Microsoft® Research Faculty Summit

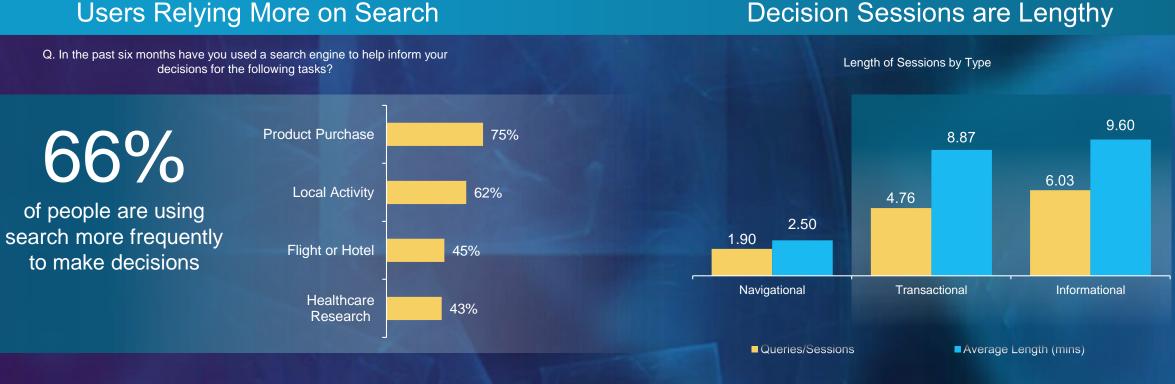
Bing: User Intent and Decision Engine

Harry Shum, PhD

Corporate Vice President Microsoft Corporation

Overview

- Why Decision Engine
- Bing Demos
- Search Interaction model
- Data-driven Research Problems
- Q & A



Opportunities for Search Innovation

Turning to Search to Inform Decisions

Users need help with tasks and making decisions

Complex task and decision sessions could be easier

Microsoft*

Research

Sources: Microsoft Internal Research conducted by iPos 2009:; Live Search Session Analysis

Frederick Savoye

Senior Director Bing Product Marketing

Search User Interaction Model

Search User Interaction Model

Search engine

- Objective: getting the user relevant information (a website)
- Model: getting out of search results page with a simple click
- Challenge: query URL matching

Decision engine

- Objective: completing the task by fulfilling user intent
- Model: exploring search results by clicking and browsing
- Challenge: whole page relevance

Bing interaction model

- Explore pane (or left rail)
 - TOC: verify user intent
 - Related search: expand user intent
 - Search history: remind user intent

Task completion

- D-cards: showing structural information for the site
- Hover: showing more information for the site
- Simple tasks: e.g. Fedex tracking number

Data-driven Research Problems

Some Challenging Problems for Search

A lot of data...

- Billions of query logs, documents, pictures, clicks, etc.
- Processing them is costly and takes time
- Statistical learning + distributed computing
 - Can we train 1 Billion samples (query URL pairs)
 - Within a few hours? No over-fitting?
- Two examples of Bing-MSR
 - "Bing-it-on" N-gram
 - Statistical model for log mining

Statistical Language Model for Search

LM Applications in Search

- Query processing: alterations, expansions, suggestions
- Document processing: classification, clustering
- Matching and ranking
- Powerset.com
- Leading technology: N-gram
 - P(next word | N-1 preceding words)
 - Better "understanding" = model predicts better

Challenges to build N-gram for Search

High quality model needs lots of data at web-scale:

- Billions of documents, trillions of words, PetaBytes of storage
- Smoothing:
 - How to deal with a very long tail
- Freshness:
 - Web contents are added and revised rapidly

Bing-MSR innovation: Constantly Adapting LM (CALM)

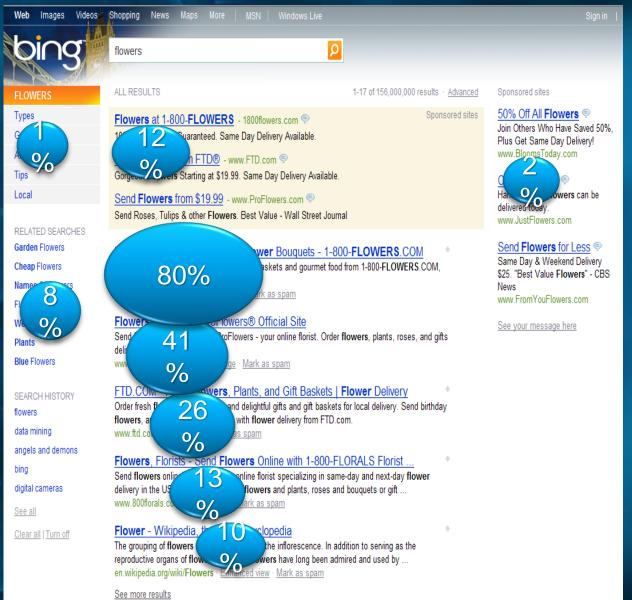
- Highly parallel algorithm designed for cloud computing
- Refine LM as soon as documents are crawled

"Bing-It-On" Ngram Services

- We are sharing our resources
 - For details, go to <u>http://www.facebook.com/microsoftresearch</u> and follow "Bing-It-On Ngram"
- Compare Bing-It-On with Google's Release

	Google	Bing-It-On Ngram
Content Types	Document Body only	Body, Title, Anchor texts
Model Types	Raw Count only	Count and smoothed models
Highest order N	5	5
Training Size (Body)	~ 1.0 trillion words	> 1.3 trillion
# of 1-gram (Body)	13 million	1 billion
# of 5-gram (Body)	1 billion	237 billion
Availability	DVDs from LDC	On demand web services hosted by MS
Update	September 2006	Monthly

Log Mining for Search


Data driven decision is first class citizen in search

- Toolbar and search logs: ~10 TB/Day each
- Bing uses log mining to
 - Understand what users want
 - Assess how we are doing
 - Quickly improve Bing
 - Query Processing
 - Ranking
 - User experience
- Examples:
 - Relevance inference using Bayesian Browsing Model (BBM)
 - User behavior understanding with Hidden Markov Model (HMM)

Mining search log with HMM

- Search log records only clicked results
 - Skipped results are not explicitly recorded
- Hidden data mining
 - Model viewed results as Markov chain
 - Skipped results = hidden data
- How well does it work?
 - Very close to eye tracking data

What's In the Name?

Thank you!