
Constraint-based Invariant Inference over
Predicate Abstraction

Sumit Gulwani1, Saurabh Srivastava2,?, and Ramarathnam Venkatesan3

1 Microsoft Research, Redmond, sumitg@microsoft.com
2 University of Maryland, College Park, saurabhs@cs.umd.edu

3 Microsoft Research, Redmond, venkie@microsoft.com

Abstract. This paper describes a constraint-based invariant generation
technique for proving the validity of safety assertions over the domain of
predicate abstraction in an interprocedural setting. The key idea of the
technique is to represent each invariant in bounded DNF form by means
of boolean indicator variables, one for each predicate p and each disjunct
d denoting whether p is present in d or not. The verification condition of
the program is then encoded by means of a boolean formula over these
boolean indicator variables such that any satisfying assignment to the
formula yields the inductive invariants for proving the validity of given
program assertions.

This paper also describes how to use the constraint-based methodology
for generating weakest preconditions for safety assertions. An interest-
ing application of weakest precondition generation is to produce most-
general counterexamples for safety assertions. We also present prelim-
inary experimental evidence demonstrating the feasibility of this tech-
nique.

1 Introduction

Predicate abstraction [1] is a commonly used technique for proving program
properties. This involves over-approximating the set of reachable states of the
program using formulas with boolean structure over a given set of predicates.
This over-approximation is usually computed using fixed-point based techniques
like abstract interpretation or model checking. One of the main advantages of
the predicate abstraction domain is that it can represent disjunctions as opposed
to other abstract domains like polyhedron domain. However, this expressiveness
comes with disadvantages: First, the abstract state can have size exponential in
the number of predicates. Second, the abstract domain has exponential height.
The naive fixed-point computation process seems expensive especially when the
final inductive invariants required to prove a given property are typically simple
and small in size compared to the potential worst-case exponential representa-
tion.
? This author performed the work reported here during a summer internship at Mi-

crosoft Research.

In this paper, we describe a technique for discovering inductive invariants over
predicate abstraction that exploits the observation that the inductive invariants
required for proving a given assertion typically require a small representation,
instead of the worst-case exponential representation. In particular, we describe
the inductive invariants using a bounded boolean structure over a given set of
predicates, say DNF formulas with at most k disjuncts, where k is some small
constant.4 To achieve completeness, we can iteratively increase the value of k.

Our technique is based on the following observation: Any DNF formula with
k disjuncts over a set of n predicates can be described by a truth-value as-
signment to k × n boolean (indicator) variables, one for each predicate p and
each disjunct d denoting whether predicate p is in disjunct d. The key idea of
our technique is to establish boolean constraints between the boolean indicator
variables corresponding to the invariants at neighboring program locations by
using the predicate cover operation5 (The predicate cover of a formula F is the
weakest formula over a set of predicates that implies F). The boolean constraint
thus obtained encodes the verification condition of the program. A satisfying
assignment to this boolean formula yields the inductive invariants sufficient to
establish the validity of given assertions. Unsatisfiability of the boolean formula
denotes that there are no inductive invariants over our choice of template struc-
ture (DNF formula with k disjuncts over the given set of predicates) to validate
the assertions in the program. The size of the generated boolean formula is linear
in the size of the program and the size of the predicate cover, and polynomial
in the number of the predicates. Finding a satisfying assignment to the boolean
formula can take exponential time in the worst-case and in theory we have still
not gotten rid of the exponential factor. However, this methodology allows a
direct way to leverage the engineering advances of the SAT solvers. It is note-
worthy that the last decade has witnessed a revolution in SAT solvers enabling
solving of industrial sized satisfiability instances.

Our constraint-based technique offers three main advantages over the fixed-
point computation based method. First, it is goal-directed and hence has the
potential to be more efficient. Secondly, it does away with the iterative process
of computing fixed-points, which is expensive, especially when performed on ab-
stractions with exponential-height lattices, like predicate abstraction. Thirdly,
it cleanly splits the reasoning required of SMT formulas generated during pred-
icate abstraction into two parts: Theory-based reasoning using predicate cover
operation over small and mostly conjunctive formulas (this encodes the abstract

4 It may appear that this observation can also be used to obtain a PTIME abstract in-
terpretation [2] based algorithm for discovering inductive invariants with k disjuncts.
However, this is not true. The domain of k-DNF formulas does not form a lattice as
there is no unique LUB. The domain of formulas whose CNF representation contains
at most k disjuncts in each conjunct does form a lattice of polynomial height. How-
ever, in that case, each abstract interpretation operation requires reasoning about
an SMT formula in CNF form, which is NP-hard.

5 A fundamental operation used in abstract transformers while performing abstract
interpretation over predicate abstraction [1].

program semantics) and SAT-based reasoning over a polynomially-sized boolean
formula (this encodes the fixed-point).6

Our technique complements abstraction refinement techniques (such as coun-
terexample guided abstraction refinement [3] and interpolation based meth-
ods [4]) by equipping them with a more robust invariant generation procedure.
Abstraction refinement techniques alleviate the cost involved in predicate ab-
straction by iteratively refining the abstraction until an inductive invariant can
be expressed. Our technique alleviates the cost of reasoning over a given abstrac-
tion by off-loading the cost of boolean reasoning and fixed-point computation to
a SAT query.

We further show how to generate weakest preconditions using the constraint-
based methodology. The key idea is to treat the precondition as an unknown
relation and repeatedly search for a precondition that is weaker than the cur-
rent solution until none exists. We prove that this process requires at most n
satisfiability queries, where n is the number of predicates. We then describe
an interesting application of weakest precondition generation, namely generat-
ing most-general counterexample in case the assertions in the program are not
valid.

This paper makes the following technical contributions:

– We show how to model the problem of discovering inductive invariants over
predicate abstraction as the problem of finding a satisfying assignment to a
boolean formula (Section 3). We also show how to extend this modeling to
a context-sensitive interprocedural analysis, which is provably harder than
intraprocedural analysis (Section 3.2).

– We show how to model the problem of weakest precondition generation over
predicate abstraction as the problem of finding satisfying assignments to
(at most) n boolean formulas (Section 4). This procedure can be used to
find most-general counterexamples to safety assertions, assuming program
termination (Section 4.1).

2 Preliminaries

2.1 Program Model

We consider programs with assignments of the form x := e, where x denotes
some variable and e denotes some expression. (Note that memory reads/writes
can be modeled using this formalism by using select-update expressions.) We also
allow for assume and assert statements of the form assume(p) and assert(p),
where p is some predicate. Since we allow for assume statements, without loss of
generality, we assume that all conditionals in the program are non-deterministic.
6 It is not difficult to extend our approach to model the process of inductive invariant

generation as solving only one polynomially-sized SMT query. However, the result
that we present is stronger. It shows how to reduce the problem of inductive in-
variant generation to the problem of solving several small SMT queries over mostly
conjunctive formulas and one polynomially sized SAT query.

2.2 Generating Verification Conditions from a Program

A cut-set of a program is a set of program locations (called cut-points) such
that each cycle in the control flow graph of the program passes through some
program location in the cut-set. One simple way to choose a cut-set is to include
all targets of back-edges in any depth first traversal of the control-flow graph. (In
case of structured programs, where all loops are natural loops, this corresponds
to choosing the header node of each loop.) A simple path is any path that starts
at a cut-point or program entry πentry and ends at a cut-point or program exit
πexit without passing through any other cut-point.

We associate the program entry and exit locations as well as each cut-point
π with a relation Rπ over program variables that are live at π. The verification
condition VC(τ) of any simple path τ between end-points π1 and π2 is given by
the following formula:

VC(τ) = Rπ1 ⇒ ω(τ,Rπ2)

The notation ω(τ,R) denotes the weakest precondition of path τ (which is a
sequence of program instructions) with respect to R and is as defined below:

ω(x := e,R) = R[e/x]
ω(S1;S2, R) = ω(S1, ω(S2, R))

ω(assume p,R) = p⇒ R
ω(assert p,R) = p ∧R

where the notation [e/x] denotes substitution of x by e and may not be eagerly
carried out across unknown relations R. Observe that the verification condition
for any simple path τ between π1 and π2 simplifies to the following form:

VC(τ) = Rπ1 ⇒ (G1 ⇒ (G2 ∧Rπ2σ)) (1)

where σ is some substitution, and G1 and G2 are known formulas obtained
from the predicates that occur in assume and assert statements (on path τ),
respectively, after appropriate substitutions. The following claim holds.

Claim 1. The assertions in the given program are valid iff when we set Rπentry =
Rπexit = true then there exist relations Rπ for all cut-points π such that the
verification conditions VC(τ) hold for every simple path τ .

3 Program Verification

Given a program with some assertions, the program verification problem is to
verify whether or not the assertions are valid. The challenge in program verifica-
tion is to discover the appropriate inductive invariants Rπ at different program
points π such that the verification conditions VC(τ) in Eq. 1 holds for all simple
paths τ , which implies the validity of the given assertions (Claim 1). (The issue
of discovering counterexamples, in case the assertions are not valid, is addressed
in Section 4.1.)

loop (int m) {
1 x := 0; y := 0;
2 while (x < m) {
3 x++;
4 y++;
5 }
6 assert(y = m)

}

assert(y = m)

y
n

R

x := 0; y := 0

assume(m > 0)

x++; y++

x < m

x++; y++

R

y n

assume(m > 0)

assert(y = m)

assume(x < m) assume(x ≥ m)

1

3

2

x := 0; y := 0

∗

(a) (b) (c)

1 → 2 : m > 0 ⇒ R[y → 0, x → 0]
2 → 3 : R ∧ x ≥ m ⇒ y = m
2 → 2 : R ∧ x < m ⇒ R[y → y + 1, x → x + 1]

S =

8<:
x ≤ y, x ≥ y, x < y,

x ≤ m, x ≥ m, x < m
y ≤ m, y ≥ m, y < m

9=;
(d) (e)

Fig. 1. (a) Iteration over x with an auxiliary variable y (b) The control flow graph
(CFG) with the loop invariant marked as R (c) The CFG as modeled in our system.
(d) VC(τ) corresponding to each simple path τ . (e) The set of predicates S.

Example We first illustrate our constraint-based approach to invariant gener-
ation by means of a simple example. Consider the program in Figure 1(a). The
program loop iterates using the loop counter x and increments an auxiliary vari-
able y as well. Its control flow graph (CFG) is shown in Figure 1(b). The program
is modeled in our system as Figure 1(c). There are three simple paths going from
program entry to loop header (1 → 2), around the loop (2 → 2), and loop
header to program exit (2 → 3), respectively, and the verification conditions
they generate (using Eq. 1) are shown in Figure 1(d). The set of predicates S
over which we seek to discover our inductive invariant is shown in Figure 1(e).
Let π be the program point at the loop header just after the join point. Suppose
we make the simplifying assumption that the inductive loop relation R at π is a
conjunction of some predicates from S, and we seek to discover those predicates.

The first step is to associate with each predicate p ∈ S a boolean indicator
variable bp indicating p’s presence or absence in R. Then we consider each veri-
fication condition VC(τ) (derived from a simple path τ using Eq. 1) in turn and
generate constraints on the indicator variables:

– Loop entry (1 → 2): The verification condition is m > 0 ⇒ R[y → 0, x→
0], for which we generate the constraint

¬bx<y ∧ ¬bx≥m ∧ ¬by≥m (Ex-1)

denoting that the predicates x < y and x ≥ m and y ≥ m cannot be in R
since they are not implied by the verification condition for loop entry.

– Loop exit (2 → 3): The verification condition is R ∧ x ≥ m ⇒ y = m, for
which we generate the constraint

(by≥m ∧ by≤m) ∨ bx<m ∨ (bx≤y ∧ by≤x ∧ bx≤m) (Ex-2)

denoting that either both y ≥ m and y ≤ m belong to R, or x < m belongs
to R, or the three predicates x ≤ y, y ≤ x, and x ≤ m belongs to R. Observe
that these are the only three non-trivial7 ways in which we can prove y = m
under the assumption x ≥ m. In general, these different ways are computed
by using the predicate cover operation.

– Inductive (2 → 2): The verification condition is R ∧ x < m ⇒ R[y →
y + 1, x→ x+ 1], for which we generate the constraint

(by≤m ⇒ by<m ∨ (bx≤y ∧ by≤x)) ∧ ¬bx<m ∧ ¬by<m (Ex-3)

denoting that if y ≤ m belongs to R, then either y < m or x ≤ y ∧ y ≤ x
should also belong to R, and that the predicates x < m and y < m cannot be
in R. The reader can easily check that this verification condition allows any
other predicate p to be in R because p ∧ x < m⇒ p[y → y + 1, x→ x+ 1].
These constraints are generated by considering each predicate p, finding
the weakest conditions δ(p) over the set of predicates under which p ∧ x <
m ⇒ p[y → y + 1, x → x + 1] and then generating the constraint that
bp ⇒ δ(p). For the predicate bx<m and by<m, δ(p) is false and hence we
generate the constraints ¬bx<m and ¬by<m. For the predicate by≤m, δ(p) is
by<m ∨ (bx≤y ∧ by≤x). For all other predicates, δ(p) is true.

Putting Eq. (Ex-1), (Ex-2), (Ex-3) together we get a SAT formula (over
the boolean indicator variables) that encodes the verification condition of the
program. The reader can verify that bx≥y = bx≤y = bx≤m = true (and all others
false) is a satisfying solution. This corresponds to R being (x = y ∧ x ≤ m).

3.1 Formal constraint generation

We now formally present our constraint-based methodology for discovering the
inductive invariants Rπ when they can be described using a k-DNF formula over
a given set of predicates S. (We use k-DNF form for simplicity. Our methodol-
ogy can also be applied to other boolean structures that are representable by a
bounded number of boolean variables.) In such a case, we can represent Rπ by
k × n boolean indicator variables bπi,p (where 1≤i≤k, p ∈ S, n = |S|), where the
boolean variable bπi,p denotes whether predicate p is present in the ith disjunct
of the invariant Rπ at program point π. We show how to encode the verification
condition of the program as a boolean formula ψ over the boolean indicator vari-
ables bπi,p. The boolean formula ψ is satisfiable iff there exist inductive invariants
(in k-DNF form) strong enough to prove the validity of the assertions—this is
the key result of the paper.
7 Trivial expressions in this case are those that imply false, e.g., (x ≥ y ∧ x < y).

We first show how to encode the verification condition of any simple path τ
as a boolean formula ψ(τ). The following three cases arise, which we consider in
increasing order of difficulty:

Case 1: Path between program entry and a cut-point. The verification condition
in Eq. 1 simplifies to the following form after substituting Rπ1 = true and

expanding Rπ2 as
k∨

j=1

Rπ2
j , where each Rπ2

j is conjunction of some predicates

from S.

G1 ⇒

G2 ∧
k∨

j=1

Rπ2
j σ

The above constraint restricts how strong Rπ2 can be. In particular, if p1 ∈

Rπ2
1 , . . . , pk ∈ Rπ2

k , then it must be the case that G1 ⇒
k∨

j=1

pjσ. Hence, we can

rewrite the above constraint as:

(G1 ⇒ G2) ∧
∧

p1,..,pk∈S

(
k∧

j=1

bπ2
j,pj

) ⇒ (G1 ⇒
k∨

j=1

pjσ)

 (2)

This can be encoded as the following boolean constraint ψ(τ) over boolean in-
dicator variables bπ2

i,p.

ψ(τ) = D(G1, G2) ∧
∧

p1,..,pk∈S

(
k∧

j=1

bπ2
j,pj

) ⇒ D(G1,

k∨
j=1

pjσ)

 (3)

whereD(A,B) denotes the boolean formula true ifA⇒ B and false otherwise.

Case 2: Path between a cut-point and program exit. The verification condition
in Eq. 1 simplifies to the following form after substituting Rπ2 = true and

expanding Rπ1 as
k∨

j=1

Rπ1
j , where each Rπ1

j is conjunction of some predicates

from S.(
k∨

i=1

Rπ1
i

)
⇒ (G1 ⇒ G2) or, equivalently,

k∧
i=1

(Rπ1
i ⇒ (G1 ⇒ G2))

The above constraint restricts how weak Rπ1
i can be. We can encode the

above constraint as a boolean formula over the variables bπi,p by considering
the predicate cover8 of G1 ⇒ G2. To recall, the predicate cover of a formula
F over a set of predicates S, denoted by CS(F), is the weakest formula over

8 It is a fundamental operation used in the abstract transformers while performing
abstract interpretation over predicate abstraction [1].

predicates from S that implies F . Let φS(F, i, π) denote the boolean formula
over boolean variables bπi,p obtained after replacing each predicate p in CS(F)
by bπi,p. The verification condition above can now be encoded as the following
boolean constraint ψ(τ) over boolean indicator variables bπ1

i,p.

ψ(τ) =
k∧

i=1

φS(G1 ⇒ G2, i, π1) (4)

Case 3: Path between two adjacent cut-points. We now combine the key ideas
that we used in the above two cases to handle this more general case. The
verification condition in Eq. 1 has the following form (after expanding Rπ1 as
k∨

i=1

Rπ1
i and Rπ2 as

k∨
j=1

Rπ2
j , where each Rπ1

i and Rπ2
j is a conjunction of some

predicates from S). (
k∨

i=1

Rπ1
i

)
⇒

G1 ⇒ (G2 ∧
k∨

j=1

Rπ2
j σ

or, equivalently,

k∧
i=1

Rπ1
i ⇒

G1 ⇒ (G2 ∧
k∨

j=1

Rπ2
j στ)

 (5)

The above constraint can be rewritten as (using the same logic used in gen-
erating the constraint in Eq. 2):

k∧
i=1

∧
p1,..,pk∈S

(
k∧

j=1

bπ2
j,pj

) ⇒

Rπ1
i ⇒ (G1 ⇒ (G2 ⇒

k∨
j=1

pjστ))

The verification condition above can be encoded as the following boolean con-
straint ψ(τ) over boolean indicator variables bπ1

i,p and bπ2
i,p (using the same logic

used in generating the constraint in Eq. 4):

ψ(τ) =
k∧

i=1

∧
p1,..,pk∈S

(
k∧

j=1

bπ2
j,pj

) ⇒ φS

(G1 ⇒ (G2 ∧
k∨

j=1

pjσ)), i, π1

 (6)

Observe that the constraints are generated locally from the verification con-
dition of each simple path. Hence, the constraint based technique has the poten-
tial for efficient incremental verification (verification of a modified version of an
already verified program) with support of an incremental SAT solver.

Example Appendix A gives examples of each of the above cases over Figure 1(a).
The desired boolean formula ψ is now given by the conjunction of formulas

ψ(τ) for all simple paths τ in the program. Since ψ encodes the entire verification
condition of the program, it is easy to see that the following claim holds.

Claim 2. The boolean formula ψ is satisfiable iff there exist inductive invariants
(in k-DNF form) strong enough to prove the validity of the given assertions.

3.2 Interprocedural Analysis

The ω computation described in Section 2.2 is applicable only in an intrapro-
cedural setting. In this section, we show how to extend our constraint-based
method to perform a precise (i.e., context-sensitive) interprocedural analysis.

Precise interprocedural analysis is challenging because the number of different
calling contexts can potentially be exponential in the number of predicates over
program inputs. A standard way is to compute procedure summaries, which are
relations between procedure inputs and outputs. These summaries are usually
structured as sets of pre/postcondition pairs (Ai, Bi), where Ai is some relation
over procedure inputs and Bi is some relation over procedure inputs and outputs.
A pair (Ai, Bi) denotes that whenever the procedure is called in a context that
satisfies Ai, the procedure ensures that the outputs satisfy the constraint Bi.
However, the efficient construction of relevant pre/postcondition pairs is unclear.

In this section, we show that the constraint-based approach is particularly
suited to discovering useful pre/postcondition (Ai, Bi) pairs. The key idea is
to observe that the desired behavior of most procedures can be captured by a
small number of such (unknown) pre/postcondition pairs. We then replace the
procedure calls by these unknown behaviors and assert that the procedure, in
fact, has such behaviors in an assume-guarantee style reasoning. Our encoding
requires the summary to be only as precise as is required for verification of the
given assertions.
Procedure bodies: Without loss of generality, let us assume that a procedure
does not read/modify any global variables; instead all global variables that are
read by the procedure are passed in as inputs, and all global variables that are
modified by the procedure are returned as outputs. Suppose there are q inter-
esting calling contexts for the procedure P (x){S; return y; } with the vector of
formal arguments x and vector of return values y. (In practice, the value of q
can be iteratively increased until the constraint system is satisfiable.) We can
summarize the behavior of each procedure using q tuples (Ai, Bi) for 1 ≤ i ≤ q,
where Ai is some (unknown) relation over x, and Bi is some (unknown) relation
over x and y. We ensure this by generating constraints for each i as below:

assume(Ai); S; assert(Bi) (7)

Procedure calls: For simplicity, we assume that the cut-set includes all program
locations before any procedure call. For any simple path τ that starts with a
procedure call v := P (u), let τi denote the simple path in which the procedure
call is replaced by the following code fragment, where t is a fresh set of variables.

assert(Ai[u/x]); assume(Bi[u/x, t/y]);v := t; (8)

The boolean formula ψ(τi) that encodes the verification condition of the simple
path τi can be computed using the method described in Section 3. The formula

that encodes the verification condition corresponding to τ is ψ(τ) =
q∨

i=1

ψ(τi).

Example In Appendix B we illustrate the technique over examples from [5, 6].

4 Weakest Precondition Inference

Given a program with some assertions, the problem of weakest precondition
generation is to infer the weakest precondition Rπentry such that whenever the
program is run in a state that satisfies Rπentry , the assertions in the program
hold. This weakest precondition inference problem is harder than program ver-
ification9, and relatively few techniques exist for it. Since a precise solution is
undecidable, we work with a relaxed notion of weakest precondition. For a given
template structure, we say that A is a weakest precondition if A is a precondition
that fits the template and there does not exist a weaker precondition than A
with similar properties.

In this section, we present a constraint-based approach to inferring weakest
preconditions under the given template. In particular, we show how to generate a
conjunctive weakest precondition for a given program with assertions. A k-DNF
weakest precondition can then be obtained by taking disjunctions of k disjoint
conjunctive weakest preconditions, generated iteratively. Our constraint-based
approach permits an elegant weakest precondition inference technique based on
the monotonicity of implication for CNF formulae over a given set of predicates.

The first step is to treat the precondition Rπentry as an unknown relation in
Eq. 1, unlike in program verification where we set Rπentry to be true. However,
this small change merely encodes that any consistent assignment to Rπentry is a
valid precondition, not necessarily the weakest one. In fact, when we run our
tool with this small change, it returns false as a solution for Rπentry . Note that
false is always a valid precondition, but not necessarily the weakest one.

We use an iterative approach to generating a conjunctive weakest precondi-
tion as follows. We add the constraint that the precondition Rπentry should be
weaker than the current solution S to the verification condition (in Eq. 1). This
constraint is encoded by the boolean formula (γ1 ∧ ¬γ2). Here, γ1 and γ2 are
boolean formulae over the boolean variables bπentry

p that encode the constraints
S ⇒ Rπentry and Rπentry ⇒ S, respectively and are computed using the technique
described in Section 3.

Once a weakest conjunctive precondition has been found, we repeat the pro-
cess to generate other weakest conjunctive preconditions. In order to ensure that
we get a precondition that is disjoint from the weakest preconditions already
found, we add an additional constraint ¬γ3, where γ3 is the boolean formula over
the boolean variables bπentry

p that encodes the constraint Rπentry ⇒
∨
i

Ti, where Ti

are the conjunctive weakest preconditions that have already been discovered.

Example We again consider Figure 1(a) but with line 1 (x := 0; y := 0) removed
and infer weakest preconditions between x, y,m using the predicate set S shown
in Figure 1(e). We generate two conjunctive weakest preconditions: (y = m∧x ≥
m) and (x = y ∧ x < m); their disjunction yields the weakest precondition.

9 A weakest precondition generator can be used to solve the program verification
problem by simply checking whether the weakest precondition generated for given
assertions is true or not.

err (int m) {
1 while (x < m) {
2 x++;
3 y++;
4 assert(y < m)

5 }
}

err (int m) {
1 error := 0;
2 while (x < m) {
3 x++; y++;
4 if (y ≥ m)

5 error := 1; goto L;

6 }
7 L: assert(error = 1)
}

(a) (b)

Fig. 2. (a) Example with safety assertion y < m. (b) Instrumented program. We
compute (x<m ∧ y≥x) as the most-general counterexample that violates the assertion.

4.1 Most-General Counterexample Inference

Since program analysis is an undecidable problem, we cannot have tools that can
prove correctness of all correct programs or find bugs in all incorrect programs.
Hence, to maximize the practical success rate of verification tools, it is desirable
to search for both proofs of correctness as well as counterexamples in parallel.
Earlier, we showed how to find proofs of correctness of given assertions. In this
section, we show how to find most-general counterexamples to given assertions.

The problem of generating a most-general counterexample for a given set of
safety assertions involves finding the most general characterization of inputs that
leads to violation of some reachable safety assertion. Generating a most-general
counterexample is more desirable than generating a concrete counterexample,
and can aid in, say, program debugging. For example, it is more useful to know
there is an assertion failure whenever x < y as opposed to knowing that there is
an assertion failure when x = 0 ∧ y = 3.

We show next how to find a most-general counterexample using the tech-
niques discussed in Section 4 under the assumption that the given program is
terminating, i.e., the program exit is always reached. The basic idea is to re-
duce the problem to that of finding the weakest precondition for some safety
property. This reduction involves constructing another program from the given
program Prog using the following transformation, Terr(Prog): We introduce a
new variable error that is set to 0 at the beginning of the program. Whenever
violation of the given safety property occurs (i.e., the negation of any of the
safety assertions holds), the variable error is set to 1 and the control jumps to
the end of the program. We assert that error = 1 at the end of the program,
and remove the original safety assertions from the program.

Claim 3. Let Prog be a terminating program with some safety assertions. Then,
Prog has an assertion violation iff the assertions in program Terr(Prog) hold.

The significance of Claim 3 is that now we can use weakest precondition
inference (Section 4) on the transformed program to discover most-general char-
acterization of inputs under which there is a safety violation in the original

Program

counter
ex1a [7]
lockstep
nested
twoloop

ex2 [8]
ex1b [7]
ex3 [9]

Program Verification

Number of Time for
n k vars clauses CG CNF SAT

12 1 12 21 0.23 0.14 0.04
12 1 12 22 0.23 0.15 0.04
5 1 5 8 0.23 0.11 0.03
16 1 32 62 0.23 0.26 0.04
20 1 40 79 0.23 0.36 0.04

12 2 24 72 0.23 0.14 0.04
20 2 40 1704 0.23 10.68 0.06
20 2 40 1782 0.23 8.53 0.06

Weakest Precondition Inference

Number of Time for
n k vars clauses sol CG CNF SAT

12 1 24 1345 1 0.23 0.44 0.05
14 1 28 1857 2 0.25 0.67 0.07
9 1 18 584 2 0.23 0.29 0.05
18 1 54 2866 2 0.23 1.52 0.09
20 1 60 3778 3 0.23 1.86 0.16

12 2 36 4588 1 0.23 1.16 0.11
20 2 60 7548 1 0.23 14.22 0.09
13 2 39 2031 4 0.23 3.90 0.14

Table 1. Results for (a) Program verification (b) Weakest Precondition Inference

program. We need to track the new boolean variable error in the transformed
program and therefore add error = 1 and error = 0 to the predicate set.
Example Consider the program shown in Figure 2(a), which we instrument with
the error variable to obtain the program in Figure 2(b). Our weakest precondi-
tion inference generates (x < m ∧ y ≥ x) as the most general counterexample
that violates the assertion y < m. Note that we need k to be at least 2 since the
inductive invariant (at the loop header) for establishing the counterexample is
(x < m ∧ y ≥ x) ∨ (error = 1 ∧ y ≥ x)).

Observe the importance of introducing the error variable. An alternative that
one might consider is to simply negate the original safety assertion instead of
introducing an error variable. This is incorrect for two reasons: (a) It is too
stringent a criterion because it insists that in each iteration of the loop the orig-
inal assertion does not hold, (b) It does not ensure reachability and allows for
those preconditions under which the assert statement is never executed. In fact,
running our tool with such an alternative transformation yields two conjunctive
weakest preconditions—(x ≥ m) and (x < m ∧ y ≥ m − 1) of which the for-
mer does not describe a counterexample, while the latter does not describe the
weakest conjunctive counter-example.

5 Experiments

In this section we demonstrate the viability of a constraint-based approach
by uniformly discovering invariants for programs for which specialized tech-
niques [7–9] have been proposed.

The results of invariant generation for program verification are shown in
Table 1(a). The first set of columns indicate the programs10, the parameters
(number of disjuncts k, and size of predicate set n), and the number of variables
and clauses in the CNF formula. The second set indicates the time (in seconds)
on generating the program constraints (CG), generating the CNF formula (CNF)
and solving the resulting SAT instance (SAT). We use Z3 [10] as our SAT solver.

10 Available at http://research.microsoft.com/users/sumitg/benchmarks/pa.html

The first set of examples require conjunctive invariants (k = 1). The first
program (counter) is a loop iteration with a counter from 1 . . .m. The second
(lockstep, shown in Figure 1) is also a counter iteration but with another variable
counting in lock-step. The third (nested) consists of two nested counter loops.
The next program (twoloop) consists of two counter loops one after the other.
The last two examples need two invariants, one at each loop header.

The second set requires disjunctive invariants (k = 2) and are from re-
cent work on sophisticated invariant generation techniques like CFG elaboration
(ex2 [8]), probabilistic inference (ex3 [9]), and sophisticated widening (ex1b [7]).

Our technique uniformly discovers invariants over predicate abstraction for
all these examples. Our base predicates are difference constraints over the pro-
gram variables with small constants. Program parsing and constraint generation
takes 0.23s. Our preliminary tool uses an unoptimized implementation of predi-
cate cover and therefore spends most of its time in CNF generation, which can
be improved easily. Solving the resulting CNF constraints takes 0.04s on aver-
age. Our preliminary tool also shows a noticeable overhead when a disjunctive
invariant at the loop header causes case enumeration during CNF generation
(in ex3 [9] and ex1b [7]). However, even for large SAT instances in these cases,
solutions are generated by the solver in very reasonable time, demonstrating the
viability of a constraint-based approach.

5.1 Weakest Precondition Inference

The SAT solver that we used tends to generate a maximally-false satisfying
assignment to a satisfiable boolean formula, as a result of which we obtained
conjunctive weakest preconditions in the first query and did not have to iterate
n times. A satisfying assignment A to a boolean formula is maximally-false if by
changing the truth values of any of the boolean variables from true to false in
assignment A transforms A to an unsatisfying assignment.

We exploit this property by adding an additional constraint to the system,
which in practice improves performance. The added clauses constrains the weak-
est precondition to be saturated, i.e., for all predicates p1, p2, p3, if p1∧p2 ⇒ p3,
we add the constraint:

b
πentry
p1 ∧ bπentry

p2 ⇒ b
πentry
p3 (9)

Claim 4. A maximally-false satisfying assignment to the boolean formula ψ (that
encodes the verification condition of the program) along with the constraint in
Eq. 9 yields a conjunctive weakest precondition.

The results for weakest precondition inference are shown in Table 1(b). Our
tool generates all weakest preconditions when multiple incomparable ones exist.
Therefore, in addition to the number of predicates n, disjuncts k, variables and
clauses in the CNF, we also report the number of solutions generated. In such
cases, we report the cumulative time required for generating all solutions.

Due to the tendency of the SAT-solver to generate a maximally-false assign-
ment, our tool produced valid weakest preconditions in the first iteration for all
but two programs, ex2 [8] and twoloop, each of which required two iterations.

6 Related Work

Constraint-based techniques have been recently used for discovering linear arith-
metic invariants (conjunctive invariants [11–14] as well as disjunctive invari-
ants [15] in the context of verifying safety properties as well as discovering rank-
ing functions for proving termination [16, 17]). Constraint-based techniques have
also been applied for discovering non-linear polynomial invariants [13, 18] and
invariants in the combined theory of linear arithmetic and uninterpreted func-
tions [19]. In contrast, this paper extends the applicability of constraint-based
methodology to the important domain of predicate abstraction, where the pred-
icates can be from any theory. There are two key technical differences between
the earlier work that focused on arithmetic invariants and the current work
based on predicate abstraction: (a) The key principle behind a constraint-based
methodology is to convert universal quantification into existential quantifica-
tion in the verification condition. In this respect, the earlier work uses Farkas’
lemma, while the current work uses the predicate cover operation. (b) The ear-
lier work translates the problem of discovering arithmetic invariants into solving
polynomial constraints11, while in contrast the proposed technique translates
the problem of discovering invariants over a given set of predicates into solving
a SAT constraint. The latter is more desirable since we have good off-the-shelf
SAT solvers.

Constraint-based techniques, being goal-directed, work naturally in program
verification mode where the task is to discover inductive loop invariants for
verification of given assertions. As a result, earlier work on constraint-based
techniques (with the exception of [15]) has been limited to program verifica-
tion as opposed to other program analysis problems such as weakest precondi-
tion generation. This paper demonstrates the applicability of constraint-based
methodology to the problem of weakest precondition generation, which in turn
can be used for generation of most-general counterexamples (assuming program
termination). The technique used for weakest precondition generation in [15] is
based on binary search over arithmetic coefficients from a bounded range, while
the technique used for weakest precondition generation in this paper relies on
monotonicity of implication of a conjunctive set of predicates.

SATURN [20] also uses SAT-solving, but for bug-finding in loop-free pro-
grams. (Programs with loops are modeled by unrolling loops.) Theoretically, it
is well known that loop-free programs can be modeled as Boolean circuits. SAT-
URN’s contribution is primarily engineering-based; it illustrates that the SAT
queries that are generated from real programs with complicated constructs can
be efficiently solved in practice. In sharp contrast, we focus on invariant infer-
ence for correctness proofs and show how programs with loops can be abstracted
as Boolean circuits. Additionally, our work finds most-general bugs in programs
with loops.
11 [15] further proposes solving the quadratic inequalities using bit-vector modeling,

thus effectively translating into SAT constraints; however, this reduction to SAT
is artificial in that it is used only to approximate the SMT query, because current
solvers cannot generate models for SMT queries that involve multiplication.

7 Conclusions and Future Work

In this paper we present a constraint-based technique for discovering inductive
program invariants over predicate abstraction. We show how to push the burden
of fixed-point computation as well as the boolean reasoning to a SAT-solver
by encoding program verification conditions as SAT-constraints over boolean
indicator variables. A solution to the SAT instance maps directly to inductive
program invariants that prove the validity of given program assertions. We lift
the base verification procedure to the interprocedural setting and additionally
infer weakest preconditions that can be used for most-general bug finding.

We present encouraging preliminary results using a prototype implementa-
tion. Integration with abstraction refinement procedures and model checking
frameworks for evaluation over industrial-sized programs remains future work.

References

1. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Computer
Aided Verification. (1997) 72–83

2. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by constr. or approx. of fixpoints. In: POPL. (1977) 238–252

3. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: CAV. (2000) 154–169

4. McMillan, K.L.: Appl. of craig interpolants in model checking. In: TACAS. (2005)
5. Seidl, H., Flexeder, A., Petter, M.: Interprocedurally analysing linear inequality

relations. In: ESOP. (2007) 284–299
6. Müller-Olm, M., Seidl, H., Steffen, B.: Interprocedural analysis (almost) for free.

In: Technical Report 790, Fachbereich Informatik, Universitt Dortmund. (2004)
7. Gulavani, B.S., Rajamani, S.K.: Counterexample driven refinement for abstract

interpretation. In: TACAS. (2006) 474–488
8. Sankaranarayanan, S., Ivancic, F., Shlyakhter, I., Gupta, A.: Static analysis in

disjunctive numerical domains. In: SAS. (2006) 3–17
9. Gulwani, S., Jojic, N.: Program verification as prob. inference. In: POPL. (2007)

10. de Moura, L.M., Bjørner, N.: Eff. E-Matching for SMT solvers. In: CADE. (2007)
11. Colón, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using

non-linear constraint solving. In: CAV. (2003) 420–432
12. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Constraint-based linear-relations

analysis. In: SAS. (2004) 53–68
13. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation

using gröbner bases. In: POPL. (2004) 318–329
14. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Scalable analysis of linear systems

using mathematical programming. In: VMCAI. (2005) 25–41
15. Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint solving.

In: PLDI. (2008) 281–292
16. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear

ranking functions. In: VMCAI. (2004) 239–251
17. Bradley, A.R., Manna, Z., Sipma, H.B.: Lin. ranking with reach. In: CAV. (2005)
18. Kapur, D.: Automatically generating loop invariants using quantifier elimination.

In: Deduction and Applications. (2005)
19. Beyer, D., Henzinger, T., Majumdar, R., Rybalchenko, A.: Invariant synthesis for

combined theories. In: VMCAI. Volume 4349 of LNCS. (2007) 378–394
20. Xie, Y., Aiken, A.: Saturn: A sat-based tool for bug det. In: CAV. (2005) 139–143

A Example: Formal constraint generation

In this section, we illustrate the general framework for constraint generation
(discussed in Section 3.1) on the example in Figure 1. The task here is to find the
inductive invariant R at the loop join point π. Remember that we are considering
invariants with one disjunct, i.e., k = 1 over the set of predicates S in Figure 1(e).
For p ∈ S we use indicator variables bp (simplifying the notation because both
the program point and disjunct are unique) to denote whether p is in R or not.
Recall our definition of D(A,B) as being true iff A⇒ B. We describe some of
the constraint that we get from each of the three verification conditions below:

– Loop entry (Case 1): The loop entry verification condition ism > 0 ⇒ R[y →
0, x → 0], and therefore G1 = (m > 0) and G2 = true. D(m > 0, true) is
obviously true and the verification condition from Eq. 3 simplifies to:

ψ(τ) =
∧
p∈S

(bp ⇒ D(m > 0, p[x→ 0, y → 0]))

For all p ∈ {x ≥ y, x ≤ y, x ≤ m, y ≤ m,x < m, y < m} the term D(m >
0, p[y → 0, x→ 0]) reduces to true and therefore no constraints are imposed
on the corresponding indicator variables. On the other hand, for the remain-
ing predicates the term reduces to false and the following verification condi-
tion is generated ψ(τ) = ((bx≥m ⇒ false) ∧ (by≥m ⇒ false) ∧ (bx<y ⇒ false)),
or equivalently ¬bx≥m ∧ ¬by≥m ∧ ¬bx<y.

– Loop exit (Case 2): The verification condition is R ∧ x ≥ m ⇒ y = m and
therefore G1 = (x ≥ m) and G2 = (y = m). The verification condition, from
Eq. 4, is

ψ(τ) = φS(x ≥ m⇒ y = m, 1, π)

The predicate cover for the formula F = (x ≥ m ⇒ y = m) over the
predicate set S is the following:

CS(F) = (x ≤ m ∧ x ≤ y ∧ x ≥ y) ∨ (y ≥ m ∧ y ≤ m) ∨ (x < m)

Notice that expressions such as y ≥ x ∧ y ≤ m imply the formula but are
not the weakest (they are implied by some element above) and therefore do
not appear in CS(F).
Given the predicate cover CS(F) as above and the definition of φS , we can
encode the verification condition as:

ψ(τ) = (bx≤m ∧ bx≤y ∧ bx≥y) ∨ (by≥m ∧ by≤m) ∨ bx<m

– Inductive (Case 3): The verification condition is R ∧ x < m ⇒ R[y →
y+1, x→ x+1] and therefore G1 = x < m and G2 = true. The unmodified
constraint for the inductive case from Eq. 5 is R⇒ (x < m⇒ (true∧Rσ))
that reduces to R ⇒ (x < m ⇒ Rσ), where σ is [y → y + 1, x → x + 1].
Applying the first step of the reduction from Case 3, we get:∧

p∈S

(bp ⇒ (R⇒ (x < m⇒ pσ))

Applying the next step we get the following form of Eq. 6:

ψ(τ) =
∧
p∈S

(bp ⇒ φS ((x < m⇒ pjσ), 1, π))

For each of the predicates p in the following cases, we consider the predicate
cover for Fp = (x < m⇒ pσ):
• p = (y ≤ m): The predicate cover CS(Fy≤m) is (y < m)∨(x ≤ y∧x ≥ y).

Therefore, the term corresponding to y ≤ m is by≤m ⇒ (by<m ∨ (bx≤y ∧
bx≥y)).

• p ∈ {x < m, y < m}: For any p here, the weakest precondition that
implies Fp is just false. Therefore, we generate the bp ⇒ false, or
equivalently ¬bp.

• p ∈ {x ≥ y, x ≤ y, x < y, x ≤ m,x ≥ m, y ≥ m}: Consider p = (x ≥ y)
for which Fp = (x < m ⇒ (x ≥ y)σ). The weakest precondition that
ensures Fp is x ≥ y itself, and the corresponding constraint bx≥y ⇒
bx≥y is trivial. Similarly, all other elements here can be easily verified to
generate trivial constraints which we omit from the output.

B Example: Interprocedural Analysis

Consider the program shown in Figure 3(a). The instrumented procedures are
shown in Figure 3(a’). We assume that there is only one summary of rele-
vance (q = 1) and therefore attempts to solve the constraint system for the
pre/postcondition pair (A1, B1) for the procedure Add. The input relation A1 is
constrained to contain predicates from SAdd,1 only while the output relation B1

can contain predicates from SAdd,1 ∪ SAdd,2.
Each call to Add is instrumented in accordance with Eq. (8). Then the pro-

cedure body of Add (for which procedure summaries are being computed) is
wrapped in accordance with Eq. (7). Our algorithm verifies the assertion by
generating the summary (i ≥ 0, ret = i + j) for procedure Add. This example
illustrates that only relevant summaries need to be computed. The true branch
of the conditional inside Add has can be summarized as (i < 0, ret = j). The
system would be unsatisfiable if an additional invocation site existed with the
context i < 0. But the constraint system is satisfiable with q = 1 and this
additional summary is not required for verification of this example.

IP() {
x := 5; y := 3;
out := Add(x, y);
assert(out = 8);

}
Add(int i, j) {

if i ≤ 0
ret := j;

else

b := i− 1;
c := j + 1;
ret := Add(b, c);

return ret;

}
(a)

IP() {
x := 5; y := 3;
{

/*out := Add(x, y);*/
assert(A1[x/i, y/j]);
assume(B1[x/i, y/j, t/ret]);
out := t;

}
assert(out = 8);

}

Add(int i, j) {
assume(A1)
if i ≤ 0

ret := j;
else

b := i− 1;
c := j + 1;
{

/* ret := Add(b, c); */

assert(A1[b/i, c/j]);
assume(B1[b/i, c/j, t′/ret]);
ret := t′;

}
assert(B1)

}
(a’)

SAdd,1 =

i ≤ 0, i ≥ 0, j ≤ 0, j ≥ 0,

i ≤ j, i ≥ j

ff

SAdd,2 =

8>><>>:
ret ≤ i, ret ≥ i, ret ≤ j,
ret ≤ 0, ret ≥ 0, ret ≥ j,
ret ≤ i + j, ret ≥ i + j,
ret ≤ i− j, ret ≥ i− j,

9>>=>>;
(b)

Fig. 3. (a) Interprocedural analysis example taken from [5, 6] (a’) Instrumented pro-
gram (b) Predicate sets.

