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ABSTRACT
This paper presents a decision theoretic ranking system that
incorporates both explicit and implicit feedback. The sys-
tem has a model that predicts, given all available data at
query time, different interactions a person might have with
search results. Possible interactions include relevance la-
belling and clicking. We define a utility function that takes
as input the outputs of the interaction model to provide a
real valued score to the user’s session. The optimal rank-
ing is the list of documents that, in expectation under the
model, maximizes the utility for a user session.

The system presented is based on a simple example util-
ity function that combines both click behavior and labelling.
The click prediction model is a Bayesian generalized linear
model. Its notable characteristic is that it incorporates both
weights for explanatory features and weights for each query-
document pair. This allows the model to generalize to un-
seen queries but makes it at the same time flexible enough
to keep in a ‘memory’ where the model should deviate from
its feature based prediction. Such a click-predicting model
could be particularly useful in an application such as en-
terprise search, allowing on-site adaptation to local docu-
ments and user behaviour. The example utility function has
a parameter that controls the tradeoff between optimizing
for clicks and optimizing for labels. Experimental results
in the context of enterprise search show that a balance in
the tradeoff leads to the best NDCG and good (predicted)
clickthrough.

Categories and Subject Descriptors
H.3.3 [Information Systems Applications]:
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clickthrough, learning, ranking, metrics
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This paper presents a system for learning to rank in a
decision-theoretic framework. In such a framework each po-
tential top-k ranking is thought of as an action that could be
made by the search engine. Then retrieval is a decision pro-
cedure, of choosing an optimal action according to a given
utility function.

The decision theoretic view of IR has a long-standing tra-
dition (see e.g. [12, 4, 8] for succesful uses). In this paper
we explore the idea of using it to learn a ranker based on
multiple streams of feedback. The utility function is then
not only based on judge labels, but also on characteristics of
a user’s session. A model is learned on historic data to pre-
dict the user’s interaction with a result list. Although many
characteristics of the user’s session could be incorporated in
such a utility function, we will mainly concentrate on one
particular and important one, namely clicks.

The reason to consider both labels and clicks in the utility
function is that each provides a different sort of relevance
information:

• Quantity and cost. Click information is available at
zero cost as long as the system has some users, and
the quantity depends on the level of user activity. Rel-
evance judges are usually paid, so the quantity of labels
depends on budget.

• Explicitness. Judges give explicit relevance labels. With
clicks, dwell-time, and abandonment, relevance infor-
mation must be inferred.

• Real user population. Clicks come from the true user
population, so may reflect real relevance. Relevance
judges in laboratory conditions may disagree with the
real users.

• Deep/negative judgments. Relevance judges can be
paid to label a large pool of documents per query, in-
cluding many bad documents. Clicks tend to happen
only on top-ranked documents, and gathering negative
click information has a detrimental effect on users, be-
cause the bad documents must be retrieved near the
top.

The question is how to build a model that works well,
incorporating explicit and implicit relevance information.
One approach (Figure 1a) is to choose an evaluation mea-
sure as the gold standard for relevance, such as the label-
based metric DCG [6], and build a model to optimize it
such as LambdaRank [2] or SoftRank [13]. The inputs may
be features characterizing the quality of the query-document
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Figure 1: Two different approaches to the incor-
poration of implicit feedback into a ranker; a) uses
historic user behavior as input to predict a single
relevance score R. Approach b), proposed in this
paper, constructs the best possible model to explain
outputs y from inputs x and separately defines a
utility function U that puts a preference ordering
on possible explicit and implicit behaviors.

match. Historical implicit feedback can be incorporated as
additional input features [1]. The output of the model gives
a scalar-valued score by which documents are ranked via a
sort. Note here that the value of an individual document’s
score has no practical interpretation.

Our approach (Figure 1b) is different and based on an
extension of the decision theoretic framework for IR, as de-
scribed in [14, 8]. The inputs and outputs of the model are
all observable: inputs are query-document features and out-
puts are implicit/explicit relevance information. The sole
task of the model is predicting outputs. We then define
a utility U which is a function of these predicted outputs,
namely both implicit and explicit judgments and behaviors.
Ranking is then a decision procedure, to find the results list
with maximum utility.

The specific contributions of this paper are as follows.

• We propose to construct rankers that combine many
sources of information using the decision theoretic frame-
work for IR. We discuss what an ideal setup would
look like and how it would add diversity to result lists,
correctly incorporate real world characteristics such as
position bias, balance authoritiveness and popularity,
and more.

• As an initial implementation of the approach, we present
a Bayesian logistic regression model that predicts both
relevance judgments and click rates. The model has
one weight per query-document pair that acts as a
“memory” of the historic click rate that is not already
explained by the other features. We combine it with a
crude utility function that is far from the ideal sketched
setting, but already introduces many of the potential
benefits the combination of two datastreams can bring.

• We evaluate the decision theoretic system in an en-
terprise search scenario, demonstrating that the click-
predicting part of the model can adapt to a new enter-
prise.

2. RANKING AS A DECISION THEORY
PROBLEM

Decision theory is a very well established field which dates
back at least to the works of Daniel Bernoulli in the 18th
century. The information retrieval problem of presenting a
list of results given a specific user query has been interpreted
as a decision theory problem in several studies in the past.
The probability relevance principle [12] for instance can be
motivated from such a view. Interesting and successful ap-
plications can also be found in amongst others [8, 4]. In this
section we first review the abstract decision problem in its
general form, and then move on to describe how it can be
applied to incorporate both explicit and implicit feedback in
a common framework.

At the basis of the decision theoretic view is a utility func-
tion. It represents user satisfaction in a single scalar, larger
being better. Formally it is a mapping of all relevant quan-
tities of interest (searcher charteristics, query, clicks, dwell
time, etc.) to the real line. In the remaining we will make a
distinction between two sets of information: inputs and out-
puts. Inputs are those quantities that are available before a
result list needs to be compiled, outputs are those quantities
that have become available in the user session after the re-
sult list is presented to the user. This includes clicks, dwell
time, click backs, etc., but also explicit labels if we ask the
user to act as a human judge.

The ideal utility function could be very complex incorpo-
rating detailed characteristics of a user, intent of the query,
etc. It would increase if interesting results were found, de-
crease as more and more effort is needed to find them. We
will discuss some of the potential properties of an ideal util-
ity function in Section 2.1. In real world use we will have to
make simplifications, such as is done in Section 2.2.

If we would know ahead of time exactly how a user would
interact with a particular search result list it would be easy
to select the optimal one. It would simply be that result
list that maximizes user satisfaction. Since at query time
we do not know the user’s response, we need to construct
a model that predicts user behavior. The optimal decision
(the optimal list) is then the list that in expectation under
the model maximizes the users utility.

In summary and formally we can represent the decision
theoretic view of IR as follows. Given a set of inputs (query-
document features) x ∈ X the ranker is asked to select an
action (result list) a ∈ A. After performing the action we
observe outputs (judgments, user behaviour etc.) y ∈ Y. A
utility function U : X × A × Y 7→ R assigns a scalar utility
to the observed x, a, y-triple1. The outputs y in general do
not follow deterministically from the inputs x and action a.
A model p(y|x, a) gives the probability of observing y after
selecting a when x is observed. The optimal action a∗ is the
action that leads to the maximal expected utility

a∗ = argmax
a

Ep(y|x,a) [U (x, a, y)] . (1)

We propose to use the traditional decision theoretic in-
terpretation of IR to combine multiple sources of data in a
principled way. We treat the different sources of implicit
feedback as extra dimensions in the output vector y.

2.1 Utility functions
The utility function gives a real valued score to a user ses-

1Note that alternatively we could include x and a into the
observation y, but this notation emphasizes the flexibility of
the approach.



sion that represents his satisfaction. Thinking about what
the ideal utility function would look like can easily be daz-
zling. For a well defined navigational query such as“What is
the next train connection between Cambridge and London
Kings Cross?” we might argue that finding the answer gives
a fixed utility and any work that needs to be done to get
to that point (reading snippets, clicking on potential answer
pages, clicking back, etc.) will lead to deductions. But what
about informational queries? What is the utility for one,
two, or three interesting documents in the result list. Do
three interesting documents have three times as much util-
ity as a single one, or is there a law of diminishing returns?
What is the“cost”of a misleading snippet? Some sources are
very authoritive, some have very fresh content. How should
these two properties be traded-off? Should that be done in
the same way in all contexts? A small time spent think-
ing about these things leads easily to an extremely complex
function.

Even coming up with a procedure of going about con-
structing a utility function is a difficult problem. Here we
discuss briefly two approaches. A first approach would be to
conduct lab experiments with users where they are asked to
explicitly score their satisfaction with a session. The exper-
iments in [5] form a fascinating approach in that direction
for instance. Assume for simplicity that we have a binary
satisfaction signal

t ∈ {thumbs up, thumbs down} ,

and a simple utility function

U(t = thumbs up) = 1 and U(t = thumbs down) = 0 .

In daily use the explicit satisfaction scores t are not available.
To overcome this we could learn, based on {t, y}-pairs, a
special model p(t|y) (not to be confused with the output
prediction model) and work with a “learned utility”

Ũ(x, y, a) = Ep(t|x,y,a) [U (t)] . (2)

Combined with an output prediction model p(y|x, a) we could
then use Equation (1) for ranking.

In a second approach we ask experts to craft a simple
utility U(x, y, a) and iteratively improve it. Perhaps in the
first version only a few sources of feedback are modelled in
y and this is expanded in the next, or we find that certain
tradeoffs looked good on paper but used in practice leads to
complaints from real users.

In both approaches constructing the model p(y|x, a) is a
classical machine learning problem. Using historical {x, y, a}-
triplets we can train and select the appropriate user behavior
prediction model. An important benefit in practice is then
that the problem of designing a reasonable utility function
and constructing a good prediction model can be decoupled.
The prediction can be tested on historic data. Adjusting and
tuning the utility function can be done incrementally over
time without the need of retraining the model with each new
attempt.

To summarize: constructing a utility function is a very
difficult problem and can leave one with the awkward feel-
ing that a golden standard or ground truth is not available.
We would argue that the IR problem simply is this complex.
Any choice in a real world system will make some approx-
imation and is likely to require changes and improvements
over time.

In the Section 2.1.3 we introduce what arguably is the
simplest possible utility function that combines both a signal
stream of explicit label feedbacks and a stream of implicit
user clicks. It is a simple convex combination of a label based
utility and a click based utility intoduced in Sections 2.1.1
and 2.1.2 respectively.

2.1.1 Discounted Cumulative Gain
In some approaches to ranking the aim is to maximize

a function of the labels in the result set. It is easy to see
that these approaches form a special case of the framework
considered here. If we look at the discounted cumulative
gain (DCG) [6] for instance we see that it is an example
of a utility function that only takes into account the hu-
man relevance judgments at every position. It is based on
a discount function d(p) over positions p ∈ {1, . . . , n}, and
a gain function g(s) over human relevance judgments, e.g.
s ∈ {1, . . . , 5}. The position discount function is monotoni-
cally decreasing from the top position p = 1, to the bottom
position p = n: d(1) > d(2) > · · · d(n), and a gain func-
tion g(s) that is increasing for better relevance judgments:
g(1) ≤ g(2) ≤ · · · ≤ g(5). If s[1], . . . , s[n] are the scores
received for the documents selected by a, the discounted
cumulative gain is given by

DCG (s[1], . . . , s[n]) =

n∑
p=1

d(p)g(s[p]) . (3)

To maximize the DCG we would select and rank such that
the expected DCG is highest. The expectation is then with
respect to the observation model p(y|x, a) = p(s[1], . . . , s[n]|x, a)
which represents the best estimate of the human relevance
judgments for the documents selected by a given x

a∗ = argmax
a

Ep(s[1],...,s[n]|x,a)

[
n∑

p=1

d(p)g(s[p])

]
.

Different choices of g(s) lead to different ranking principles
(decision rules). If g(s) is convex in s the resulting prin-
ciple is risk seeking : for two documents with the same ex-
pected judgment but different variances the document with
the larger variance is preferred. This is because a larger than
expected judgment leads to a bigger rise in utility than the
decrease in utility that results if a lower than expected judg-
ment is encountered. We could say that such a convex gain
function leads to a “going for the jackpot” effect. The often
used exponential function g(s) = 2s − 1 has this effect. It is
important to realize that this is not a conservative ranking
principle.

If we have a linear gain g(s) = s, the expected utility only
involves the expectations of judgments:

a∗ = argmax
a

Ep(s[1],...,s[n]|x,a)

[
n∑

p=1

d(p)g(s[p])

]

= argmax
a

n∑
p=1

d(p)Ep(s[1],...,s[n]|x,a) [s[p]] .

hence we get a ranking principle that simply orders docu-
ments according to their expected human relevance judg-
ment:

a∗ = argmax
a

n∑
p=1

d(p)Ep(s[p]|x,a) [s[p]] .



This utility function is an example where the optimal ac-
tion can be found in O (|D|) time, where |D| is the number
of documents in the corpus. This is despite the fact that the
space of all possible selections and rankings is |D|n. This is
due to the fact that the judgment probability p(s[p]|x, a) is
not explicitly a function of position (the judge is presented
with each document independently). This means that the
expected judgment can be computed for each document and
the documents simply sorted to obtain the optimal rank-
ing. There are many interesting utility functions that lead
to O (|D|) ranking principles, but in general approximations
might be necessary.

Note that, since there is no element in the utility function
that encourages diversity in the results, we need to explic-
itly add the constraint that links to documents cannot be
replicated. Otherwise a∗ would be n duplications of the link
with the highest expected relevance judgments.

2.1.2 Clicks
An analogous utility function that only takes into account

whether or not a user clicked on a document could be given
by a “click-DCG” utility

Uclicks(c[1], . . . , c[n]) =

n∑
p=1

d(p)c[p] . (4)

If p(c[p] = 1|x, a) (the probability of a click on the document
that was put in position p by a) is modeled based on a link
specific and position specific contribution it will in general
not simplify to an O(|D|) ordering rule. This is because now
p(c[p]|x, a) is explicitly a function of p — any given docu-
ment will be clicked with a different probability depending
on where it is placed. It can be that position and link ef-
fects combine in complex non-linear ways. However there
are suitable heuristics for ordering in O(|D|), e.g. compute
the probability a document will be clicked if it were placed
in position 1, and order by that.

This click-DCG assigns a positive utility to the act of click-
ing itself. Philosophically this is not really sound, since the
act of clicking is actually a nuisance, and only from the ac-
tual reading of an interesting document is utility obtained.
So in order to motivate (4) we need to appeal to an argu-
ment along the lines of the learned utility in (2): because
we have established in the past that the act of clicking on
an interesting link leads to an interesting page we can assign
an (expected) utility to the act of clicking. However, from a
more practical point of view (4) then still has problems. If
we motivate the value of a click from an apparent interest
in the result page, we assume that all interesting snippets
point to interesting landing pages. This will unfortunately
not always be the case in practice. To overcome this the
utility can be extended by incorporating a minimal dwell
time as proxy for an endorsement of the landing page.

To encourage diversity, one simple approach would be to
introduce a concave function f of the simple DCG-like sum
of clicks:

Uclicks page(c[1], . . . , c[n]) = f

(
n∑

p=1

d(p)c[p]

)
. (5)

This captures the notion that the step from 0 clicks to 1
click on a page is bigger than that from 1 to 2. The trans-
formed utility would penalize systems with click-DCG near
zero. For an ambiguous query with several types of result,

a ranking optimized to avoid zero click-DCG could poten-
tially present results of each type, hedging its bets by giving
a more diverse results list.

To take advantage of this type of diversity-encouraging
utility, one must combine it with a model that can cap-
ture correlations between click events on different docu-
ments on a page. For instance, for ambiguous queries, clicks
on links to two different interpretations will in general be
anti-correlated: someone clicking on a link of one type will
be less likely to also click on a link of the other type, presum-
ing they have one interpretation of the query in mind when
searching. To do this requires a model for the joint distribu-
tion p(c[1], . . . , c[n]|x, a), which is in general a difficult mod-
eling task. An independence assumption p(c[1], . . . , c[n]|x, a) =∏n

p=1 p(c[p]|x, a) does not capture these correlations, but is
a reasonable simplifying modeling assumption if one is using
the more straight-forward click-DCG utility of (4).

2.1.3 Combinations of basic utilities
The decision theoretic framework allows for a principled

trade-off between desired behavior of the searcher and rele-
vance cues from a selected set of human judges. In general
the utility function should depend on both. A straightfor-
ward scheme is to take a weighted combination of the basic
utility functions presented in Section 2.1.1 and 2.1.2.

2.2 Properties of the basic click-label utility
In the experiments in Section 3 we will use a utility func-

tion as sketched in Section 2.1.3:

U(y) = (1− λ)UDCG(y) + λUclicks(y) . (6)

The parameter λ is still a design choice in this parametric
form.

As argued in Section 2.1.2 the click part in the utility func-
tion (6) is only weakly motivated by the guiding principles,
but it forms a good starting point since it captures already
a few interesting characteristics from the two data streams.

• If there is noise in the labeled set, or if the model
makes poor label predictions for a query, a suboptimal
ordering can be corrected by clicks.

• If the model correctly predicts labels but there are ties,
a top three of only good documents say, users effec-
tively vote with their mouse which one they prefer.

• Since the framework consists of a model that predicts
clicks based on features, an improvement in the rank-
ing for popular queries also extends to unseen queries.
For instance if Excel documents prove to be popular
in a particular search context, they can be boosted for
all queries in that context.

• Effectively the click based component in the utility
will boost results that are predicted to be popular.
If judges are instructed to label according to author-
ity, the λ parameter allows us to trade-off popularity
and authority. For instance in experiments with web-
search data we found for instance that for the query
“adobe” the url www.adobe.com is predicted to get the
highest label, but the acrobat reader download page
is the most popular. One could argue that the ideal
result list has www.adobe.com at the top position and
the link to the reader as the second link. This was the
list returned in our experiments with λ = 0.5.
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Figure 2: The model implemented in this paper sets
out to predict two things: namely the probability of
a click event p(yc|x,w) and the probability of a partic-
ular relevance judgment p(yj |x,w). The GLM model
implies that the two sub-models factorize, and thus
can be learned independently.

• By having the position of a document as part of the
inputs x and fitting appropriate weights in the model,
a position bias is automatically accounted for.

• If x contains characteristics of the user, the ranker au-
tomatically gives a personalized result.

• If the model is sophisticated enough such that it cap-
tures the interaction between documents, e.g. predict-
ing that the probability of being clicked for near du-
plicate documents is anti-correlated, the ranker will,
with a click-utility component from (5) automatically
diversify the result list.

3. ON-SITE ADAPTATION OF INTRANET
SEARCH SYSTEMS

An interesting application of the decision theoretic frame-
work is in enterprise search. When a search system is in-
stalled out-of-the-box its ranker is based on a generic train-
ing set. Since intranets and their user bases can be quite
diverse, it makes sense to use implicit feedback to adapt the
ranker to the specific site for which it will be used.

It is generally difficult to obtain judged queries complete
with clickthrough data from external organizations. Hence
for this work, we were obliged to test the adaptation frame-
work using an artificial corpus split created from data ob-
tained from the Intranet of a single large multinational soft-
ware corporation.

To reflect a significant change from the train set to the
adaptation set, we created a split of our queries. For train-
ing, we use all queries and documents concerning the general
areas of administration and marketing. For the adaptation
set, simulating a potentially very different Intranet site, we
use queries and documents of a technical nature.

The admin/marketing dataset used to train the out-of-
the-box model consists of 546 queries. For each query, about
100 documents from the top of a ranked list from a base-
line ranker were judged, and some of them had click infor-
mation. The click-prediction part of the model is further
trained using the adaptation query set, consisting of 201
technical queries. This simulates the on-site adaptation of
the system to the user’s clicks in the enterprise. In this case,
the explicit judgments are not used for adapting the model,
but instead used for evaluation only.

The click data we use is noteworthy in the following sense.
We record not only the clicked documents, but also the doc-
uments that are skipped, or passed over, on the way to a
click. In this work, inspired by [7], we assume a sequential
scan of the result list, and as a consequence, that any doc-
ument that is above the last click on the list is examined.
In this way, we can aggregate the number of clicks and the
number of examinations for a given query-document pair: a
document which is clicked each time it is examined is intu-
itively good, and a document that is rarely clicked having
been examined is probably a poor result. Importantly, we
cannot infer much about the relevance of documents that
have few examinations. This can happen if a result is either
low in the ranking, or near the top yet just below a very
good result.

3.1 A Bayesian generalized linear model
In this first illustration we use a generalized linear model

(GLM) [9] for p(y|x, a). A GLM consists of a likelihood
model p(y|θ), a linear combination of inputs x and model
weights w: x>w, and a link function g(θ) that maps the
parameter θ to the real line. In this section we will use
building blocks that have a binomial likelihood model and
a probit link function. In a generative model interpretation
the inverse probit link function

g−1(s) = Φ

(
s; 0,

1

π

)
plays a central role. This inverse link function is the well
known cumulative normal function that maps the outcome
of the inner product x>w ∈ R to the [0, 1] space of the
success parameter θ in the binomial. The inverse precision
π can be set to an arbitrary number to fix the scale of the
s-space. Here we will put a Gamma prior on π and integrate
it out to obtain a robust model. If we have N examples in
our training set for which the inputs have value x, and we
observe c positive outcomes, the likelihood becomes:

p(c|x,w) = Bin
(
c; g−1

(
x>w

)
, N
)

. (7)

In Figure 2 we show a more detailed version of Figure 1b,
where we are more explicit about what we set out to predict
with the model. In this initial implementation, the output y
in the model describes for each position p = 1, . . . , n a single
implicit feedback: the click event yc, and a single explicit
feedback: the relevance judgment yj .

Figure 4 shows the ordinal regression submodel p(l|x, w)
which is a generalization of the click model. Instead of one
of two outcomes it has one of five possible label values it
can output. Along with the other weights we therefore also
learn four boundary values b1, . . . , b4 that mark the edges in
s-space of the five categories. Each has a Gaussian prior.
The IsBetween factor in the figure represents two stepfunc-
tions that bound the interval for label l. Added to the sum
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Figure 3: Indicator binary features and the GLM. This is a specific example of the click model shown on the
right in Figure 2. Here the inputs x are made explicit as one real-valued feature (BM25) and five bags of
binary features. The output is the predicted probability of click.

s is a Gaussian disturbance with inverse precision π. This
disturbance can be interpreted as a softening of the step-
function such that some noise in the label is supported by
the model. It is the direct analog of the choice of probit link
function instead of a hard step function in the discrete click
prediction case.

3.2 Features
Figure 3 takes a more detailed look at the inputs (features)

used for just the click model GLM. The input x contains
parts that are query specific, parts that are document spe-
cific, and parts that are derived from the query-document
pair. A BM25F score [11] is used as a general input that
indicates the match between query and document.

Document specific features include the document file type
(e.g. Html, Pdf, Excel etc) and the length of the url. Apart
from these basic descriptive features, the vector x includes
binary indicators for the query ID and the query-document
ID, and also the rank (position) of the document in the list
for which the click event was observed or is to be predicted.

The descriptive features give the model the ability to gen-
eralize between queries and documents, and the identifier
(ID) weights effectively serve as an instance-specific mem-
ory. For frequently seen documents for popular queries the
model can store, using the identifier weights, very accurate
click predictions, even if they are far from the general trend
predicted by the descriptive features. A bias term that is
always 1 is included to capture a grand average.

3.3 Training

To learn the distributions of w we use the approximate
Bayesian inference procedure from [15] with a factorized
Gaussian prior. The ordinal regression part is treated as
in [3] with the difference that here we do not resort to an
ML-II approximation of π but integrate it out.

The main benefit of the Bayesian procedure is that with
each individual weight in w a notion of the uncertainty
about its optimal value is maintained. This results in a
learning algorithm that correctly updates imprecisely deter-
mined weights more than precisely determined ones, which
is essential for our model. The weights for descriptive fea-
tures effectively see a lot more data than the query and
document specific identifier weights. The Bayesian update
rules ensure that each get updated at the right rate — in
particular, a small number of examinations will not change
the weight distributions nearly as much as a large number.
This is something that could not easily be handled in for
example maximum likelihood approaches.

3.4 Results
Before any implicit feedback data is available the ranker is

based on a model that predicts clicks and labels. The utility
we used in the experiments is a simple weighted combination
between DCG and click-DCG as given in Equation 6. The
specific setting of λ in this utility is a design choice. The
dotted line in Figure 5 shows, for the out-of-the-box model,
the NDCG@10 on the adaptation set as a function of λ. We
see that using the click utility (λ = 1) actually reduces the
NDCG@10 score. This is to be expected, since the NDCG
score does not depend on observed clicks. The utility in (6)
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Figure 4: This is a specific example of the label
model shown on the left in Figure 2. The inputs
are the same as for the click model. However the
output is handled differently. First noise is added
to the variable s; the result is then constrained to
lie between the two threshold variables which corre-
spond to the observed label. Thresholds and noise
precision are learnt in addition to the weights.

with λ = 0 is equivalent to DCG, and setting λ to another
value encourages the ranker to optimize a different metric
than NDCG@10 shown on the y-axis in Figure 5.

If we use two months of adaptation data, i.e. the site spe-
cific click feedback, we get the analogous solid/crossed curve
in Figure 5. Here we see that incorporating clicks leads to
an improvement of NDCG@10. A value for λ other than 0
and 1 leads effectively to the combination of the two datasets
(the train set and the adaptation set). This improves perfor-
mance, even if we measure the performance of the resulting
system with NDCG, an evaluation metric that does not re-
ward clicks.

The lower dashed line in Figure 5 represents a BM25F
baseline, with no click data. We note that it is a horizontal
line since ranking by BM25F does not involve a λ parameter.
We see a 1 point NDCG@10 gain from the features alone
(λ = 0) and an additional 2 points gain if we set λ = 0.5).

3.4.1 A proxy for a click-metric
The NDCG metric reported in Figure 5 is a well-known

metric, but if λ 6= 0 it is strictly speaking not the metric
that the ranker seeks to optimize. If it is decided that (6)
with a particular value for λ is the utility that represents
end user satisfaction the best, then that utility should be
the final evaluation metric. Ideally we would like to test a
ranker in an on-line setting where it can control the results
lists. In such a setting we could monitor the accumulated
utility by the ranker. However, since we only have historic
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Figure 5: NDCG@10 scores for the different rankers
as function of λ, the relative weight given to the
click-part in a combined utility function.
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Figure 6: The click based scores from Equation (8)
for the different rankers as function of λ.

data available we use the following proxy click metric:

Sclicks =

∑n
p=1 d(p)Nc(p)∑n

p=1 Ne(p)
(8)

where we denote the total number of clicks for the document
on position p with Nc(p) and the number of examinations
with Ne(p). The numerator in (8) uses the same discount
function d(p) as used in (3). Extra in this proxy evaluation
metric is the normalization represented by the denominator.
This ensures that documents that were not shown to users in
the dataset (and hence have 0 clicks and 0 examinations) are
properly disregarded. The score above is for a single query,
and the total score would be the average over all queries.

Figure 6 shows a plot analogous to Figure 5, but now with
the click-based evaluation metric from (8). We note that this
new metric gets better with increasing λ. This is to be ex-
pected: a ranking formed from a utility based predominantly
upon predicted click rate should do better when evaluated
with a click-based metric. This provides further orthogo-
nal evidence that combining implicit and explicit feedback
improves search results.

To get a feel for the qualitative changes that the different
choices of utility function imply it is instructive to look at



Relevance Judgments Utility (DCG)

1.: http://vsts
2.: http://develop/vs2005field
3.: http://msdnprod/vstudio

Click Utility

1.: http://devdiv
2.: http://msdnprod/vstudio
3.: http://infoweb/c16/visualstudiodotnet

Mixed Utility (λ = 0.5)

1.: http://msdnprod/vstudio
2.: http://vsts
3.: http://devdiv

Table 1: Reorderings of the top-ranked positions for
the “Visual Studio” query

a specific example. Table 1 shows the top three results for
the query “Visual studio” for λ = 0 (DCG ranking), λ = 1
(click ranking) and λ = 0.5 (balanced ranking). In this
example the DCG based top three are all documents that
could claim to be a definitive result for searchers interested
in using the Visual Studio product. They were all labeled
“good” by human assessors. If the ranker is using the click-
only utility (λ = 1) we see that the top three changes. Of
the three “good” results in the DCG list, the msdnprod link
and snippet is apparently the most appealing to the users in
the adaptation phase, containing technical information. The
other two documents that have entered the top three reflect
different interpretations of the query “Visual studio”: the
devdiv page gives information about the team that creates
Visual studio, and the infoweb provides marketing data.

This example demonstrates that there is no unique def-
inition of relevance. If we deem the most popular page to
be the most relevant, we should pick the click utility. How-
ever, if we want the result list to be more authoritative, a
utility based upon explicit judgments might promote pages
that are more likely to have been overlooked in a straight
snippet-based popularity contest. This advantage of an in-
creased reliability of explicit judgment usually comes with
the disadvantage of a single user interpretation of relevance:
there is a natural tradeoff between judgment accuracy and
result diversity. As Table 1 shows a mixed utility allows us
to find a balance between these two extremes.

Including click feedback has had two qualitative effects
for the Visual Studio query: (i) a rearrangement of, from
the external perspective equally good, documents according
to local preferences, and (ii) a promotion of alternative in-
terpretations of the query that are common at the specific
intranet. Although we present a single example here, we
have seen these effects in many other queries, together with
a third major effect: (iii) the correction of erroneous human
judgments.

4. SUMMARY
In this paper we have explored the decision theoretic frame-

work for IR and studied how it can be used to combine sev-
eral sources of feedback into a single ranker. The approach
is based on a utility function that describeses the user sat-
isfaction after a search session, and a model that predicts

user actions such as clicking and labelling based on known
quantities at query time. Constructing a model and formu-
lating a utility function are both difficult problems. But we
observe that in the case of label and click stream data the
simplest possible utility function and a reasonable predic-
tion model already give many of the potential benefits that
the combination of the two streams can bring.

In experiments in an enterprise search setting, we see that
the approach leads to increased performance. Qualitatively
we see that mislabelled queries get filtered out, result lists
for ambiguous queries change to better reflect the most often
intended interpretation by users, and tie breaking of identi-
cally labelled results is done according to population prefer-
ence. In terms of NDCG@10 including the click stream in
the decision theoretic ranker leads to a two point gain. This
is despite the fact that the ranker does not aim to optimize
this metric. Given the qualitative results we expect that
end user experience improves even more than the two point
NDCG gain indicates.

5. REFERENCES
[1] E. Agichtein, E. Brill, and S. Dumais. Improving web

search ranking by incorporating user behavior
information. In SIGIR, 2006.

[2] C. Burges, R. Ragno, and Q. V. L. Le. Learning to
rank with nonsmooth cost functions. In NIPS, 2006.

[3] W. Chu and Z. Ghahramani. Gaussian processes for
ordinal regression. JMLR, 6:1019–1041, 2005.

[4] I. J. Cox, M. L. Miller, T. P. Minka, T. Papathomas,
and P. N. Yianilos. The Bayesian image retrieval
system, pichunter: Theory, implementation and
psychophysical experiments. IEEE Transactions on
Image Processing, Special Issue on Image and Video
Processing for Digital Libraries, 9(1):20–37, 2000.

[5] S. Fox, K. Karnawat, M. Mydland, S. T. Dumais, and
T. White. Evaluating implicit measures to improve the
search experience. ACM Transactions on Information
Systems, 23:147–168, 2005.
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