nel j generated output packet l is distributed as a Poisson
process with intensity parameter p( j)

k (ol) = π( j) fθ (ol− i( j)
k ).

In this equation π( j) represents the average number of out-
put events that we expect each input event on channel j to
be responsible for, and fθ is the distribution of the delay
between an input and the output events caused by it. This
function will take as its argument the delay between the time
of the output ol and the time of the input i( j)

k . Note that
this makes intuitive sense: the probability that a given input
packet caused a given output packet depends on both the ex-
pected number of packets it generates and the “distance” in
time between them. The function fθ (∆t) provides us with
the opportunity of encoding prior information regarding the
expected shape of the delay between the input and the output
channels.

The parameter π( j) and the parameters of the function
fθ (∆t) are fitted automatically. To build the joint probability
model of the output packets we recall that given a set of in-
dependent Poisson processes (denoted as PP) we can use the
sum of their intensities and write {ok} ∼ PP(∑ j ∑k p( j)

k (·))
as the probability of the set of n outputs {ok}, 1 ≤ k ≤ n.
Intuitively, given this independence between input channels,
the model considers the packets in the output channel to be
caused by the presence of any (a disjunction) of input pack-
ets in the input channels (with some uncertainty). Hence the
name NoisyOr.

We are now ready to write the probability of observing a
set {ol} of outputs, given a set of inputs i on all the channels
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j. Let λ = ∑ j ∑k π( j)

P(o1, . . . ,on|i) = λ n · e−λ ∏
l

∑
jk

π( j) fθ (ol − i( j)
k )

λ
(1)

Eq. 1 is called the likelihood equation and it is important for
both automatically fitting the parameters of the model and
for discovering correlations.

For learning (fitting) the parameters, π( j) and the ones in
fθ (∆t), we find the values that maximize Eq. 1, as these pa-
rameters maximize the probability that our model generated
the data we are observing. It is in this precise sense that our
model best explains the data observed. To perform this max-
imization and fitting effectively, we follow standard machine
learning and statistical techniques and use the Expectation
Maximization algorithm [5].

The CT-NOR model is arguably the simplest probabilis-
tic model that comprises the following characteristics: 1) it
lends itself to statistical techniques so that we can offer guar-
antees in terms of the number of false positives in the depen-
dency discovery task, 2) it takes into account the interactions
between all input channels and 3) it enables the incorpora-
tion of expert knowledge on the structure of the expected
delay distribution through the function fθ (∆t).

4.1.1 Delay distributions
In our experiments and characterizations we determined

two particularly useful delay distributions ( fθ (∆t)). The
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first is a linear mixture of a uniform distribution on a small
window, and a decaying exponential. The uniform compo-
nent captures almost instantaneous forwarding dependencies
(order of a millisecond) while the exponential component
captures more distant interactions resulting from queuing
or processing. The second useful distribution was a simi-
lar mixture, but with a Gaussian component for the more
“distant” interactions (see figure 7). All the parameters of
these distributions are fitted automatically whilst maximiz-
ing Eq. 1.

4.1.2 Confidence thresholds
To discover which input channels are relevant to the out-

put channel we rely on statistical hypothesis testing on the
the parameter π( j). Specifically, we use the Likelihood Ratio
Test (LRT) [17]. The null hypothesis H0 is that for a specific
j = J, π( j) = 0 (i.e. input J is not responsible for any output
packets). To test the hypothesis we maximize Eq. 1 twice,
once with the full set of inputs, and once with π( j) = 0; if
Λ is the ratio of the model likelihoods, then 2log(Λ) is dis-
tributed as χ2 with one degree of freedom.

The result of this test is a “p-value” which gives (roughly
speaking) the probability that a more extreme result would
have occurred if the null hypothesis were true. To decide
whether the input channel and the output channel are depen-
dent, this p-value is compared with a χ2 confidence thresh-
old. Anything below the threshold is rejected and the chan-
nels are declared correlated.

4.1.3 Multiple hypothesis testing
Although the p-value tells us something about the prob-

ability that a specific case will be falsely rejected, when
we construct a constellation we perform a large number
of hypothesis tests and the probability of making an error
could rapidly mount up. A concrete example illustrates this
best: suppose we perform 1000 hypothesis tests of which
we know that 200 are truly dependent channels and 800 are
non-dependent, and that our test rejects a number of null hy-
potheses equal to the number of genuinely dependent cases,
namely 200. With a p-value threshold of 5%, on average 40
of these (5% of 800) will be incorrect decisions—i.e. around
20% of our decisions are incorrect.

In practice, what we really care about is, “Amongst the
cases that my tests say are dependent, what is the proportion
of incorrect decisions?” This is known as the False Dis-
covery Rate (FDR). Statisticians have been confronting this
problem recently in the domain of genomics and have come
up with various procedures for dealing with large numbers
of hypothesis tests. In this work we follow the Benjamini-
Hochberg procedure described in [4].

Using the p-values from the CT-NOR test in combination
with the FDR procedure, we can compute suitable thresholds
on each host for rendering constellations, with upper bounds
(in expectation) on the number of false dependencies that
will be included.
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Figure 8: Activity plot of HTTP traffic at the caching web
proxy. Clients are shown at the top and the nine upstream prox-
ies in the bottom of the figure, with each point representing an
HTTP packet either received or transmitted.

5. EXPERIMENTAL VALIDATION
In the field of machine learning “ground-truth” refers to

those situations where we know the correct answers. The
ground-truth for correlations in a real network is, in general,
hard to extract. Relationships are often hidden inside the
configuration files or source code of individual applications,
and caching and load balancing can further obscure the ac-
tual underlying dependency. Fortunately, forwarding servers
for a well-understood protocol can provide an exception to
this situation, because received packets can be matched with
transmitted packets by inspection of the payload.

In this section we validate the correlation test using for-
warded HTTP traffic at a caching proxy server. We ex-
tracted ground-truth from a one hour period of the trace (10-
11am on a Tuesday) by deep inspection of HTTP packets
forwarded by the machine webproxy (which we also exam-
ined in the case study of Section 2.1). All HTTP requests
to the external internet from machines on the trace site are
directed to the proxy server, which will either respond from
its own cache, or, as the constellation of Figure 2(b) shows,
forward the request to one of an array of nine upstream prox-
ies.

Because the web proxy performs load-balancing across
all machines in the proxy bank, to avoid the uninteresting
situation where every client is correlated with each of the
upstream proxies (i.e. it would be impossible to make a mis-
take), we filtered the HTTP traffic by selectively dropping
packets so each client uses no more than four or five of the
proxies.

The ground-truth data set formed by this filtered HTTP
traffic is an example of a particularly challenging environ-
ment for the correlation test. On the one hand the ground-
truth is straightforward because it consists of only one style
of correlation (nesting), the server is fairly lightly loaded,
and requests are load-balanced across upstream servers at a
coarse granularity. However on the other hand, the presence
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of a large amount of multiplexing between traffic to and from
the 95 clients and 9 upstream proxies makes these relation-
ships difficult to tease out at smaller timescales.

Figure 8 contains a 10 second segment of the HTTP traf-
fic on webproxy. Since most clients use HTTP/1.0 there are
frequently four simultaneous TCP connections per client and
the median connection duration is 0.5s. The number of pack-
ets per connection shows the expected mix of short-lived
connections and long downloads [11]. In contrast, HTTP/1.1
is frequently used between webproxy and each proxy*. The
median lifetime of these connections is close to 2 seconds
and there are on average 30 connections active simultane-
ously between each pair of machines. Some of these connec-
tions transfer only a single HTTP object, whilst others carry
many requests from multiple clients. A further complicating
factor is that HTTP traffic comprises only 26% of the half a
million packets that make up the data set. With an observed
cache hit rate of 29%, this results in 4,246 instances of a for-
warded HTTP request or response at an average of 1.18 per
second over the hour.

5.1 Precision-recall
The statistical hypothesis test described in Section 4 gen-

erates a p-value, or confidence that a particular input and out-
put are related. Comparing this score against a fixed thresh-
old allows the user to arbitrarily trade off the accuracy of
decisions against the number of dependencies identified. To
assess the effectiveness of the test we borrow a technique
from the field of information retrieval and plot the precision
(the fraction of answers returned which are correct) against
the recall (the fraction of all correct answers which were re-
turned) as we vary the threshold from zero to infinity.

Figure 9 shows the precision-recall curve for CT-NOR
when considering the full hour of the data set, as well as the

Trace Target Num p-value Actual Prec- RecallLength FDR Tests cutoff FDR ision

5min 5% 220 5.2% 2.4% 97.6% 88.1%
10% 220 11% 2.8% 97.2% 89.5%

1hour 5% 667 4.7% 2.9% 97.1% 91.3%
10% 667 9.4% 3.4% 96.6% 92.1%

Table 2: Automatically chosen p-value thresholds and the re-
sulting Precision/Recall and FDR statistics.

first five minutes only. For comparison, we also include the
results obtained when co-occurrence is used to decide corre-
lation, configured with a window of 10 ms[2]. The knees of
these curves suggest the best possible operating point for the
tests over this data set, which for CT-NOR would be at just
over 94% recall and 96% precision, and for co-occurrence
at around 85% recall and 91% precision. From a machine
learning perspective this represents a substantial difference
in accuracy which is amplified when performing large num-
bers of hypothesis tests.

5.2 False discovery rates
Section 4.1.2 explained how the association of a confi-

dence score with the outcome of the test provides a mech-
anism for choosing the correlation threshold. In terms of
the precision-recall plot of Figure 9, this selects the operat-
ing point on the curve, and ideally we would automatically
choose the “best” point irrespective of the duration, volume
or type of traffic.

For the co-occurrence test we have no automatic way to
choose an operating point. The scores are normalised rela-
tive to the “expected number of accidental collisions”5, but
do not represent p-values and hence can vary greatly from
one dataset to another. To achieve a precision of 90% re-
quires a threshold of 2.56 for the 5 minute trace but 3.89 for
the one hour trace. Using the threshold from the 5 minute
trace on the one hour trace results in a precision of just 44%!

In contrast, the CT-NOR test scores are p-values on an ab-
solute scale and are therefore comparable across machines
and datasets. For each of the ground-truth datasets we used
the Benjamini-Hochberg procedure to choose an operating
point (i.e. p-value threshold) guaranteeing false discovery
rate less than 5% and 10%. Table 2 shows the resulting Pre-
cision/Recall and FDR statistics. In all cases we identify an
operating point close to the optimum and stay well below the
target error rate.

Using the p-values from the CT-NOR test in combination
with the BH procedure, we can compute suitable thresholds
on each host for rendering constellations, with guarantees
(in expectation) on the number of false dependencies that
will be included.

5.3 Search pruning efficiency
Another evaluation method compares the number of hosts

considered when fault-finding. Figure 10 shows the aver-
5We use the same normalisation technique as described in [2].
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Figure 10: Pruning the search space using Constellation

age (over searches rooted at all hosts) number of hosts con-
sidered, against search depth, for three different algorithms.
Note that, due to the nature of the trace, a large fraction of
the nodes found early in the search will be offsite, prevent-
ing the search from continuing; with full network visibility
we would expect the differences to be even more marked.

The naı̈ve flooding is a baseline algorithm that searches
every host to which a request has been made in the preceed-
ing hour. Its inclusion illustrates (by its rapid growth) both
the difficulty faced by administrators without tools such as
Constellation, and (by the rapid curtailment) the limitations
of the dataset. The middle bars are produced by a search
using a co-occurrence scheme (in fact implemented by set-
ting a CT-NOR threshold >0). The right-hand bars show the
performance of the Constellation CT-NOR algorithm with a
95% confidence threshold. It can readily be seen that using
Constellation to constrain the search to relevant hosts dra-
matically prunes the search space.

6. QUALITATIVE EVALUATION
This section describes a qualitative investigation of how

a higher-level tool might make use of constellations. Fig-
ure 11 shows the entire constellation seeded from the com-
puter desktop-36 for a one hour period. The structure of this
constellation is typical for client machines in the trace, with a
large number of services invoked at the on-site domain con-
troller, which in turn makes requests of upstream domain
controllers for various authentication (LSA), security (Ker-
beros), RPC (EPM), name resolution (DNS) and directory
(LDAP) services. The picture also shows that desktop-36
is invoking services on email, web and file servers, with on-
wards dependencies from some of these machines. Note that
the constellation actually contains both temporal and nest-
ing correlations, however the graphical representation does
not show this explicitly as it would make the picture hugely
complicated.

When considering entire constellations we lack the means
to extract ground-truth from the traces except for a very
small set of services on individual computers. However, we
can draw on our domain knowledge about likely relation-
ships between hosts and services in the network to explore
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Figure 12: HTTP correlation constellation for one hour.

qualitatively whether Constellation exposes these relation-
ships and in this section we examine three such scenarios.

All the constellations in this section were generated using
CT-NOR with an exponential delay function and FDR of 5%
at each host.

6.1 Name resolution and web browsing
The relationship between HTTP and DNS is well-known

and does not need further elaboration here. We expect to
find evidence of this in our traces, as well as a less univer-
sally common correlation between Netbios Name Service
(NBNS) and HTTP, which is present due to the particular
DNS and Active Directory configuration in the network.

To investigate the relationship between HTTP and name
resolution we first examine the CT-NOR correlation mod-
els of all hosts in the network. Over a time period of one
hour we find DNS response-to-HTTP request correlations
for 47% of clients sending HTTP requests, while over 24
hours this proportion rises to 83%. The increase is explained
by the effects of client-side caching of DNS name lookups
(typically 15 minutes). The relationship between the Netbios
name resolution protocol and HTTP requests is also signifi-
cant: we find that 11% of clients issuing HTTP requests have
the NBNS response-to-HTTP request correlation in their sin-
gle hour constellation and 33% in their constellation for one
day.

Secondly, we use the backwards mode of the constellation
building algorithm, described in Section 3, to see how Con-
stellation would answer the question “what hosts and ser-
vices are required in order to browse the web?” We generate
backwards constellations from a seed edge that is the outgo-
ing HTTP request channel to the proxy server, and find that
the resulting graphs fall into 3 main groups, depending on
whether just HTTP is involved, or if name resolution using
DNS or WINS is also used.

It is apparent from this that the essential infrastructure for
web browsing from our site comprises the 10 proxy servers
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Figure 11: A constellation rooted at the host desktop-36 highlights the large number of services invoked on the Domain Controller
(domaincontroller) by the client, both by direct connection and also indirectly with transitive correlations via the two on-site file
servers (fileserver1 and fileserver2 ). Note that all the leaf nodes represent uninstrumented, off-site servers, and therefore do not
show any further onward transitive correlations˙

and the local domain controller. A large number of other
DNS servers (168 over the course of the day) also appear
in over 60% of these constellations, while 25 constellations
contain the WINS servers used for Netbios Name Resolu-
tion. Figure 12 shows a typical “HTTP dependency” con-
stellation containing DNS and WINS servers as well as the
HTTP proxies.

These findings reassure us that Constellation observes the
correlations we expect to see in this network, as well as shed-
ding light on interesting aspects such as the volume of NBNS
name lookup that took place for web browsing.

6.2 Email
The correlations for email are complex and highly vari-

able over time. The email client used on all desktops in the
network is Outlook, which maintains numerous, long-lived
connections to a number of Exchange servers situated in
an offsite data centre (and therefore not instrumented in the
trace). The nature of the computers and services used by an
Outlook client at any given time depends upon many things.
For example, services such as the RPC endpoint mapper and
DNS will be required when a new email session starts up.
The global Active Directory catalog stores mailbox config-
uration and the global address book—the frequency of AD
updates will impact communication by clients with domain
controllers. Contact with a domain controller also occurs to
invoke authentication services and protocols such as Netlo-
gon and Kerberos. In the network, Exchange servers play

dedicated roles, either supporting personal mailboxes or else
shared email folders (public folders), and so the constellation
for many clients includes not just their primary Exchange
server, but possibly one or more public folder servers also.

In contrast to the DNS/HTTP scenario we explored above,
email TCP connections tend to be long-lived (on the order
of hours or even days). Therefore we constructed backwards
constellations for email over a period of one day rather than
one hour. We found the vast majority of constellations to be
very small, with an average of 4 nodes and 6 edges. How-
ever, as expected, the structure of these correlation graphs
is a lot less consistent across the set of hosts than for HTTP.
Nevertheless, it is notable that 90% of the constellations con-
tain the DC, usually via Kerberos and DNS, in addition to
their Exchange server, and one third also contain a Pub-
lic Folder server. Other hosts found in the email constel-
lations include file servers, web servers, non-local domain
controllers and various security nodes. One of the com-
mon configurations for email dependency is depicted in Fig-
ure 13(a), and one of the more complex constellations that
we found is shown in Figure 13(b).

6.3 Printing
The transitive correlation from a client to a printer via the

print server is an obvious one that we expect Constellation
to find. However the situation otherwise is not clear-cut, in
part because of the way spooling is handled and in part be-
cause of the way printer status changes are communicated to
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Figure 13: 24-hour Email backwards constellations

multiple clients (for example, when a user is watching the
print queue status).

We discovered in the trace that print jobs are spooled no
less than three times: first on the client computer, second on
a central print server, and finally on the printer itself. The
length of time between the initial print job being spooled
to the server and from the server to the physical printer can
often be several seconds. Handling this requires the appro-
priate delay distribution parameters and is an example of a
situation in which a co-occurrence test will struggle to gen-
erate useful results without manual tuning of the window,
whereas CT-NOR is able to adjust the distribution parame-
ters automatically.

In addition, the print server makes callbacks to any client
with an open job or status window on the printer when the
printer changes status, and this callback is in the form of an
RPC delivered to a named pipe over the remote filesystem
protocol (SMB). Thus it appears that the print server acts
as a filesystem client to a selection of desktop computers
before and after submitting every job to a printer. As a result,
the constellation seeded at a printing client may contain a
selection of apparently unrelated client computers, as seen
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Figure 14: A printing dependency constellation containing
6 clients whose interactions with the print server printserver
occur during the same time period as those of the root node,
desktop-76.

in Figure 14.
This scenario highlights a subtlety in interpreting the out-

put of Constellation. In some ways the unrelated clients,
which might have jobs ahead in the queue, might reason-
ably be considered real dependencies since the print job of
the constellation of interest may be dependent on the other
jobs completing successfully. From another point of view
these additional clients should not be entangled in a gen-
eral constellation; we may not find useful a constellation in
which every client that prints is correlated with every other
client that prints. One resolution to this problem might be
for the system to simply apply a “reasonable” policy such as
excluding transitive desktop correlations that pass through a
server. At this stage have made no such decisions, as we are
still exploring the nature of the network dependencies that
Constellation reveals and how the system might be usefully
applied.

7. IMPLEMENTATION ISSUES
In this section we discuss a variety of practical considera-

tions which we encountered whilst designing, implementing
and evaluating our prototype system.

7.1 System architecture
The modular structure of the Constellation processing

pipeline (see Figure 4) provides substantial flexibility in de-
ployment options, allowing the system to cope with legacy
environments and various security and privacy regimes.

Fully distributed deployment.
Constellation’s ideal deployment is as a distributed system

with each host building its own traffic correlation database
and providing an interface for search queries. The data-
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parallel and localised nature of the computation makes this
organisation scale extremely well.

The daemons on individual machines obtain data from
tcpdump/winpcap or (where operating system facilities such
as strace, ptrace or Windows ETW exist) higher level net-
work events. Additional metadata about services and chan-
nels can usually be obtained from tools such as ps and net-
stat and made available via the query interface.

Partially centralised deployments.
Where it is not possible to deploy daemons on all end-

systems, Constellation can operate on packet captures from
a spanning port on a nearby switch or router, or an underly-
ing hypervisor. A single centralised machine then learns the
traffic models for the whole subnet, and exports the interface
to search queries for all those machines. For experimental
expediency, most of the results in this paper were obtained
using such a centralised prototype and offline packet cap-
tures from Microsoft Research Cambridge.

Clearly a combination of the distributed and centralised
approaches is possible in which the search system is aug-
mented to find the centralised host providing models for
legacy hosts. An interesting option might be to infer models
on the end-systems, but to centralise the results.

Security and privacy.
Security requirements, privacy concerns and trust levels

within the network also influence deployment choices. A
centralised (or logically centralised) system makes it easier
to apply consistent access control to potentially sensitive in-
formation. Constellation, like netstat and other tools re-
vealing potentially sensitive information, is unlikely to be
deployed on the public internet.

Availability.
In a distributed deployment consideration must be given

to the infrastructure necessary to communicate with the Con-
stellation daemon on a machine; although we observe that if
it is impossible to communicate with a Constellation dae-
mon in the course of a search then it is straightforward to
infer where the fault may lie!

It would be straightforward for a Constellation daemon to
use standard techniques to improve availability, such as to
replicate its model to its neigbours in some P2P system [13],
enabling its model to be queried even when the machine is
itself unavailable. We have yet to implement this in our pro-
totype.

7.2 Performance
The CT-NOR correlation test has a computational com-

plexity bounded above by O(coboci(ci + logbi)) where ci
and co are the number of input and output channels respec-
tively, and bi and bo are the number of packets on the bus-
iest input and output respectively. Fortunately realistic data
avoids this bound in the common case. For a typical hour

of data in the Microsoft Research Cambridge trace 92% of
hosts required less than one second of CPU with our pro-
totype, and only four hosts required more than one minute.
In a fully-distributed deployment, this corresponds to a CPU
overhead of less than 1%. For a centralised deployment this
means that a single machine normally can learn all the mod-
els for a subnet in real-time. These performance figures can
also be substantially reduced if packet traces are filtered to
remove bursts before fitting the model.

7.3 Burst filtering
Transport protocols like TCP often impose a burst struc-

ture on traffic, where each burst consists of several packets
with very small inter-arrival times, and the slow-start and
congestion window dynamics can produce gaps of an RTT
in the middle of the packets which logically comprise a sin-
gle message. Fragmentation of large datagrams can simi-
larly result in bursts. These bursts can make it more difficult
to observe timing correlations.

It is often possible to greatly reduce the data volume (and
hence increase performance) by applying a simple filter to
remove these bursts. We have explored the use of two filters;
one using a low-pass frequency (LPF) design, and another
which uses a very simple TCP-specific state machine.

We repeated the ground-truth experiments of Section 5 ap-
plying an LPF of 200 ms. The filter reduced the data volume
by an order of magnitude, resulting in a much faster process-
ing time. We found insignificant differences in the precision-
recall curves for HTTP proxy traffic. Applying the same fil-
ter to the whole corpus we found that 98% of hosts complete
processing of an hour’s traffic using less than one second
of CPU time, and the worst case host is reduced to under 8
seconds.

8. RELATED WORK
Constellation is a general-purpose, black-box tool for in-

ferring dependencies, which leads necessarily to a statistical
approach and hence some degree of uncertainty in the re-
sults. This contrasts with approaches that monitor system
and network activity to explicitly track causal paths, for ex-
ample Pinpoint [6] and Magpie [3]. The latter techniques are
highly accurate, but require supporting mechanisms such as
request identifier propagation or event logging on all partic-
ipating systems.

A large number of commercial products exist for monitor-
ing of network, services and applications in the enterprise,
typified by HP OpenView. These tend to be customised
to specific software and operating environments, in which
the expected behavior is well understood. Constellation ap-
plies machine learning to deduce the dependencies that oc-
cur without assuming a particular environment and set of ser-
vices or applications of interest.

Project5 [1] and WAP5 [15] make use of packet times-
tamps for correlation in a similar fashion to Constellation.
Those systems aim to expose delays and bottlenecks in lo-
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cal and wide area networks respectively, by recording the
application-level messages sent and received by a process
(which may comprise multiple network packets). Various
linking algorithms are then applied to determine the most
likely “causal path”, with estimated delays at each hop. In
contrast, Constellation makes no attempt to infer a single
causal path. Rather, the dependency test of Section 3 identi-
fies all pairs of correlated channels at each host, enabling a
complete picture of the inter-dependence of all services in a
network.

The Sherlock system [2] can be viewed as complementary
to Constellation. It computes global inference graphs cen-
trally using the “service level dependency graphs”6 learnt by
distributed agents. As a result, the system can tolerate more
inaccuracy of the local correlation test and the authors of
Sherlock have found a co-occurrence-based test works well
for their goals of problem detection and localization.

Nevertheless, our experience has demonstrated that co-
occurrence can perform poorly in certain situations. In
particular, we generated two one-day constellations from
the seed host desktop-36, whose one-hour constellation is
shown in Figure 11. One of these used CT-NOR with an
FDR of 5%, while the other used co-occurrence, having
manually determined the correlation threshold that gave an
almost identical constellation for the one-hour case. In com-
parison with the one-hour constellation, the full day CT-
NOR graph contained 171 additional servers, of which the
vast majority—150—were upstream DNS servers. For co-
occurrence the full day graph included 105 new nodes plus
108 additional upstream DNS servers. Out of these 105, two
thirds turned out to be client (desktop) computers. This re-
sult strongly implies that almost all of these correlations are
unlikely to be correct. It seems that over a longer time period
the likelihood of chance co-occurrence between channels is
problematic for the pairwise test.

The need for efficient network diagnosis tools and archi-
tectures that enable network management has been stressed
before [7, 8, 18]. These papers propose augmenting the net-
work with “a knowledge plane”, separate and alongside the
existing network, reporting on its current status. In contrast,
Constellation provides a basic service for inferring network
dependencies over which more sophisticated network man-
agement utilities can be built, and it has the advantage of
being very easy to deploy over existing infrastructure.

Constellation aims at providing the user or network oper-
ator with the capability of comprehending and troubleshoot-
ing complex network behaviours. While end-user diagnosis
tools have been proposed in the past [12, 14], these solu-
tions identify problems of specific applications or protocols
(e.g., TCP reordering, queuing and loss events) and cannot
identify network-wide dependencies of host or services.
6In Constellation terms, this is equivalent to the constellation in
which all channels (at both clients and servers) are aggregated for
the service of interest.

9. CONCLUSION
Constellation is a new approach for inferring service de-

pendencies in a computer network, deployable on existing
infrastructure and using only lightweight monitoring. It au-
tomatically discovers the network-wide map of dependen-
cies from a particular computer, removing the drudgery and
guesswork of combing through tcpdump and Ethereal out-
puts to glean an understanding of how network services are
related. In this paper we have presented results against a
real network trace that are both accurate with respect to a
ground-truth dataset, and that we have shown to be useful
for end-users and network administrators alike.
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