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Abstract—This paper presents a camera combo system for
personal remote collaboration applications. The system consists
of two different cameras. One camera has a wide field of view,
and the other can pan/tilt/zoom (PTZ) based on analysis of the
images captured by the wide angle camera. Unlike traditional
approaches which usually drive the PTZ camera to follow the
person or his/her head, our system is capable of capturing general
objects of interest in remote collaboration. For instance, when
the user raises something trying to show it to the remote person,
our system will automatically position the PTZ camera to zoom
in at the object. At the core of our system is a semantic saliency
map that overcomes many limitations of low-level saliency maps
computed from preliminary image features. We demonstrate how
such a semantic saliency map can be computed through contex-
tual analysis, sign analysis and transitional analysis, and how it
can be used for PTZ camera control with a novel information
loss optimization based virtual director. The effectiveness of the
proposed method is demonstrated with real-world sequences.

I. INTRODUCTION

As globalization continues to spread throughout the world
economy, it is increasingly common to find product teams
where team members reside in different time zones. Many
companies are looking for video-conferencing solutions to
improve collaborations between their remotely located team
members. Driven by this demand and thanks to the rapidly
improving network bandwidth and computer performances,
video-conferencing has become increasingly popular. One of
the most critical issues in immersive video-conferencing is
video quality. Expensive high-definition video cameras are
often used in modern telepresence systems [1], and webcams
are widely used as the de-facto device in personal remote
collaboration. Although some high-end cameras can produce
very decent video images, there is an inherent tradeoff between
resolution and field of view in standard static cameras. For
instance, with a regular camera that has 60-70 degrees field
of view pointing at a whiteboard 3-4 meters away, even at 2
megapixel resolution, it would not be possible for the remote
meeting attendees to read the texts on the whiteboard. On the
other hand, to provide the user as much flexibility as possible,
a wide angle camera is necessary to keep the person in the
view when he/she moves around.

Fisheye camera PTZ camera

Fig. 1. The camera combo hardware.

In this paper, we explore the usage of a pair of cameras,
namely, a wide angle camera and a pan-tilt-zoom (PTZ)
camera (as shown in Fig. 1), to provide high quality video
for video-conferencing. The primary target of application is
personal remote collaboration in offices, though most of the
developed techniques can be applied in meeting rooms as well.
The wide angle camera monitors the room, detects and tracks
people in the room, and analyzes user activities in order to
intelligently drive the PTZ camera and generate videos to be
sent to the remote collaborator. The idea of such a camera
combo has indeed been studied in many other applications,
such as surveillance and monitoring [2], lecture recording [3],
smart meeting rooms [4], etc. However, most of these projects
were satisfied with an algorithm accurately tracking people
in the field of view, and generating close-up shots of the
persons that are being tracked. We argue that in personal
remote collaboration, human is not the only subject of interest.
For instance, one may hold an object or a paper document
for the remote participant to have a look. If some diagrams
are necessary to explain things, one may want to draw on
the physical whiteboard behind him/her. Ideally an intelligent
camera shall understand the user’s attention and frame the PTZ
camera accordingly.

For this purpose, we propose to compute a semantic saliency
map based on the input wide angle video and use the semantic
saliency map to control the PTZ camera (Note the same
technique can be used to control a high resolution camera for
digital pan, tilt and zoom). In contrast to the low level saliency
computation algorithms that has attracted a lot of attention
recently [5], [6], a semantic saliency map integrates knowledge



from high-level semantic analysis, thus is more suitable for
high-level camera control in many applications. Our semantic
saliency map is computed based on three analysis components:
contextual analysis, sign analysis and transitional analysis.
We demonstrate the effectiveness of the proposed method
with various scenarios during a personal remote collaboration
session.

The second contribution of this paper is a minimum infor-
mation loss framework for PTZ camera control or virtual direc-
tor. The field of view of the PTZ camera can be considered as a
cropping window from the wide angle camera. The goal of the
virtual director is to find the optimal location and scale of the
cropping window. Traditionally this is fulfilled by defining a
set of ad hoc rules. In this paper, we observe that both cropping
and scaling may lead to information loss. Such loss cannot be
reduced simultaneously if the output video resolution is fixed.
For instance, increasing the cropping window size will include
more salient regions but cause more resolution loss due to
scaling. We propose a novel framework for virtual director by
minimizing a cost function that seeks the best tradeoff between
these two information loss factors.

The rest of the paper is organized as follows. An overview of
our system is presented in Section II. In Section III we describe
a few basic techniques for semantic analysis. The semantic
saliency map is introduced and computed in Section IV. The
virtual director that controls the camera based on the semantic
saliency map is given in Section V. Experimental results and
conclusions are presented in Section VI and VII, respectively.

II. SYSTEM OVERVIEW

A. The Camera Combo

We construct the camera combo by using two Axis network
cameras, as shown in Fig. 1. The fisheye camera is an
Axis 212 PTZ network camera, though we zoom out to the
maximum and use it as a fixed zoom fisheye camera. The
field of view of this wide angle camera is around 140 degree,
which is sufficient to cover a typical office or meeting room
environment. The PTZ camera is an Axis 213 PTZ network
camera, which has built-in 26× optical zoom and auto focus.
Both cameras are operated with 640×480 pixels resolution at
25 frames per second (fps).

The cameras are mounted on a custom-made base. The
camera centers are roughly aligned at the same height. The
distance between the two cameras is around 15cm, which is
practically negligible when the observed object is a few meters
away from the camera combo.

Both cameras need to be calibrated in order to compute
corresponding pan/tilt and zoom level of the PTZ camera from
regions specified in the fisheye camera. This task is non-
trivial because the PTZ camera will be constantly moving
during the application. We adopted the two step procedure
proposed by Sinha and Pollefey [7] to calibrate the PTZ
camera. In the first step, the intrinsic parameters of the PTZ
camera are determined by capturing a set of images for a
static scene at different pan/tilt angles at the camera’s lowest
zoom setting, following an algorithm originally proposed by
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Fig. 2. The system diagram of the proposed approach.

Hartley [8]. In the second step, we fix the pan and tilt of the
camera, and monotonically increase the zoom level in order to
compute the intrinsic parameters across discrete steps of zoom
levels. Intrinsic parameters at arbitrary zoom levels are then
interpolated from the discrete instances.

Fisheye lens differ from an ordinary rectilinear lens in that
the projection from a 3D ray to 2D image position in the
fisheye lens is non-perspective. Dedicated calibration schemes
are thus necessary for fisheye lens [9]. In our work, we found
a simple equiangular model [10] widely used in computer
graphics rendering is sufficient for computing corresponding
pan/tilt angle given a target pixel location in the fisheye image.

B. System Diagram

As mentioned in the introduction, we propose to compute a
semantic saliency map in order to determine where the user’s
attention should be for tele-collaboration. Fig. 2 shows the
basic diagram of our proposed system. Given the input video
from the wide-angle camera, we first extract simple low level
features such as color, texture, motion, etc. These features
are then fed to the semantic analysis module to perform
high-level video analysis, such as person detection/tracking,
background modeling and action recognition. These high-level
analysis results are then used to compute the semantic saliency
map through various components such as contextual analysis,
sign analysis, transitional analysis, etc. A virtual director will
determine where to point the PTZ camera given the semantic
saliency map. Note there is also feedback from the PTZ’s
camera control to the semantic saliency analysis, which will
be detailed later.

Compared with the various saliency extraction approaches
in the literature [5], [6], a significant difference of our ap-
proach is the semantic analysis layer embedded between low
level analysis and saliency analysis. For different applications,
the components in this middle layer may differ, but they all
provide critical information to the saliency analysis module to
make the saliency map more meaningful. To give a concrete
example, assume during conferencing the user stands up
and walks to the whiteboard to write something. With the
traditional low-level saliency computation methods, both the
person and the chair are moving, and both have high saliency.
However, if high-level semantic information is provided, the
system may easily distinguish the motion between the user and
the chair, which can accordingly reduce the saliency score of
the chair region.



Our saliency computation scheme also differs significantly
from traditional approaches. In particular, we fuse the results
from three types of analysis, namely, contextual analysis,
sign analysis and transitional analysis. Contextual analysis
computes the saliency map in the context of the application
being concerned. For instance, in personal tele-collaboration,
the upper body region usually has a much higher priority to be
shown on the remote side such that the remote user may see the
facial expression and gesture. Sign analysis impact the saliency
map by recognizing special activity signs conducted by the
user. Usually that requires an agreement made between the
user and the system beforehand. Transitional analysis studies
the impact of focus transition had on the saliency map itself.
It takes the feedback from the camera control, which may
impact the saliency map. For instance, if the PTZ camera has
been given a close shot of the person for a long time, the
saliency value around the shot region may reduce gradually to
encourage the display of other interesting regions.

The virtual director component in Fig. 2 differs from
traditional rule-based virtual directors such as those in [3].
We propose a novel optimization based virtual director that
intends to minimize the joint information loss caused by the
pan, tilt and zoom of the PTZ camera. The tradeoff is between
zooming into the scene for more scene details, and zooming
out for covering a larger field of view. With the help of the
various semantic saliency analysis methods in the previous
stage, we show such an optimization scheme can produce as
good as, if not better than, rule based camera controls.

III. SEMANTIC CONTENT ANALYSIS

The semantic saliency map is based on results from a few
semantic content analysis modules operated on the wide-angle
image, such as background modeling, person detection and
tracking, action recognition, etc.

A. Background Modeling

Since in an office or meeting room environment most of
the background objects are static, we construct a background
model given the video sequence from the fisheye camera.
There have been many background modeling schemes pro-
posed in the literature, such as those based on Gaussian distri-
butions [11], mixture of Gaussians [12], non-parametric kernel
density estimators [13], etc. We implemented an algorithm
based on per-pixel Gaussian distribution modeling, with ”high-
level” guidance from the person detector and tracker that will
be briefly described in the next subsection, as was suggested
in [14]. That is, regions identified by the detector and tracker
will not be considered during background model updating,
even if they have been static for a long time.

Fig. 3 shows some results of our background modeling
algorithm. In the top row, the person has been walking around
and just sat down. This is a relatively simple scenario and we
obtained a full mask of the human body. In the bottom row,
the person has been sitting there without motion for a long
time. Due to the lack of motion, the body gradually merged
with the background model. However, the head region is still

(a) (b) (c)

Fig. 3. Background modeling result. (a) Current video frame; (b) current
background image; (c) foreground mask.

very clear in the foreground mask because it is not used for
background updating according to the ”high-level” guidance
mechanism.

B. Person Detection and Tracking

Person detection is one of the most important components
for video analysis. It has been very widely studied in liter-
ature [15]. Consequently we will only briefly describe the
techniques used in our system.

We employ the face detector developed in [16] for detect-
ing frontal faces in the environment. Afterwards, the face
is tracked via a modified kernel based tracking algorithm
that integrates with the result from background modeling. In
the original kernel based tracking method proposed in [17],
the goal was to search for a nearby region which has the
smallest distance between the target histogram q(u) and the
region’s histogram p(u), where u is the color bin index.
Both histograms were computed by imposing a kernel with
Epanechnikov profile. In our modified tracking algorithm, we
enforce a mask derived by the background modeling procedure
on the histogram computation. That is, only pixels that are
classified as foreground pixel are used for computing the
histogram. We found that such a masking scheme works very
well in preventing tracked objects from being attracted by
background regions with similar colors.

C. Action Recognition

Given the output from person tracking and background
substraction, it is not difficult to design simple action recog-
nition algorithms to detect usual actions. In the context of our
particular application for personal tele-collaboration, we built
recognition modules for detecting two simple actions, hand
waving and finger pointing based on skin color classification
over the foreground mask provided by the background mod-
eling module. Such an approach is similar to the previous
work in [18] and has been shown to work well in practice.
The main difference is that instead of using a generic skin
color model [18], we construct the model from the tracked
face region, which is more accurate.

Fig. 4 shows two example scenes where both the face
and hands are detected and tracked. For action recognition,
more sophisticated approaches could certainly be applied in



Fig. 4. Results of face and hand tracking.

our framework, such as the method based on 3D volumetric
features [19].

IV. SEMANTIC SALIENCY ANALYSIS

The results of semantic content analysis are used to compute
where the user’s visual attention should be, namely, the
saliency map. We formulate the saliency analysis problem as
follows. Assume at any instance t, the content analysis module
provides information as Ωt = {Mt(x), Rt,At, · · · }, where x
is the pixel index, Mt(x) is the foreground mask as shown in
Fig. 3 (c), Rt = {xt

0,x
t
1} is a rectangle region that represents

the tracked person’s head (x0 is the top left corner and x1 is
the bottom right corner), At is the recognized human action.
Note if more content analysis modules are available, they can
all be integrated into Ωt. A saliency map, defined as St(x),
can be computed based on the history of Ωt, namely:

St(x) = Ψ(Ωt, Ωt−1, · · · ,Ωt−N ), (1)

where N is the length of history.
In the simplest form, the foreground mask Mt(x), or a

certain form of motion segmentation results, can be directly
used as the saliency map [20], [21]. That is:

St(x) = Ψ(Ωt) = Mt(x). (2)

Such a simple saliency map contains some semantic informa-
tion and may work well for certain applications. However, it
does not work well for camera control during remote collab-
oration because it places equal emphasis on upper and lower
bodies, any moving objects such as a chair, etc. Furthermore,
it cannot respond to human actions such as body gestures that
may intend to guide/control the camera attention. The three
semantic analysis methods below intend to overcome these
shortcomings. Nevertheless, the foreground mask Mt(x) will
serve as the base map that shall be enhanced by the following
analysis modules.

A. Contextual Analysis

Contextual analysis refers to enhancements made to the base
saliency map based on the context of the particular application
being studied. Take personal tele-conferencing as an example.
It is a common knowledge that in tele-conferencing, the face
and upper body of the user is much more important than
his/her lower body, or other moving objects such as a chair.
As a result, a soft-masking operation may be imposed on the

base saliency map to emphasize the head and shoulder region.
Mathematically, we compute a contextual score as:

sC
t (x) = exp{−1

2
(x− xR)T Σ−1

R (x− xR)} (3)

where xR is the mask center determined by the current head
tracking region Rt, ΣR is the covariance matrix of the soft
contextual mask. The semantic saliency map can be computed
as:

SC
t (x) = sC

t (x)Mt(x). (4)

When more than one persons are in the room, we may
soft mask each person as above. Alternatively, if a speaker
detection algorithm such as [22] is available in the previous
stage, the contextual mask can be place on the speaker’s head
and shoulder region only, while other people’s saliency regions
will all be attenuated.

B. Sign Analysis

When people communicate with each other, they use speech,
expression and gestures extensively to deliver their messages.
In this paper, we generally call them signs. Signs are au-
dio/visual signals that are agreed between the users or the users
and the computers in order to communicate their intension
or status. Consequently, signs will have a strong impact on
the visual attention. For instance, if the user points to a
few equations on the whiteboard, it shall be the content on
the whiteboard that receives the full attention. From camera
control point of view, the computer should be able to recognize
signs made by the user and move the PTZ camera to focus on
the user’s intended regions of interest.

Unfortunately, low level saliency analysis will not be able
to recognize such semantic intentions. We rely on the action
recognition module in the previous stage to perform sign-based
saliency analysis. In our application, we assume that when
the user wave his/her hand, or use his/her hand to point to a
certain region, that region nearby the hand will be the focus of
attention. That is, when At is hand-waving or finger pointing,
define a sign score as:

sS
t (x) = exp{−1

2
(x− xA)T Σ−1

A (x− xA)}, (5)

where xA is the hand region center given by the action
recognition module, ΣA is the covariance matrix of the soft
contextual mask. The semantic saliency map can be computed
as:

SS
t (x) = sS

t (x) + Mt(x). (6)

Note we use summation instead of multiplication in order to
raise the saliency values around the hand region.

C. Transitional Analysis

Transitional analysis studies the transition or change in
saliency regions as time pass by. For example, if a person has
been paying exclusive attention to a particular object for a long
time, it is very likely that his/her attention will be distracted
to some nearby interesting object. In the study conducted
in [3], it has been shown that professional videographers



often add some randomness to the scene switching to improve
aestheticity. Such distraction from the most salient object can
be modeled by a saliency fading procedure as below.

Let the PTZ focused region in the past N time instances
be {Ft−1, · · · , Ft−N}. Given any pixel x, compute its past
attention score as:

sT
t (x) = exp{−

t−1∑

τ=t−N

δFτ
(x)

AFτ

ατ−t}, (7)

where δFτ
(x) is an index function which takes value 1 if x is

inside region Fτ and 0 otherwise. AFτ is the area of region
Fτ . α, larger than 1, is a parameter controlling the fading
speed of saliency. It can be seen that if a pixel has never been
observed by the PTZ camera, its score is 1. Otherwise, the
score is smaller than 1 but greater than 0.

The semantic saliency map after transitional analysis is:

ST
t (x) = sT

t (x)Mt(x), (8)

The transitional analysis is particularly useful if there are
multiple salient objects in the scene. The fading procedure
provides a natural mechanism to allow the virtual director to
switch between multiple salient objects.

Overall, if all the three analysis components are available,
we obtain the final semantic saliency map as:

St(x) = Ψ(Ωt, Ωt−1, · · · , Ωt−N )
= [sC

t (x)Mt(x) + sS
t (x)]sT

t (x). (9)

Fig. 5 shows the procedure of computing the semantic saliency
map for a typical scene. Note the intensity of the semantic
maps in Fig. 5(c)(d)(e) are re-scaled to make them visible.

V. VIRTUAL DIRECTOR

Once the saliency map has been computed, it is the virtual
director’s responsibility to determine where to focus the PTZ
camera. In the field of view of the wide-angle camera, it is
equivalent to finding a cropping rectangular region for the PTZ
camera to show. During this process, however, tradeoff has to
be made. If the focused region is too large, the PTZ camera
will be able to see most of the salient object, resulting in
a small spatial information loss due to cropping. However,
since the resolution of the PTZ video is limited, there will be
resolution information loss because the camera cannot zoom
in too much to reveal details of the object. On the other hand,
if the cropping region is small and the PTZ camera zooms in
closely to show the details, there will be spatial information
loss due to the cropping of the field of view of the camera.

Our formulation takes both information loss into considera-
tion and seeks for a trade-off between the two. In particular, we
represent the video information loss function with two terms,
i.e.,

L(V, V̂) = Ls(V, V̂) + λLr(V, V̂), (10)

where L(V, V̂) is the information loss function between the
observed world and the video captured by the PTZ camera.
Ls(V, V̂) is the information loss due to the limited field of
view (cropping), and Lr(V, V̂) is the information loss due to

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Computation of the semantic saliency map. (a) The image captured
by the wide angle camera. (b) The foreground mask or base map Mt(x)
obtained from background modeling and person detection/tracking. (c) Apply
contextual analysis to the base map sC

t (x)Mt(x). (d) Apply sign analysis
to the previous result sC

t (x)Mt(x) + sS
t (x). (e) Apply transitional analysis

and obtain the final semantic saliency map St(x). (f) The image captured by
the PTZ camera after camera control.

resolution. λ is a weighting parameter that balances the two
types of information loss.

We model the spatial information loss by the total amount
of saliency falling outside the field of view of the PTZ camera,
computed on the image observed by the wide-angle camera.
Given the semantic saliency map as St(x), we first normalize
it such that the summation over the whole image is 1. That is,

∑
x

St(x) = 1. (11)

Let the field of view of the PTZ camera correspond to a
rectangular region Wt, the spatial information loss is defined
as:

Ls(Wt) =
∑

x 6∈Wt

St(x) = 1−
∑

x∈Wt

St(x) (12)

The resolution information loss is computed based on the
energy difference between the PTZ camera view and its down-
sampled version which has the same resolution as the image
of the wide angle view. Let the resolution information loss for
a particular cropping window Wt be modeled as:

Lr(Wt) =
∑

x∈Wt

lr(x, scale(Wt))., (13)

where lr(x, scale(Wt)) is a loss value computed at pixel
location x for the scale change from cropping window Wt

to the resolution of the PTZ camera.



The loss function lr(x, scale(Wt)) has to be estimated in
order to perform the minimization of the combined infor-
mation loss function in Eq. (10). We adopt a data driven
approach to solve this problem. Before the camera control
process starts, a number of cropping windows are selected
for the PTZ camera to zoom in (at different zoom levels)
and capture the corresponding images. For each image I(x)
captured by the PTZ camera, we perform a low-pass filter
and obtain a smoothed image Il(x). The low-pass filter is to
assure that when Il(x) is down-sampled to Id

l (x), which has
the same resolution as the wide angle camera, there is no over-
smoothing or aliasing. The image Id

l (x) is then divided into
small patches pj , j = 1, · · · with size 5×5 pixels. The energy
of each patch’s edge map is computed and quantized into 8
bins. For each patch and its corresponding region Pj in I(x)
or Il(x), a loss value can be computed as:

lj =
∑

x∈Pj

|I(x)− Il(x)|2. (14)

For each scale of zooming, the loss values are averaged
across all the corresponding PTZ images for each bin of
patch edge energy. The end result is a look-up table which
provides a loss value for each patch edge energy bin and each
scale of zooming. Such a look-up table is used to compute
lr(x, scale(Wt)) in Eq. (13). That is, for each pixel x in the
wide angle image, we take its 5×5 pixels neighborhood and
compute its edge energy. The corresponding loss value is then
obtained through a simple table look-up.

Given the overall cost function of Eq. (10), an exhaustive
search scheme is used to find the cropping region inside the
wide-angle view that minimize the combined information loss
in order for the PTZ camera to move to. Such an exhaustive
search is affordable with the integral image approach, popu-
lated by the face detector developed in [23].

In practice we found that the cropping windows obtained by
the above algorithm tend to be too tight around the foreground
object. To increase the aesthetics of the scene, we expand
the computed cropping window by a certain predetermined
percentage, e.g., 25% in both width and height.

VI. EXPERIMENTAL RESULTS

We have built the camera combo system for camera control.
The performance of our system is best shown with a short
video demonstrating its usage during a personal communica-
tion session. Such a video is available at:

http://research.microsoft.com/∼chazhang/mmsp08video.wmv

VII. CONCLUSIONS AND FUTURE WORK

We presented a framework for camera control based on the
computation of semantic saliency map and an information loss
optimized virtual director. Compared with low level saliency
maps, the proposed semantic saliency map can better describe
the user’s attention through contextual analysis, sign analysis
and transitional analysis. The information loss optimization
framework is a more principled approach for camera control
compared with traditional ad hoc approaches.

One future work is to improve the semantic saliency map
and virtual director so that it can drive the camera based
on predictions of motion in the future. This is often done
by professional videographers, which can greatly improve the
stableness of the PTZ camera.
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