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Abstract
The .NET intermediate language (MSIL) allows expressing
both statically verifiable memory and type safe code (typi-
cally called managed), as well as unsafe code using direct
pointer manipulations. Unsafe code can be expressed in C#
by marking regions of code as unsafe. Writing unsafe code
can be useful where the rules of managed code are too strict.
The obvious drawback of unsafe code is that it opens the
door to programming errors typical of C and C++, namely
memory access errors such as buffer overruns. Worse, a sin-
gle piece of unsafe code may corrupt memory and destabi-
lize the entire runtime or allow attackers to compromise the
security of the platform.

We present a new static analysis based on abstract in-
terpretation to check memory safety for unsafe code in the
.NET framework. The core of the analysis is a new numeri-
cal abstract domain, Strp, which is used to efficiently com-
pute memory invariants. Strp is combined with lightweight
abstract domains to raise the precision, yet achieving scala-
bility.

We implemented this analysis in Clousot, a generic
static analyzer for .NET. In combination with contracts ex-
pressed in FoxTrot, an MSIL based annotation language
for .NET, our analysis provides static safety guarantees on
memory accesses in unsafe code. We tested it on all the as-
semblies of the .NET framework. We compare our results
with those obtained using existing domains, showing how
they are either too imprecise (e.g., Intervals or Octagons) or
too expensive (Polyhedra) to be used in practice.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification; F.3.1 [Logic and
Meaning of Programs]: Specifying and Verifying and Rea-
soning about Programs; F.3.2 [Logic and Meaning of Pro-
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grams]: Semantics of Programming Languages—Program
Analysis

General Terms Documentation, Reliability, Verification

Keywords Abstract domains, Abstract interpretation, Bounds
checking, Pointer indexing, Design by Contract, Static anal-
ysis, .NET

1. Introduction
The .NET framework provides a multi-language execution
environment which promotes the safe execution of code. For
instance, in (safe) C# it is not possible to have un-initialized
variables, unchecked out-of-bounds runtime accesses to ar-
rays or dangling pointers. Memory safety is enforced by the
type system and the runtime: it is not possible to access arbi-
trary memory locations. Object creation and references are
allowed freely, but object life-time is managed by a garbage
collector and it is not possible to get the address of an ob-
ject. As a consequence, safe C# provides a safer execution
environment than C or C++.

Nevertheless, there are situations where direct pointer
manipulations and direct memory accesses become a ne-
cessity. This is the case when interfacing with the underly-
ing operating system, when implementing time-critical algo-
rithms or when accessing memory-mapped devices. For this
purpose, C# provides the ability to write unsafe code (un-
safe C#). In unsafe code, it is possible to declare and operate
on pointers, to perform arbitrary casts, to take the address
of variables or fields. C# provides syntactic sugar to denote
blocks of unsafe code, which avoids the accidental use of
unsafe features. Unsafe code cannot run in untrusted envi-
ronments.

Most of the checks commonly enforced by the runtime,
such as bounds checking, are not present on pointer manip-
ulating code. As a consequence the programmer is exposed
to all the vagaries of C/C++ programming, such as buffer
and array overflows, reading of un-initialized memory, type
safety violations, etc.. Those errors are difficult to detect and
track down, as no runtime exception is thrown at the error
source. For instance, an application cannot immediately de-
tect that some buffer overflow compromising its data consis-
tency has occurred. Instead, it continues its execution in a



bad state, only to fail (much) later due to a corrupted state.
Tracing back the cause of such bugs to the original memory
corruption is often very complicated and time consuming.

Our work appears in the context of an ongoing effort to
improve the reliability of the .NET platform by systematic
use of the Design by Contracts (DbC) methodology [25]
supported by static checking tools. In this scenario, static
checking is enabled at each build or even in an interactive
development environment to catch bugs early during devel-
opment.

Our Analysis
We present a sound and scalable analysis to statically check
memory safety in unsafe code. Scalability, without giving
up precision, was a main goal for the analysis. Similar work
for C does not fulfill these two requirements. For instance
the analysis introduced by Wagner et al. [34] is not precise
enough to check memory accesses that involve a pointer,
a base and an offset, which we found to be pervasive in
mscorlib.dll, the main library of the .NET framework. On
the other hand, the analysis of Dor et al. [13, 12] is pre-
cise enough to capture these relations, but it is based on the
use of the Polyhedra (Poly) abstract domain [10] which is
known to have severe scalability problems1. The work of Si-
mon and King [31, 32] improved on that by using an ab-
straction of Poly, where linear inequalities were restricted to
buckets of two variables. However, we did not find it precise
enough to match the programming style adopted in the code
we analyzed. Our approach differs from earlier work in that
it is based on the combination of lightweight and focused
abstract domains, instead of a monolithic, precise domain.
Each abstract domain is specialized (and optimized) toward
a particular program property, and their combination pro-
vides a powerful analysis without sacrificing performance.

Our analysis is based on abstract interpretation [8]. It
infers and checks the memory regions accessed by read
and write operations. A region of memory is denoted by
a pair 〈p, WB(p)〉, where p is a pointer and WB(p) stands
for the WritableBytes of p, i.e., the size of the region in
bytes accessible from p. We only allow positive offsets off
pointers, thus WB(p) is always non-negative.

Differently stated, the pair stands for the range of ad-
dresses [p, p + WB(p) − 1]. For instance, if x is an Int32
and p is an Int32∗, then the read operation x = ∗(p + 2)
is safe in the region 〈p, 12〉: It reads 4 bytes (the size of an
Int32 in .NET) starting from the address p + 8 (as p is a
pointer to Int32).

We use a combination of three domains to infer bounds on
memory-accessing expressions. The core is the new abstract
domain of Stripes (Strp) which captures properties of the
form of x − a ∗ (y[+z]) ≥ b, where a and b are integer

1 The worst case complexity of Poly is exponential. To the best of our
knowledge, at the moment of writing, the most optimized implementations
do not scale to more than 40 variables [1, 2]. In the analysis of .NET
assemblies, we need to capture up to 965 variables.

constants, x and y are variables and z is an optional variable.
Intuitively, a stripe constraint is used to validate the upper
bound on memory accesses. Intervals (Intv) [8] are used to
validate the lower bound of accesses. We use (a modified
version of) the Linear equalities domain (LinEq) [18] to track
equalities between variables.

We implemented our analysis in Clousot, a generic,
intraprocedural and language-agnostic static analyzer for
.NET [3, 23]. It uses FoxTrot contracts to refine the anal-
ysis and to support assume/guarantee reasoning for method
calls. FoxTrot allows specifying contracts in .NET without
requiring any language support. Contracts are expressed di-
rectly in the language as method calls and are persisted to
MSIL using the normal compilation process of the source
language. We tried our analysis on all the assemblies of the
.NET framework, validating on average more than 54% of
unsafe memory accesses automatically in a few minutes.
In practice, the false alarms that we get are due to miss-
ing contracts: the use of contracts will allow us to improve
the precision. The analysis is fast enough to be used in test
builds.

Our Contribution
The main contributions of the present work can be summa-
rized as follows:

– We introduce the first static analysis to check memory
safety in unsafe managed code. Our analysis handles the
entire MSIL instruction set and is fully implemented in
Clousot. It statically checks contracts, and can use them
to refine the precision of the analysis, e.g. by exploiting
preconditions. We tested it on all the assemblies of the
.NET framework.

– We define the concrete and abstract semantics for an
idealized MSIL-like bytecode. We prove soundness by
using the abstract interpretation framework to relate the
abstract semantics with the concrete semantics.

– We present a new abstract domain for the analysis of
memory bounds. It is based on the co-operation of several
specialized domains. We prove its soundness, and we
show how it is effective in practice, by enabling a fast,
yet precise analysis.

– We discuss some implementation issues necessary to
avoid loss of precision, as e.g. the special handling that is
required for the C# fixed statements.

2. Examples
We illustrate the analysis with some representative exam-
ples, given in increasing order of complexity. The examples
are taken from, or inspired by code patterns that we found in
the .NET framework assemblies.



static unsafe void InitToZero( int∗ a, uint len)
{

Contract.Requires(
Contract.WritableBytes(a) >= len ∗ sizeof( int ));

for ( int i = 0; i < len; i++)
{
∗(a + i) = 0; // (1)
}
}

Figure 1. A method that zeros a region of memory. The pre-
condition specifies that there are at least len ∗ sizeof(int)
bytes allocated starting from a. Clousot propagates the pre-
condition, and checks that the write operation at (1) is within
bounds.

2.1 Array initialization
As a first example, consider the InitToZero method in
Fig. 1. It initializes the memory region [a, a+4∗len−1] to
zero. The precondition requires that at least len ∗ sizeof(int)
bytes starting from a are allocated. We express it using
FoxTrot notation: contracts are specified by static method
calls (e.g. Contract.Requires(. . . ) for preconditions),
and lengths of memory regions are denoted by Contract.
WritableBytes(. . . ). Section 3.1 contains more informa-
tion about contracts.

The write operation at (1) is correct provided that: (a)
i ≥ 0, and that (b) WB(a)− 4 ∗ i ≥ 4. We prove (a) using
the Intv abstract domain, which infers the loop invariant
i ≥ 0. We prove (b) using the Strp abstract domain, which
propagates the entry state WB(a) − 4 ∗ len ≥ 0 to the loop
entry point, discovering the loop invariant WB(a)− 4 ∗ (i +
1) ≥ 0.

2.2 Callee checking
Methods such as InitToZero that use unsafe pointers are
typically internal to the .NET framework and accessible only
through safe wrappers such as FastInitToZero shown in
Fig. 2. This code casts the parameter array of int to a pointer
to int, and then invokes InitToZero. This pattern of a safe
wrapper around unsafe pointer manipulating code is perva-
sive in the .NET framework. Using our analysis together
with method pre-conditions allows us to validate that callers
into the framework cannot cause unintended memory access
via the internal pointer operations.

In this example, Clousot figures out that at line 4 of
Figure 2 the invariant WB(a) = 4 ∗ arr.Length holds, which
is enough to prove the pre-condition of InitToZero. In
order to track affine linear equalities as above, we use the
abstract domain of LinEq. The combination of Strp, Intv
and LinEq allows us to precisely analyze memory accesses
in unsafe code without turning to expensive (exponential)
abstract domains.

1 static public unsafe void FastInitToZero( int [] arr )
2 {
3 fixed ( int∗ a = arr)
4 {
5 InitToZero(a, (uint) arr .Length);
6 }
7 }

Figure 2. A recurrent code pattern in mscorlib.dll: an
array is manipulated by taking a pointer to it, and the ele-
ments are accessed directly to avoid the runtime overhead
of bounds checking. The fixed statement “pins” an object,
avoiding it to be moved by the garbage collector.

2.3 Interaction with the operating system
Unsafe code is also necessary for interfacing with the un-
derlying operating system. Consider the code in Fig. 3.
FastCopy uses the CopyMemory method from the Win32
API to copy the values of the array s into the array p.
FoxTrot allows attaching out-of-band contracts to assem-
blies, and in particular to annotate external calls. For the sake
of presentation, we made the out-of-band contract explicit in
a proxy method.

The precondition for CopyMemory, informally stated in
the Win32 documentation, is formalized in CopyMemoryProxy.
It requires that (a) the destination buffer is large enough to
hold szsrc bytes; (b) the two buffers are defined at least on
the memory regions accessed by CopyMemory.

Clousot can then statically check the right usage of
the API. For instance, it checks that FastCopy satisfies
the precondition, provided that the length of the destination
array is not strictly smaller than the source.

Discussion: Application to security. The example shows
the relevance of our analysis to enforce security. Unsafe
code in the .NET framework is a potential security risk if
it is exploitable from safe managed code. Analyses such
as Clousot provide more confidence that the managed to
unmanaged transition does not expose the framework to such
attacks. The same technique could be applied at the Java to
native boundary which exhibits the same problems.

2.4 Inheritance
When combined with inheritance, unsafe code can make
the code fragile because of implicit (or informal) contracts
in the application. The example in this section shows how
the combination of FoxTrot with Clousot can make the
existing code more robust at almost no extra-cost.

Consider the class in Fig. 4, extracted from the names-
pace System.Text, part of mscorlib.dll. The method
GetBytes encodes a set of characters into a sequence of
bytes. For performance reasons it uses pointers and it is de-
clared unsafe. It can be directly invoked by clients of the
library (it is a public method of a public class), or internally
by the library itself.



[DllImport(”kernel32 . dll ”)]
unsafe static extern void

CopyMemory(char∗ pdst, char∗ psrc, int size );

static unsafe private void
CopyMemoryProxy(char∗ pdst, char∗ psrc,

int szdst , int szsrc )
{

Contract.Requires(szdst >= 0 && szsrc >= 0);
Contract.Requires(szdst >= szsrc);
Contract.Requires(

Contract.WritableBytes(pdst) >= szdst∗sizeof(char));
Contract.Requires(

Contract.WritableBytes(psrc) >= szsrc∗sizeof(char));

CopyMemory(pdst, psrc, szsrc );
}

public unsafe static void FastCopy(char[] d, char [] s)
{

Contract.Requires(d.Length >= s.Length);

fixed (char∗ pdst = d, psrc = s)
{

CopyMemoryProxy(pdst, psrc, d.Length, s.Length);
}
}

Figure 3. An example illustrating the invocation of the
Win32 API. FoxTrot can produce out-of-band contracts
for CopyMemory, but we made them explicit as a proxy.
Clousot checks that FastCopy respects the precondition,
provided that d.Length >= s.Length. As a consequence,
no buffer overrun occurs, making potentially dangerous code
safe.

This method is inherently dangerous for two main rea-
sons. First, the client of the library can pass wrong param-
eters, e.g. charCount can be larger than the memory allo-
cated for chars, causing a buffer overflow. It is the respon-
sability of the caller to keep charCount in sync with the re-
gion for chars. The .NET Base Class Library (BCL) makes
sure that pointers and indexes are correct when GetBytes
is invoked internally (e.g. Fig. 5). Third-party code should
obey the informal documentation, but it cannot easily de-
tect that an overrun has occured, as no exception is thrown
(e.g., unlike ArrayOutOfBoundsException for array over-
flows).

Second, GetBytes is virtual, so clients can create a sub-
class of Encoding, override GetBytes, and pass an instance
of it to the BCL. A buggy redefinition of GetBytes can com-
promise the stability of the runtime, even if the caller has
passed the correct parameters. For instance the BCL may
contain some internal code that looks like the one in Fig. 5.
When invoked with an instance of Buggy (defined in Fig. 6),

1 public abstract class Encoding
2 {
3 public virtual unsafe int GetBytes(char∗ chars,
4 int charCount, byte∗ bytes , int byteCount)
5 {
6 if (bytes == null || chars == null)
7 throw new Exception();
8 if (charCount < 0 || byteCount < 0)
9 throw new Exception();

10

11 char [] arrChar = new char[charCount];
12

13 for ( int index = 0; index < charCount; index++)
14 // Possible buffer overrun
15 arrChar [ index ] = chars[index ];
16

17 // ... rest of the methdod omitted ...
18 }
19 // ... rest of the class omitted ...
20 }

Figure 4. An example extracted from the .NET Base Class
Library (BCL). The method GetBytes has two potential
flaws: (a) A buffer overrun at line 15 if charCount is larger
than the length of the buffer chars and (b) it makes the
client code fragile, by enabling overriden methods to do
whatever they want with the chars and the bytes pointers.
As GetBytes is also called internally in the BCL, a bug in
the overriden method may compromise the stability of the
whole platform.

private unsafe void UseGetChars(Encoding e)
{

char∗ chars = stackalloc char [16];
char∗ myPrivateData = stackalloc char[32];
// ... init myPrivateData ...
byte∗ localBuffer = stackalloc byte [16];
e.GetBytes(chars, 16, localBuffer , 16);
// ...
}

Figure 5. An example of the use of GetChars. The pro-
grammer is carefull in passing the right length for the
buffers, but he cannot protect himself from wrong imple-
mentations of GetChars which can corrupt the local state,
for instance by overwriting the content of myPrivateData.

the first byte of myPrivateData is overwritten, compromis-
ing the integrity of the private state of UseGetChars.

We can make the code more robust by adding suitable
memory safety contracts and use Clousot to enforce them
statically. First, it is worth noting that when executed on the
class in Fig. 4 as-is, Clousot complains about a possible
overrun at line 15. Therefore we add the following contract



1 class Buggy : Encoding
2 {
3 override public virtual unsafe
4 int GetBytes(char∗ chars, int charCount,
5 byte∗ bytes , int byteCount)
6 {
7 for( int index = 0; index <= charCount; index++)
8 {
9 chars [ index ] = ’a ’; // An off−by−one

10 }
11 }
12 }

Figure 6. A subclass of Encoding which has a bug that pro-
duces a buffer overrun. When an instance is passed as ac-
tual parameter for UseGetChars, it corrupts the local state.
Clousot reports that Buggy.GetBytes violates the inher-
ited contract.

to the method:

Requires(WritableBytes(chars) ≥
charCount ∗ sizeof(char)).

Under this precondition, Clousot automatically verifies: (a)
that the body of Encoding.GetBytes does not cause any
overrun; and (b) UseGetChars in Fig. 5 estabilishes the pre-
condition for GetBytes. This is now checked statically and
automatically, without relying on the programmer’s good
will to obey the documentation. Since FoxTrot contracts are
inherited, Clousot points out the off-by-one bug at line 9, in
Fig. 6. The programmer of Buggy can then correct the bug.

Discussion. Even if Clousot can help to make the code
more robust, it cannot solve the fragility introduced by the
use of public virtual unsafe methods. One solution is to avoid
their use. Another would be to use Clousot during class
loading to statically check whether it respects the necessary
contracts or not.

3. Background
We provide some background material on FoxTrot, Clousot,
and abstract interpretation.

3.1 Foxtrot
FoxTrot is a language independent solution for contract
specifications in .NET. It does not require any source lan-
guage support or compiler modification. Preconditions and
postconditions are expressed by invocations of static meth-
ods (Contract.Requires and Contract.Ensures) at the
start of methods. Class invariants are contained in a method
with an opportune name (ObjectInvariant) or tagged
by a special attibute ([ObjectInvariant]). Dummy static
methods are used to express meta-variables such as e.g.
Contract.Old(x) for the value in the pre-state of x or

Figure 7. Clousot architecture

Contract.WritableBytes(p) for the length of the mem-
ory region associated with p. These contracts are persisted
to MSIL using the standard source language compiler.

Contracts in the FoxTrot notation (using static method
calls) can express arbitrary boolean expressions as pre-
conditions and post-conditions. We expect the expressions
to be side effect free (and only call side-effect free methods).
We use a separate purity checker to optionally enforce this.

A binary rewriter tool enables dynamic checking. It ex-
tracts the specifications and instruments the binary with the
appropriate runtime checks at the applicable program points,
taking contract inheritance into account. Most FoxTrot con-
tracts can be enforced at runtime, however contracts using
Contract.WritableBytes(. . . ) are a notable exception.
We do not dynamically check for buffer overruns as there
is no easy way to obtain the writable extend of a pointer at
runtime.

For static checking, FoxTrot contracts are presented to
Clousot as simple assert or assume statements. E.g., a
pre-condition of a method appears as an assumption at the
method entry, whereas it appears as an assertion at every
call-site.

3.2 Clousot
Clousot is a generic, language agnostic static analyzer
based on abstract interpretation for .NET. It is generic in
that it presents a pluggable architecture: analyses can be
easily added by providing an implementation of a suitable
abstract domain interface. It is language agnostic as it an-
alyzes MSIL. All the programming languages in .NET emit
MSIL: Using the debug information we can trace back the
results of the analysis to the source program.

Clousot has a layered structure as shown in Fig. 7. Each
layer on the left presents an increasingly abstract view of the
code. An MSIL reader sits at the lowest level, which presents
a stack-based view of the code. Above that sits the FoxTrot
extractor, which turns the dummy method calls expressing
pre- and post-conditions into actual representations of these,
seperating them from the method body.



ldstack.i duplicate i-th value on evaluation stack
ldresult load the current result value
assert assert top of stack is true
assume assume top of stack is true
begin old evaluate next instructions in method pre-state
end old switch back to state at matching begin old

Table 1. MSIL+ synthetic instructions

The layer labeled MSIL+ represents an extension of
MSIL with a number of synthetic instructions that allow
us to express all contract code as simple stack instructions,
similar to MSIL. The extensions used are listed in Table 1.
Instruction ldstack.i is a generalization of a typical dup
instruction that allows one to access values on the evalua-
tion stack that are not at the top. This instruction is useful
for example to access the parameters inside a pre-condition
inserted at a call-site. The ldresult instruction is used in
post-conditions to refer to the result of the method. The
meaning of assert and assume is equivalent for run-time
checking: they both result in failure if the condition is false.
For static checking, they differ in that the checker tries to
validate an assert condition and issues an error if it cannot
be proven. However, the static checker simply adds the con-
dition of an assume to its knowledge base without trying to
validate it.

The next layers in the Clousot infrastructure (1) get rid
of the stack by providing a view of the code in the 3-address
form (the direct analysis of a stack-based language is hard
and error-prone, [17]); (2) abstract away the heap by provid-
ing a view of the code as a scalar program, where aliasing
has been resolved (a common approach to separate heap-
analysis and value analysis, e.g. [5, 21]); and (3) reconstruct
(most of the) expressions that have been lost during the com-
pilation (large chunks of expressions are vital for a precise
static analysis [22]).

On top of this infrastructure we build particular analy-
ses, such as the one presented in this paper regarding unsafe
memory accesses. Such analyses are built out of atomic ab-
stract domains (e.g. Intv, LinEq, Pntg [23]), a set of generic
domains (e.g. finite set of constraints), and a set of operators
on abstract domains (e.g. the reduced cartesian product [9],
the functional lifting). As a consequence Clousot allows
building new and powerful abstract domains by refinement
and composition of existing ones.

3.3 Basics of Abstract Interpretation
Abstract interpretation is a theory of approximations [8]. It
formalizes the intuition that semantics are more or less pre-
cise depending on the observation level. The more precise
the abstract semantics, the more precise the properties about
the execution of the program it captures. A static analysis
is an abstract semantics which is rough enough to be com-
putable, and precise enough to capture the properties of in-
terest. The design of an abstract interpreter involves: (i) the

design of an abstract domain; (ii) the design of a widening
operator; (iii) the design of the transfer functions.

Abstract Domains
An abstract domain D̄ is a complete lattice 〈E,v,⊥,>,t,u〉,
where E is the set of abstract elements, ordered according to
the relation v. The order relation v can be thought of as
an abstraction of the logical implication [30]. The smallest
abstract element is ⊥, the largest is >. The join is t, and the
meet is u. With a slight abuse of notation, we will confuse
an abstract domain D̄ with the set of its elements E.

The elements of an abstract domain are related to the
concrete domain D (also a complete lattice), by means of
a monotonic concretization function γ ∈ [D̄ → D]. We will
denote it by D

γ←− D̄. If γ is a complete u-morphism, then
there exists an abstraction function α ∈ [D → D̄], mapping
concrete elements to their best abstract representation, [8].
In this case, we have a Galois connection between D and D̄,
which we denote by D −−→←−−α

γ
D̄. In this paper we assume the

concrete domain to be the complete boolean lattice P(Σ),
where Σ is the set of concrete program states.

Abstract domains can be systematically refined to aug-
ment their precision, [9]. Given two abstract domains, D̄1

and D̄2, their reduced cartesian product is D̄1 ⊗ D̄2, whose
elements are pairs which satisfy the reduction condition:

∀〈d̄1, d̄2〉 ∈ D̄1⊗D̄2. γD̄1⊗D̄2
(〈d̄1, d̄2〉) ⊆ γD̄1

(d̄1)∩γD̄2
(d̄2) .

Widening operator
Most of the abstract domains used in practice do not satisfy
the ascending chain condition (ACC), so that the least fix-
point computation on such domains may not terminate. A
widening operator is then used to extrapolate the sequence
limit. Stated otherwise, it enables dynamic approximation.
Formally, a widening operator O ∈ [D̄ × D̄ → D̄] is such
that ∀d̄1, d̄2 ∈ D̄. d̄1vd̄1Od̄2 and d̄2vd̄1Od̄2 and for all the
increasing chains d̄0v . . . d̄nv . . . the increasing chain de-
fined as w̄0 = d̄0, . . . w̄i+1 = w̄iOd̄i+1 is not strictly in-
creasing. Then, the upward fixpoint iterations with widening
will converge to a post-fixpoint [8].

Transfer functions
Given an abstract domain D̄, a transfer function τ̄ ∈ [D̄ →
D̄] is an overapproximation of the concrete semantics τ ∈
[P(Σ) → P(Σ)], i.e. it satisfies the soundness relation ∀d̄ ∈
D̄. τ ◦γ(d̄) ⊆ γ◦τ̄(d̄).Note that in general we do not require
to have the most precise (complete) transfer function, just a
sound (yet precise) approximation.

The Intv abstract domain
The elements of the abstract domain of intervals, Intv [8],
belong to the set {[i, s] | i, s ∈ Z ∪ {−∞,+∞}}. The
concretization function, γIntv ∈ [Intv → P(Z)] is defined
as γIntv([i, s]) = {z ∈ Z | i ≤ z ≤ s}. The order is in-
terval inclusion, the bottom element is the empty interval



istr ::= T∗ p = stackalloc T[exp] | fixed(T ∗ p = &x + exp) { istr } |
x = ∗(p + exp) | ∗(p + exp) = x | istr; istr

Table 2. uMSIL: an idealized version of the MSIL instructions that are peculiar to direct memory access. T denotes a type, p a
pointer, x a variable, exp a side-effects free expression.

(i.e., an interval where s < i), the largest element is the
line [−∞,+∞]. The join and the meet are respectively the
union and the intersection of intervals. Intv does not satisfy
the ACC, so a widening operator is required. The traditional
widening on intervals preserves the bounds which are sta-
ble, [8].

Example (Widening of Intv) Let us consider the code in
Fig. 1. The abstract values that the indexing variable i as-
sumes during the fixpoint iterations form a strictly increasing
chain:

[0, 0] v[0, 1] v[0, 2] v[0, 3] v...
The widening keeps the stable bound (the lower bound), and
extrapolates the unstable bound (the upper bound) to +∞.
A further iteration suffices to prove that i ∈ [0,+∞] is a
fixpoint, and hence a loop invariant. ut

The abstract domain of interval environments, Boxes, is
the functional lifting of Intv, i.e., Boxes = [Vars → Intv].
The lattice operations are hence the functional extension of
those defined on a single interval. The concretization of a
box, γBoxes ∈ [Boxes → P(Σ)] is defined as γBoxes(f) =
{σ ∈ Σ | ∀x.x ∈ f =⇒ σ(x) ∈ γIntv(f(x))}. The
transfer functions for the assignment and the boolean guards
in the interval environment are defined as usual in interval
arithmetic, [7]. The complexity of the operations and transfer
functions is linear in the number of variables n: O(n).

In the sequel, we will not distinguish between Intv and
Boxes.

The LinEq abstract domain
The elements of the LinEq abstract domain [18, 27] are sets
of affine linear equalities over rationals:

L ∈ P

({∑
i

ai ∗ xi = b | ai, b ∈ Q

})
.

The meaning is given by the concretization γLinEq ∈ [LinEq→
P(Σ)]:

γLinEq(L) =
⋂

∑
i ai∗xi=b∈L

{
σ ∈ Σ |

∑
i

ai ∗ σ(xi) = b

}
,

therefore elements of LinEq are affine sub-spaces. The order
is sub-space inclusion, the bottom is the empty space, the
top is the whole space, the join is the smallest space which
contains the two arguments, the meet is space intersection.
LinEq satisfies the ACC condition, so that the join suffices
to ensure analysis termination. The complexity of the do-
main operations and transfer functions is subsumed by the

complexity of the Gaussian reduction that is used to provide
a canonical representation for the equations. Therefore it is
O(n3).

4. Syntax and Concrete Semantics
We present an idealized and simplified subset of MSIL,
uMSIL. We define its transition semantics. The concrete se-
mantics is instrumented to trace the region of allocated mem-
ory associated with a pointer. We treat out-of-region memory
accesses as errors.

4.1 Syntax
We focus our attention on the MSIL instructions that are
particular to our unsafe analysis. Thus, we do not discuss: (a)
instructions that are “standard” such as jumps, assignments,
method invocations, etc. (b) issues that are orthogonal to the
unsafe code analysis, such as the precise handling of tests,
expressions refinement, etc. We refer the interested reader to
[22].

The instruction set we consider, uMSIL, is shown in
Tab. 2. T∗ p = stackalloc T[exp] allocates exp elements
of type T on the stack. In .NET, memory can be allocated in
the heap in two ways : (a) use the new keyword to allocate
an object or (b) directly call the underlying operating sys-
tem (e.g. by using the HeapAlloc Win32 API). In general,
the garbage collector is free to move heap allocated objects.
However, the construct fixed(T ∗ p = &x + exp){istr}
(a) sets a pointer p to the address &x + exp; and (b) pins the
variable p during the execution of the sequence of instruc-
tions istr, to prevent the garbage collector from moving it.
The instruction x = ∗(p + exp) reads the value at address
p + exp and stores its value in x whereas ∗(p + exp) = x
stores at the address p + exp the value of x. Finally, we have
instruction sequencing.

4.2 Concrete domain
Let Vars be a set of variables, let Add be a set of addresses,
N be the set of numerical values (note that Add ⊆ N) and Ω a
special state standing for a program error. For each variable
v ∈ Vars we express by WB(v) the number of bytes on which
it is defined (if it is not a pointer, the domain would not trace
information about it). We let WB(Vars) = {WB(v) | v ∈
Vars} and VarsWB = Vars ∪ WB(Vars).

The domain of concrete execution states is

C = ([VarsWB → N]× [Add→ Byte]× Add) ∪ {Ω}

A concrete state is either: (a) a tuple consisting of an envi-
ronment f mapping variables to values, a memory g mapping



eval(exp, (f, g)) < 0
CJT ∗ p = stackalloc T[exp]K(f, g, t)→ Ω

n = eval(exp, (f, g)), n ≥ 0
〈a, g′〉 = alloc(T, n, g)

f′ = f [p 7→ a][WB(p) 7→ n ∗ sizeof(T)]

CJT ∗ p = stackalloc T[exp]K(f, g, t)→ (f′, g′, t)

WB(p) /∈ dom(f) ∨ eval(exp, (f, g)) < 0 ∨
f(WB(p)) < sizeof(x) + eval(exp, (f, g)) ∗ sizeof(∗p)

CJ∗(p + exp) = xK(f, g, t)→ Ω

WB(p) ∈ dom(f), n = eval(exp, (f, g)), n ≥ 0
f(WB(p)) ≥ sizeof(x) + n ∗ sizeof(∗p)

g′ = write(g, f(p) + n ∗ sizeof(∗p), sizeof(∗p), f(x))

CJ∗(p + exp) = xK(f, g, t)→ (f, g′, t)

WB(p) /∈ dom(f) ∨ f(eval(exp, (f, g))) < 0 ∨
f(WB(p)) < sizeof(x) + eval(exp, (f, g)) ∗ sizeof(∗p)

CJx = ∗(p + exp)K(f, g, t)→ Ω

WB(p) ∈ dom(f) n = eval(exp, (f, g)), n ≥ 0
f(WB(p)) ≥ sizeof(x) + n ∗ sizeof(∗p)

v = read(g, f(p) + n ∗ sizeof(∗p), sizeof(x))
f′ = f[x 7→ v]

CJx = ∗(p + exp)K(f, g, t)→ (f′, g, t)

var is a T array

f′ = f [p 7→ f(var) + (eval(exp, (f, g))) ∗ sizeof(T)]
[WB(p) 7→ (eval(var.length− exp, (f, g))) ∗ sizeof(T)]

t′ = t ∪{f(var)} CJistrK(f′, g, t′)→ (f′′, g′′, t′′)

CJfixed(T ∗ p = &var + exp){istr}K(f, g, t)→ (f′′, g′′, t)
CJistr1K(f, g, t)→ Ω

CJistr1; istr2K(f, g, t)→ Ω

var is a string

f′ = f [p 7→ f(var) + (eval(exp, (f, g))) ∗ 2]
[WB(p) 7→ (eval(var.Length− exp, (f, g))) ∗ 2]

t′ = t ∪{f(var)} CJistrK(f′, g, t′)→ (f′′, g′′, t′′)

CJfixed(T ∗ p = &var + exp){istr}K(f, g, t)→ (f′′, g′′, t})
CJistr1K(f, g, t)→ (f′, g′, t′)

CJistr1; istrs2K(f, g, t)→ CJistr2K(f′, g′, t′)

Figure 8. The concrete transition semantics. alloc, eval, sizeof are auxiliary functions for handling memory allocation,
evaluation of pure expressions and obtraining the size of variables and types. Ω is a the error state, which blocks the
computation.

addresses to bytes, and a set t of addresses of objects pinned
for the garbage collector, or (b) the special value Ω denoting
that an error has occurred.

4.3 Concrete transition semantics
Figure 8 formally defines the concrete transition semantics.
We use some auxiliary functions: (1) eval(exp, (f, g)) eval-
uates a side-effect free expression exp in state (f, g); (2)
alloc(T, n, g) returns a pair 〈a, g′〉 where a is the starting ad-
dress of a freshly allocated region of g containing n elements
of type T, and g′ is the modified memory; (3) write(g, a, n,
v) returns the updated memory g[a + i 7→ v[i] | i ∈ [0, n)],
v[k] denotes the k-th significant byte of v; (4) read(g, a, n)
reads n bytes from memory g and returns them packed as
an integer; (5) sizeof(T) and sizeof(x) return the length, ex-
pressed in bytes, respectively of an element of type T and of
the variable x.

The description of the transitions in Fig. 8 follows. The
semantics for stackalloc first evaluates exp. If it is neg-
ative, it fails. Otherwise, it allocates a new region, sets a
pointer for it to p and records the length of the region, ex-
pressed in bytes, in WB(p).

A write operation ∗(p + exp) = x stores a number of
bytes equal to the size of the type of x in the memory location
p + exp ∗ sizeof(∗p). If the region for p does not contain at

least sizeof(x) + exp ∗ sizeof(∗p) bytes, a buffer overrun
occurs, denoted by the error state Ω. The read operation is
analogous.

The semantics for fixed is defined according to the type
of var. In the two cases, (a) p will point to a memory address
that is obtained by combining the address value f(var) and
the offset exp ∗ s, where s is the size of the elements; (b)
the address of the pinned object f(var) is added to the set of
pinned objects during the execution of st. As for the length
of the memory regions associated with p: when var is (a)
an array, then the size of the memory region associated with
p is given by the length of the array minus the offset of the
first element times the size of an element; (b) a string, then
p will point to an element to the internal representation of
the string as an array of char, and the length of the memory
regions is computed accordingly.

The semantics of a sequence of instructions is the compo-
sitions of the semantics, unless the result is Ω. In this case,
the error state is propagated.

5. Abstract Semantics
We derive our analysis by stepwise abstraction, [7]. First, we
abstract away the values read and written trough pointers and
the aliasing introduced by the fixed instruction. Then, we



!(eval(exp, f̄) ≥ 0)
AJT ∗ p = stackalloc T[exp]K(̄f)→ Ω?

eval(exp, f̄) ≥ 0

f̄′ = f̄ [WB(p) 7→ eval(exp, f̄) ∗ sizeof(T)]

AJT ∗ p = stackalloc T[exp]K(̄f)→ f̄′

!(eval(exp, f̄) ≥ 0) ∨ WB(p) /∈ dom(̄f)∨
!(̄f(WB(p)) ≥ sizeof(x) + eval(exp ∗ sizeof(∗p), f̄))

AJ∗(p + exp) = xK(̄f)→ Ω?

WB(p) ∈ dom(̄f) eval(exp, f̄) ≥ 0

f̄(WB(p)) ≥ sizeof(x) + eval(exp ∗ sizeof(∗p), f̄)

AJ∗(p + exp) = xK(̄f)→ f̄

!(eval(exp, f̄) ≥ 0) ∨ WB(p) /∈ dom(̄f)∨
!(̄f(WB(p)) ≥ sizeof(x) + eval(exp ∗ sizeof(∗p), f̄))

AJx = ∗(p + exp)K(̄f)→ Ω?

WB(p) ∈ dom(̄f) eval(exp, f̄) ≥ 0

f̄(WB(p)) ≥ sizeof(x) + eval(exp ∗ sizeof(∗p), f̄)

AJx = ∗(p + exp)K(̄f)→ f̄

var is T array

f̄′ = f̄[WB(p) 7→ eval(var.length− exp, f̄) ∗ sizeof(T)]
f̄′′ = AJistrK(̄f′)

AJfixed(T ∗ p = &var + exp){istr}K(̄f)→ f̄′′
AJistr1K(̄f)→ Ω?

AJistr1; istr2K(̄f)→ Ω?

var is a string

f̄′ = f̄[WB(p)→ (eval(var.Length− exp, f̄)) ∗ 2]
f̄′′ = AJistrK(̄f′)

AJfixed(T ∗ p = &var + exp){istr}K(̄f) = f̄′′
AJistr1K(̄f)→ f̄′

AJistr1; istr2K(̄f)→ AJistr2K(̄f′)

Figure 9. The abstract transition semantics for uMSIL: concrete values and pinned variables have been abstracted away. eval
is the lifting of eval to handle >. We assume ≥ and + to be >-strict: e.g. > ≥ n = n ≥ > = >. !(b) is defined as
!(false) =!(>) = true and !(true) = false. Ω? is the unknown state, which causes the computation to block, signaling
that an erroneus memory access has happened.

derive a generic analysis for checking buffer overruns. The
analysis is parameterized by the numerical abstract domain
used to evaluate region indices.

5.1 Abstracting away the values
5.1.1 The domain
We preserve just the information on memory regions. We
abstract away the second and the third component of C, and
we project the first component onto the memory regions,
i.e. WB(Vars). The abstract domain is C̄ = ([WB(Vars) →
N ∪ {>}]) ∪ {Ω?}. We add (a) > to model values that are
abstracted away, (b) Ω? to model a set of concrete states that
may contain the error state Ω.

5.1.2 The abstract transition semantics
The abstract semantics is in Fig. 9. The abstract function eval
lifts its concrete counterpart to handle >. > values occur for
instance when exp contains a variable x whose value is read
through a pointer and we do not trace the value for x. eval
simply propagates > through all strict operator positions,
e.g., eval(5 +>, f) = eval(>, f) = >.

The semantics is a little bit more than the projection of the
concrete semantics on its first component: if eval(exp, f) =
>, then we cannot decide if exp ≥ 0 and hence if a buffer
overrun has occured. In this case, we force the transition to
the Ω? state, which means that a buffer overrun may occur.

For the fixed instruction, we abstract away (a) the fact
that the object is pinned: in our abstract semantics we do not
need to model the garbage collector; (b) the aliasing between

p and &var + exp: we are interested just in checking that
memory accesses are valid.

5.1.3 Abstraction and concretization function
The concretization function returns the set of all the concrete
states such that the first component is compatible with one of
the abstract states. If the abstract state contains the unknown
state Ω?, then all the concrete states are returned, included
the error state Ω. As a consequence, in order to show that
a program has no memory access violations, it suffices to
prove that its abstract semantics in Fig. 9 never reduces to
Ω?.

The next two theorems guarantee the soundness of the
approach. The first states that the abstract elements are a
correct approximation of the abstract ones. The second one
states that no concrete behavior is forgotten in the abstract
semantics.

Theorem: Soundness of the abstraction. Let γ ∈ [P(C̄)→
P(C)] be the concretization function defined as

γ(F̄) =
⋂

f̄∈F̄{(f, g, t) | ∀WB(p) ∈ dom(̄f). f̄(WB(p)) 6= >
=⇒ f(WB(p)) = f̄(WB(p)) ∧ p ∈ dom(f)}

∪{(f, g, t) | Ω? ∈ F̄}.

Then γ is a complete ∩-morphism, so that it exists an ab-
straction function α ∈ [P(C)→ P(C̄)] such that P(C) −−→←−−α

γ

P(C̄). ut



check(exp ≥ 0, s̄) = >
FJT ∗ p = stackalloc T[exp]K(̄f)→ Ω?

check(exp ≥ 0, s̄) = true

s̄′ = assign(WB(p), size ∗ sizeof(T), s̄)

FJT ∗ p = stackalloc T[exp]K(̄s)→ s̄′

check(WB(p) ≥ sizeof(x) + exp ∗ sizeof(∗p), s̄) = >
∨check(exp ≥ 0, s̄) = >

FJ∗(p + exp) = xK(̄s)→ Ω?

check(WB(p) ≥ sizeof(x) + exp ∗ sizeof(∗p), s̄) = true

check(exp ≥ 0, s̄) = true

FJ∗(p + exp) = xK(̄s)→ s̄

check(WB(p) ≥ sizeof(x) + exp ∗ sizeof(∗p), s̄) = >
∨check(exp ≥ 0, s̄) = >

FJx = ∗(p + exp)K(s)→ Ω?

check(WB(p) ≥ sizeof(x) + exp ∗ sizeof(∗p), s̄) = true

check(exp ≥ 0, s̄) = true

FJx = ∗(p + exp)K(̄s)→ s̄

var is a T array

s̄′ = assign(WB(p), (var.length− exp) ∗ sizeof(T), s̄)
FJistrK(̄s′)→ s̄′′

FJfixed(T ∗ p = &var + exp){istr}K(̄s)→ s̄′′
FJistr1K(̄s)→ Ω?

FJistr1; istr2K(̄s)→ Ω?

var is a string

s̄′ = assign(WB(p), (var.length− exp) ∗ 2, s̄)
FJistrK(̄s′)→ s̄′′

FJfixed(T ∗ p = &var + exp){istr}K(̄s)→ s̄′′
FJistr1K(̄s)→ s̄′

FJistr1; istr2K(s̄)→ FJistr2K(s̄′)

Figure 10. The generic abstract semantics for memory access validity checking. It is parameterized by a numerical abstract
domain endowed with two primitives: assign and check.

Theorem: Soundness of the abstract semantics. Let f̄ ∈
C̄, (f, g, t) ∈ γ(̄f) and ist ∈ uMSIL. If AJistK(̄f)→ f̄ ′ and
CJistK(f, g, t)→ (f ′, g′, t′), then (f ′, g′, t′) ∈ γ(̄f ′). ut

5.2 Generic memory access analysis
If we extend uMSIL with (conditional) jumps, e.g. to enable
loops, then the abstract semantics in Fig. 9 will no longer be
computable. In particular, the expressions used for memory
accesses may evaluate to infinitely many values. As a conse-
quence, in order to cope with a more realistic scenario, we
need to perform a further abstraction, to capture the values
of index expressions.

We assume a numerical domain N̄ which correctly ap-
proximates P(C̄) (〈P(C̄),⊆〉 γN̄←− 〈N̄,v〉) and with two
primitives: (a) assign(x, exp, s) ∈ N̄ which is (an over-
approximation of) the assignment x := exp in the abstract
state s (∈ N̄); (b) check(exp, s) ∈ {true,>} which checks
whether, in the abstract state s (∈ N̄), the expression exp
holds (true) or it cannot be decided (>).

The generic abstract semantics for checking memory
safety, parameterized by N̄ is reported in Fig. 10.

6. The “right” numerical abstract domain
The generic abstract semantics in Fig. 10 can be instantiated
with any numerical abstract domain containing the primi-
tives assign and check. As a consequence the problem of
checking the validity of memory accesses boils down to the
problem of chosing the right abstract domain.

Existing numerical domains can be classified according
to their precision/cost ratio. The ideal of a static analysis is

to use the least expensive domain which is precise enough
to prove the property of interests.

Let us consider the set of points A of Fig. 11(a) corre-
sponding to all the possible values that WB(p) and index as-
sume at some memory access c = ∗(p + index). Geometri-
cally, the memory access is safe as all the concrete values are
included in the upper-right quadrant delimeted by the lines
index = 0 and WB(p) = base + index ∗ sizeof(∗p). Prov-
ing it using an abstract domain Ā requires inferring an ab-
stract element ā ∈ Ā such that A ⊆ γ(ā) ⊆ R.

Fig. 11(b) shows that Intv alone is not precise enough
for our purposes: the best approximation for A with Intv
is not completely included in R. Intuitively, this is because
Intv does not keep relational information, e.g., any relation
between WB(p) and index is abstracted away.

Weakly-relational numerical abstract domains such as
Octagons [26] or Pentagons [23] have been introduced as
lightweight solutions for array bounds checking2. Fig. 11(c)
shows that Octagons are more precise than Intv, but they
are still not precise enough to validate memory accesses due
to the multiplicative factor sizeof(∗p) which makes the
slopes in Fig. 11 possibly non-45◦.

Fig. 11(d) shows that the convex hull CH(A) of the points
A is included in R. The geometrical interpretation of the
elements of the abstract domain of Polyhedra (Poly) [10]
is exactly their convex hull3. The main drawback of using
Poly is its worst case cost, which for the most common

2 Octagons capture relations in the form±x± y ≤ a, and Pentagons in the
form of a ≤ x ≤ b ∧ x < y.
3 Polyhedra capture arbitrary linear inequalities among variables: Σiai ·
xi ≤ b.



(a) Concrete points (b) Intervals, O(n) (c) Octagons, O(n3) (d) Polyhedra, O(2n) in prac-
tice

(e) Stripes⊗Intervals⊗LinEq,
O(n3), O(n) in practice

Figure 11. The concrete points, and some approximations depending on the numerical abstract domain. Intervals and Octagons
are not precise enough to prove the property. Polyhedra are precise, but also very expensive: they have an exponential
complexity which shows up in practice. The reduced product of Stripes⊗Intervals⊗LinEq represents a good trade off between
precision and cost: the theoretical complexity is cubic, but in practice we experienced a linear behavior.

operations is exponential in time and space (and this is a
lower-bound [19]). In Sect. 9 we will provide experimental
evidence that that the worst case is attained in practice.

In Clousot we are interested in the scalability of the
analyses. Therefore, we rejected the use of general purpose,
precise but very expensive abstract domains such as Poly. In-
stead, we have chosen a different path, which consists in (a)
designing abstract domains focused on a particular property;
and (b) combining domains using well-known techniques
such as the reduced product. For our analysis, we designed
a new numerical abstract domain, Strp, and we combined it
with Intv and LinEq to achieve precision without giving up
on performance. Fig. 11(e) illustrates the (best) approxima-
tion for A within the abstract domain Strp ⊗ Intv ⊗ LinEq,
which is included in R.

In the next sections we present the details of Strp, its re-
duction with Intv and LinEq, and the results of our practical
experiments.

7. The Stripes abstract domain
We introduce a novel, weakly-relational domain Stripes,
Strp, focused on the inference and checking of (upper
bounds on) memory accesses that use a base, an index, and a
multiplicative factor. We define the order, the join, the meet
and the widening operators.

7.1 Constraints
As a first approximation, Strp captures constraints of the
form WB(p)−sizeof(T)∗(count[+base]) > k where WB(p),
count, and optionally base are variables, T is a type, and
k is an integer constant. The intuition behind it is that the
pointer p is defined at least on count[+base] elements of
its type, and on k additional bytes.

In practice, these constraints are used in a more generic
way: the first element may be any variable (and not only the
writable bytes of a pointer) and the sizeof(T) may be any
numerical value (and not only the size of the type of the
pointer target). Then the constraints captured by the Stripe
domain are z− k1 ∗ (x[+y]) > k2.

7.2 Abstract domain structure
Abstract elements
We represent Strp elements as maps from variables to con-
straints. We have chosen maps as they allow efficient manip-
ulation of directional constraints:

Strp = [VarsWB → P((VarsWB × (VarsWB ∪ ⊥)× N× N))].

Intuitively, the domain of the map contains the variable z,
the first and second component of the 4-tuple represent the
two variables x and y (⊥ if it is not present), the third com-
ponent is k1 and the last one is k2.

Example (Representation of stripes constraints) The two
constraints z−4∗y > 0 and z−2∗(x+u) ≥ 5 are represented
in Strp by the map [z 7→ {(y,⊥, 4, 0), (x, u, 2, 4)}]. ut

Order
An abstract state s̄1 in Strp is more precise than s̄2 iff for
each constraint in s̄2, s̄1 contains a constraint such that (a)
the three variables and the integer constant k1 are the same;
and (b) k2 is less or equal than the k2 of s̄2 since if x > y
and y > z then x > z by transitivity of >. Formally:

s̄1 v s̄2 ⇐⇒ ∀z ∈ dom(s̄2),∀(y, x, k1, k
2
2) ∈ s̄2(z).

z ∈ dom(s̄1) ∧
∃(y, x, k1, k

1
2) ∈ s̄1(z).k2

2 ≤ k1
2



Top and Bottom
The largest element of Strp is a map with no information:
λz. ∅. An abstract state s̄ is bottom iff it contains a contra-
diction: e.g. [z 7→ {(y,⊥, 1, 0)}, y 7→ {z,⊥, 1, 0)].

Join
The upper bound operator (a) keeps the constraints that are
defined in both operands; (b) takes the smallest lower bound
k2 if it is different in the two constraints since if exp > a,
exp > b and a ≥ b then exp > b is an upper bound for both
constraints. Formally:

s̄1 t s̄2 = λz.{(y, x, k1, k2) | (y, x, k1, k
1
2) ∈ s̄1(z),

(y, x, k1, k
2
2) ∈ s̄2(z), k2 = min(k1

2, k
2
2)}.

Meet
The lower bound operator traces the constraints of both
operands. If both contain a constraint with the same variables
x, y, and z, and the same integer value k1, the operator keeps
the largest integer value for the numerical lower bound.

s̄1 u s̄2 =λz.

 (y, x, k1, k2) | (y, x, k1, k
1
2) ∈ s̄1(z),

(y, x, k1, k
2
2) ∈ s̄2(z),

k2 = max(k1
2, k

2
2)


∪

λz.


(y, x, k1, k2) | ((y, x, k1, k2) ∈ s̄1(z)∧

(y, x, k1, ) 6∈ s̄2(z))
∨ ((y, x, k1, k2) ∈ s̄2(z)∧

(y, x, k1, ) 6∈ s̄1(z))


Widening
Strp does not satisfy the ACC condition. As a consequence,
we need to define a widening operator to ensure conver-
gence. Our widening simply drops the constraints that are
not stable between two iterations:

s̄1Os̄2 = λz.̄s1(z) ∩ s̄2(z).

Concretization
The concretization function γStrp ∈ [Strp → P(C̄)] returns
all the possible states that satisfy the constraints represented
by the abstract state:

γStrp(̄s) = {f̄ | ∀z ∈ dom(̄s)∀(y, x, k1, k2) ∈ s̄(z).

f̄(z)− k1 ∗ (̄f(y) + f̄(x)) > k2}.

It is immediate to see that γStrp is monotonic, and fur-
thermore that it is a complete ∩-morphism. Therefore, as the
composition of monotonic functions is monotonic, the fol-
lowing theorem stating that Strp is a sound approximation
holds:

Theorem (Abstraction) γStrp as defined above is a com-
plete ∩-morphism. Therefore, it exists an αStrp such that

〈P(C̄),⊆〉 −−−−→←−−−−
αStrp

γStrp

〈Strp,v〉 . As a consequence, 〈P(C),⊆〉

−−−−−−→←−−−−−−
αStrp◦α

γ◦γStrp

〈Strp,v〉. ut

7.3 Refinement of the abstract state
A state of the Stripe domain may be internally refined, by
carefully propagating information between constraints.

Example (Refinement of constraints) Consider the two
stripes constraints x − 2 ∗ (y + u) > 4 and y − z > 0.
From the first constraint we derive:

x−2∗(y+u) > 4⇐⇒ x−2∗u−4 > 2∗y⇐⇒ x/2−u−2 > y.

From the second constraint we derive that y > z ⇐⇒ y ≥
z+ 1. Combining the two, we derive a new stripe constraint:
x/2− u− 2 > z + 1⇐⇒ x− 2 ∗ (u + z) > 6. ut

The above example can be easily generalized:

Lemma (Saturation) If an abstract state contains the two
constraints

x− k1 ∗ (y[+u]) > k2

y− 1 ∗ z > k3

then we can infer the constraint x−k1 ∗ (z[+u]) > k2 +k1 ∗
(k3 + 1). ut

The refinement enabled by the lemma above is important
in practice. It allows adding new constraints to the abstract
state, without requiring an expensive closure to propagate
the information. Of course, Lemma 7.3 does not guarantee
the completeness of the saturation, but it is sufficent for our
purposes, as illustrated by the next example.

Example (Saturation) Let us consider the example in
Fig. 1. Inside the loop, we have the abstract state s̄ =
{WB(a) − 4 ∗ len > −1, len − i > 0} 4. We have to
check whether WB(a) ≥ 4 ∗ i + 4. We cannot do it directly
by inspecting s̄ as there is no direct relation between WB(a)
and i. Applying the refinement of Lemma 7.3, we infer the
constraint WB(a) − 4 ∗ i > 3 which suffices to validate the
access: WB(a) − 4 ∗ i > 3 ⇐⇒ WB(a) > 4 ∗ i + 3 ⇐⇒
WB(a) ≥ 4 ∗ i + 4 . ut

In our implementation we perform this refinement only
on-demand when we need to check the proof obligations.

7.4 Transfer functions
Assignment
When an expression is assigned to a variable, we first drop
all the constants that are defined on the assigned variable,
and then we add some inferred constraints. Formally:

assign(x, exp, s̄) =let s̄′ = drop(x, s̄)

in s̄′ ∪ C(x, exp, s̄′).

where

drop(x, s̄) = λy.{(z, u, k1, k2) | y 6= x,

(z, u, k1, k2) ∈ s̄(y) =⇒ z 6= x ∧ u 6= x};

4 To simplify the reading, we present a stripe abstract state as a set of
constraints.



and C infers new constraints from an assignment and an
abstract state. Few representative cases for C follow. In our
implementation we consider a richer structure of expressions
and cases.

C(x, y, s̄) =[x 7→ s̄(y)]∪
[v1 7→ {(x, v2, k1, k2) | (y, v2, k1, k2) ∈ s̄(v1)}]

C(x, u + v, s̄) =
[v1 7→ {(u, w, k1, k2) | (x,⊥, k1, k2) ∈ s̄(v1)}]
. . .

Abstract checking
To check a boolean expression, we first try to normalize it
into a form like x − k1 ∗ (y[+z]) > k2, and then we check
if the abstract state contains a constraint which implies it.
Formally:

check(exp, s̄) =
let(x− k1 ∗ (y + z) > k1

2, b) = normalize(exp)
in
if (b ∧ ∃(y, z, k1, k

2
2) ∈ s̄(x).k1

2 ≤ k2
2) then true else >

We skip the details of normalize. Roughly, it applies basic
arithmetic identities to rewrite the expression. If it fails to
put the expression into a stripe constraint form, it returns a
boolean value signaling the failure.

8. Refined Abstract Semantics
We refine the information captured by the Strp domain with
Intv and the LinEq domain. Intv is needed to check lower
bounds of accesses. LinEq is needed to track linear equali-
ties, and in particular to handle the compilation schema for
fixed in C#.

8.1 Checking lower bounds of accesses
Strp allows representing just partial numerical bounds on
variables. In fact, when k1 = 0, a stripe constraint boils
down to a numerical lower bound: z > k2. Nevertheless,
in general we need to track numerical upper bounds on
variables: Those may appear in expressions that must be
evaluated to check under-flow accesses. We use Intv to track
the numerical bounds on variables.

Example (Need for numerical bounds) Let us consider
the following code snippet (“...” denotes an arbitrary boolean
expression):

int ∗p;
...

// suppose that WB(p) = 12, a = 5
if (...) {

b = 3;
}
else {

b = 4;
}
∗(p + (a−b)) = 0; // (∗)

If we track just lower bounds, at (∗) we have a > 4, b > 2,
so that we cannot prove the memory access correct. If we
track both numerical bounds, at (∗) we have that a = 5, b ∈
[3, 4], so that b− a ∈ [1, 2] which suffices to prove the
access correct. ut

The numerical abstract domain for the analysis is the
product domain Intv ⊗ Strp. All the domain operations are
lifted pair-wise to the product domain. Sometimes we may
want to use the information contained in Intv to refine the
information in Strp. For instance, to improve the precision
of the join operator, as shown by the next example.

Example (Refinement of Strp with Intv) Consider the fol-
lowing piece of code:

int [] array ;
...

// suppose that array .Length − count > 0
if (count == 0)

array = new int[1];
else

/∗ do nothing ∗/ ;

Using just Strp, at the join point we cannot conclude that
array.Length− count > 0: inside the conditional, array
is assigned a new value, so that the entry constraint is
dropped.

Using Intv ⊗ Strp, the abstract state after array creation
is p̄1 = 〈〈count ∈ [0, 0], array.Length ∈ [1, 1]〉, λz. ∅〉;
the abstract state at the end of the false branch is p̄2 =
〈∅, [array.Length 7→ (count, 1, 0)]〉. The join is 〈∅,
[array.Length 7→ (count, 1, 0)]〉, as the interval compo-
nent of p̄2 implies that array.Length− count > 0. ut

8.2 Compilation of fixed
When the C# compiler compiles a fixed statement which
assigns an array arr of type T[] to a pointer p, it generates
code to check whether the arr is null or if its length is 0. If
it is the case, then it assigns null to p. Otherwise it assigns
the address of the first element of arr to p. Fig. 12 depicts
this compilation schema.

Without any refinement, the analysis performed by Clousot
cannot capture that WB(p) = sizeof(T)∗array.length. Two
main reasons for that: (1) it is not possible to represent a con-
straint in the form of x− a ∗ y = 0 in Intv⊗ Strp; (2) At the

if ( arr == null)
p = null ;

else if ( arr .Length == 0)
p = null ;

else
p = &arr[0];

Figure 12. The (schema of the) code generated by the C#
compiler for the statement fixed(T ∗ p = arr) . . . when
arr is an array.



# Accesses
Assembly # Methods Time Checked Validated %
mscorlib.dll 18 084 3m43s 3 069 1 835 59.79
System.dll 13 776 3m18s 1 720 1 048 60.93
System.Data.dll 11 333 3m45s 138 59 42.75
System.Design.dll 11 419 2m42s 16 10 62.50
System.Drawing.dll 3 120 19s 48 29 60.42
System.Web.dll 22 076 3m19s 88 44 50.00
System.Windows.Forms.dll 23 180 4m31s 364 266 73.08
System.XML.dll 10 046 2m41s 772 311 40.28

Average 57.96

Table 3. The results of our analysis tested on the .NET assemblies without using any contract. The average analysis time is of
12ms per method.

join point, a state where p is null is merged with one where
WB(p) = sizeof(T) ∗ array.length.

For (1), we refine the abstract domain to use LinEq, to
retain linear equalities: the abstract domain used in the anal-
ysis becomes LinEq⊗ Intv ⊗ Strp.

For (2), if arr = null or arr. Length = 0, then 0 =
sizeof(T)∗ array.Length = WB(p) trivially holds. As we
are performing an over-approximation of the reachable
states, we can safely add WB(p) = sizeof(T)∗array.length
to our abstract state.

9. Experiments
We have implemented the analysis for unsafe memory ac-
cesses using the Stripes domain in Clousot. We have ex-
tensively tested our analysis on all the libraries of the .NET
framework. Our experiments were conducted on a 2.4Ghz
Intel Core Duo laptop, with 4Gbytes of RAM, running
Windows Vista (Windows processor score 5.3). The target
assemblies are taken from the %WINDIR%\ Microsoft\
Framework\ v2.0.50727 directory of the test laptop. No
pre-processing, manipulation or filtering of the assemblies
has been conducted.

A primary goal for Clousot is its use at development
time during compilation or even within the integrated devel-
opment environment. Thus, the performance of the analysis
is crucial. Our specialized domains provide us with excellent
performance as reported in Tab. 3.

The analysis is fast: the average analysis time per method
is 12ms. We validate on average 57.96% of the unsafe mem-
ory accesses. This may not seem high at first glance. How-
ever, consider the burden of human code reviews for unsafe
code which is currently a necessary practice. Our analysis
cuts down the work load in half, focussing the reviews on
accesses that seem non-obvious to prove correct. Neverthe-
less, we feel that we can improve the precision of the unsafe
analysis in two ways:

1. We intend to remove short-comings in the current imple-
mentation of the domains, resulting in unnecessary pre-
cision loss or inability to prove facts that are implied. We

intend to improve the domains as described e.g., in Sec-
tion 7.3.

2. The code we analyzed does not contain contracts. This
leads to loss of precision when the proof obligation re-
quired in one method is established by the caller of the
method, or sometimes several call frames higher on the
stack. As a consequence, without contracts on the in-
termediate methods Clousot reports warnings on those
memory accesses.

We are actively working on adding contracts to eventu-
ally validate all memory accesses. Furthermore, to simplify
checking of Windows API uses, we plan to write a tool to
convert SAL annotations [15] into FoxTrot annotations. In
Section 9.2 we discuss the results of manually inspecting the
warnings for System.Drawing.dll and formulating neces-
sary contracts.

9.1 Comparison with Polyhedra
The main claim of our work is that specialized domains
targetting a particular set of proof-obligations are required to
make such analyses practical. If we were able to use off-the-
shelf solvers for more powerful domains, such as Polyhedra,
specialized domains would not be necessary. We used our
experience with the Polyhedra implementation used to infer
loop invariants in Boogie [2], to evaluate the cost of using
Polyhedra for the analysis of unsafe MSIL code. Although
this implementation of Polyhedra is not as optimized as for
example [1], it has been well debugged and in use for a
number of years. In our experiment, we replaced the Strp⊗
Intv ⊗ LinEq domain in our analysis with the Polyhedra
domain implementation of Boogie and ran it on the two
largest libraries in .NET. The results are shown in Table 4.

As is apparent from the timings, the Polyhedra domain is
orders of magnitude slower than our implementation using
Strp. In our runs, we used a 2 minute timeout per method.
The timeout was reached 23 times on mscorlib.dll and 13
times on System.dll. In all fairness, the Parma library [1] is
likely to be much faster than the implementation of Polyhe-
dra we used. However, it is unlikely to consistently improve



# Accesses
Assembly Time Checked Validated %
mscorlib.dll 125m52s∗ 3 070 1 610 52.46
System.dll 257m27s∗ 1 576 744 44.94

Table 4. Unsafe code analysis using the Polyhedra domain

the execution by two orders of magnitude and it would still
suffer from exponential behavior on some methods where
the 2 minute timeout was reached. When removing the time-
out, one method in mscorlib.dll took 49 minutes to reach
a fixpoint using Polyhedra.

9.2 System.Drawing case study
We analyzed the 19 warnings in System.Drawing.dll to
determine what contracts need to be written to avoid them,
or whether they represent true vulnerabilities.

First, we found the use of two helper methods that re-
quired pre-conditions:

short GetShort(byte∗ ptr) {
Contract.Requires(Contract.WritableBytes(ptr)

>= sizeof(short));
...

int GetInt(byte∗ ptr) {
Contract.Requires(Contract.WritableBytes(ptr)

>= sizeof(int));
...

These helper methods simply load 16 bits or 32 bits from
the given pointer location using little-endian encoding and
avoiding unaligned accesses.

With the pre-conditions written as above, Clousot no
longer reports warnings within these helper methods. In-
stead, it reports warnings at 26 call-sites to these methods.
The remaining warnings are all located within 5 distinct
methods.

1. One method uses an unmanaged heap allocation routine
to obtain memory from the marshal heap. Writing an
appropriate post-condition for this allocator eliminates
the warnings in that method.

public static IntPtr AllocHGlobal( int cb) {
Contract.Ensures(Contract.WritableBytes(

Contract.Result<IntPtr>()) == cb);
...

2. The next method we examined actually contained an
error leading to buffer overruns on read accesses.

3. The third method uses a complicated invariant on a data
structure that involves indexing using a product expres-
sion of two variables. Our domains cannot currently track
such products (only variables multiplied with constants).
However, the code appears to be safe.

4. The fourth method extracts a byte[] from an auxiliary
data structure and indexes it assuming the array contains
1K elements. Examining the data structure and all its
construction sites, we determined that it is built via mar-
shalling from an unmanaged Windows API call and the
marshal annotation specifies that the buffer is to be allo-
cated with the fixed size of 1K. Although we can specify
this size as an object invariant on the auxiliary structure
leading to the removal of the warning by Clousot, our
tool chain does not yet understand the marshalling con-
straints establishing the invariant.

5. Finally, the last function containing most of the accesses
and calls to the helper functions GetShort and GetInt,
whose pre-conditions must be validated, exposed a short-
coming in our implementation. Upon examination, we
determined that the analyzer infers a sufficiently strong
loop invariant which implies the safety of the memory
accesses and pre-conditions. However, our implementa-
tion was not able to show this implication automatically.

With the above contracts and fixes, Clousot would vali-
date 3 additional methods, but report false warnings in one
method due to an index expression we cannot handle, and
another false warning in a new method due to the lack of
support for marshal annotations.

9.3 Summary
Overall, the analysis is fast enough to use in integrated devel-
opment environments. It achieves a higher level of automa-
tion and scalability than existing tools. In fact, we found that
the tool rarely fails to infer the necessary loop invariants to
validate the memory accesses. More often, it is the lack of
contracts that limits our modular intra-procedural analysis.
The use of contracts not only allows reducing the false pos-
itive rate, the contracts furthermore serve as checked docu-
mentation on important safety invariants. Clousot can catch
code changes or additions that fail to live up to the existing
specifications and thereby provide excellent static regression
checking.

10. Related work
In addition to the work cited in the introduction, we wish to
place our work in the context of the following other related
work.

Bounds analysis for C
Rinard and Rugina published a powerful analysis of C pro-
grams to determine aliasing, bounds, and sharing of memory,
enabling bounds optimizations, and parallelization [28, 29].
Their analysis infers a set of polynomial bounds on variables
that are solved using a linear programming problem to min-
imize the spread of the bound. The reported analysis times
are fast (in the same range as ours), but they only report re-
sults for small examples. Their technique based on solving
a linear programming problem is quite different from using



symbolic abstract domains, but equally promising. A benefit
of their approach is that it performs inter-procedural analysis
by inferring relations for function inputs and outputs using a
bottom up call graph approach. However, this is also a major
drawback, as for strongly connected components of func-
tions (recursively calling each other), their analysis needs to
compute a fixpoint. It is well known that call-graphs built
for very large applications (in particular object-oriented pro-
grams) are imprecise, leading to very large components [11],
making such an approach unlikely to scale.

Das et. al. describe buffer overflow checking and anno-
tation inference on large Microsoft C/C++ code bases [15].
Few details of the used numerical domains are public, but
from the paper it is apparent that for precision, their analysis
performs path splitting, meaning it analyzes paths separately
through a function whenever the abstract state at join points
disagrees. The Stripes domain described in this paper and the
associated transfer functions and join operations are geared
towards providing precision without path splitting (our ana-
lyzer does not perform path splitting).

Analysis of JNI
A few analyses for Java handle programs using the Java
Native Interface (JNI) [20]. Furr and Foster in [14] present
a restricted form of dependent types used to infer and type-
check the types passed to foreign functions via the JNI.
Tan et al. proposed a mixed dynamic/static approach to
guarantee type safety in Java programs that interface with
C. We are not interested in type safety: in unsafe C#, type
errors are less common than with the JNI, since the unsafe
context is integrated in C#, so that (a) the compiler can still
perform most type checking and (b) types do not need to be
serialized as strings (the most common type error in using
the JNI). Instead our analysis focuses directly on memory
usage via pointers, whereas previous work did not.

Interoperability of languages
Recent work focuses on language interoperability. Tan and
Morrisett, [33], advocate an approach in which the Java byte-
code language is extended with a few instructions useful to
model C code. Hirzel and Grimm, [16], take an alternative
approach with Jeannie, which is a language which subsumes
Java and C, and the burden of creating the “right” JNI for in-
terfacing the two languages is left to the compiler. Matthews
and Findler, [24], give an operational semantics for multi-
language programs which uses contracts as glue for the inter-
operating languages. The MSIL instruction set is rich enough
to allow an agile compilation of several languages: our anal-
ysis, working at the MSIL level does not need to take into
account inter-operability issues.

Static analyzers
ESC/Java 2 [6] and Spec# [4] use automatic theorem provers
to check programs. Automatic theorem provers provide a
strong engine for symbolic reasoning (e.g. quantifiers han-

dling). The drawbacks are that: (a) they require the program-
mer to provide loop invariants and (b) they present scalabil-
ity problems. Analysis times close to the one we obtain in
Clousot on shipped code are well beyond the state-of-the
art in automatic theorem proving.

11. Conclusions
We presented a new static analysis for checking memory ac-
cesses in unsafe code in .NET. The core of the analysis is a
new abstract domain, Strp, which combined with Intv and
LinEq, allows the analysis to scale to hundreds of thousands
of lines of code. We have proven the soundness of the ap-
proach by designing the static analysis using stepwise ab-
straction of a concrete transition semantics.
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