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Abstract—From statistical learning theory, the generalization
capability of a model is the ability to generalize well on unseen
test data which follow the same distribution as the training
data. This paper investigates how generalization capability can
also improve robustness when testing and training data are
from different distributions in the context of speech recognition.
Two discriminative training (DT) methods are used to train
the hidden Markov model (HMM) for better generalization
capability, namely the minimum classification error (MCE) and
the soft-margin estimation (SME) methods. Results on Aurora-2
task show that both SME and MCE are effective in improving one
of the measures of acoustic model’s generalization capability, i.e.
the margin of the model, with SME be moderately more effective.
In addition, the better generalization capability translates into
better robustness of speech recognition performance, even when
there is significant mismatch between the training and testing
data. We also applied the mean and variance normalization
(MVN) to preprocess the data to reduce the training-testing
mismatch. After MVN, MCE and SME perform even better
as the generalization capability now is more closely related to
robustness. The best performance on Aurora-2 is obtained from
SME and about 28% relative error rate reduction is achieved
over the MVN baseline system. Finally, we also use SME to
demonstrate the potential of better generalization capability in
improving robustness in more realistic noisy task using the
Aurora-3 task, and significant improvements are obtained.
Index Terms—model generalization, robustness, soft margin

estimation, minimum classification error, Aurora task

I. INTRODUCTION

Speech recognition performance degrades significantly
when there is mismatch between the statistics of training and
testing speech due to noise distortions [1]. Traditional feature
compensation [2–4] and model adaptation [5–7] methods
improve the robustness of speech recognition by reducing the
mismatch between training and testing conditions. Although
these methods are shown to be effective, robustness of speech
recognition remains as an unsolved problem.
Generalization capability of a model is a good indicator of

how well the model will perform on unseen test data. From
statistical learning theory [8], a big margin usually result in
better generalization capability, where the margin refers to
some measure of separation between competing classes. In

this study, we explore the generalization capability of acoustic
model to improve speech recognition robustness. A major
difference between generalization capability and robustness
is that generalization capability refers to model’s ability to
perform well on unseen but similar data as the training data
(i.e. training and testing data follow the same distribution),
while robustness refers to whether the model is able to
perform well on unseen and mismatched testing data (i.e.
training and testing data follow different distributions). Due
to this difference, it is not guaranteed that good generalization
capability will always results in better robustness.
Discriminative training (DT) methods are used to improve

the generalization capability of acoustic model in this paper.
DT methods are used as an alternative approach of the
maximum likelihood (ML) method to train the hidden Markov
model (HMM) based acoustic model. Generally speaking, they
estimate the model parameters to reduce the empirical error
(i.e. training error). Popular DT methods include minimum
classification error estimation (MCE) [9, 10], maximum mu-
tual information estimation (MMI) [11, 12], and minimum
phone/word error estimation (MPE/MWE) [13]. Recently,
margin-based training methods have also been applied to train
acoustic models to improve generalization more explicitly, e.g.
large margin hidden Markov model (LMHMM) [14, 15], large
margin estimation (LME) [16], and soft-margin estimation
(SME) [17]. These DT methods have also been applied to
improve speech recognition robustness and shown to be effec-
tive to different extents [18–21]. In [21], model robustness is
shown to be correlated to margin size, an important indicator
of model’s generalization capability.
In this paper, we will continue the study in [21] and

examine the relationship between generalization capability of
model and robustness in more details. Two discriminative
training method are under our study, i.e. MCE from traditional
DT methods and SME from margin-based methods. MCE
focuses on reducing empirical error, while SME also considers
improving the margin. We will show how these two methods
improve the margin of acoustic model and how a larger margin
produces better robustness empirically.
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Furthermore, we address the assumption of statistical learn-
ing theory that the training and testing data are from the
same distribution [8]. As this assumption is not true in noisy
speech recognition, improving generalization capability not
necessarily results in better robustness especially when the
mismatch is big. A simple and effective remedy to this
problem is to apply mean and variance normalization (MVN)
[3] on speech features to reduce the mismatch before model
training. We will examine how MVN will interact with MCE
and SME experimentally.
In addition, we evaluate SME and MVN+SME on Aurora-

3 task [22] to demonstrate how effective good generalization
could be in improving robustness for more realistic tasks. Note
that the noisy data in Aurora-2 task are artificially synthesized
by adding recorded noises to clean speech, and the noisy data
in Aurora-3 task are recorded in real noisy car environments.
The paper is organized as follows. In Section II, a brief

review of SME and MCE is provided. In Section III, we
present a study of how effective SME and MCE are able
to improve margin and generalization. In Section IV, speech
recognition results and discussions are presented. Finally, we
conclude in Section V.

II. BRIEF REVIEW AND COMPARISON OF SME AND MCE

In SME [17, 21], the parameters of the acoustic model are
estimated by minimizing the following loss function which is
an approximated expected risk:

𝐿SME(𝜌,Λ) =
𝜆

𝜌
+𝑅emp(𝜌,Λ) (1)
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(3)

where Λ is the set of acoustic model parameters, 𝜌 is the soft
margin, 𝜆

𝜌 addresses the generalization risk, and 𝑅emp(𝜌,Λ)
is the empirical risk (error from training data). From (2),
the empirical risk is the average loss of 𝑁 training utter-
ances 𝑂𝑖, 𝑖 = 1, ..., 𝑁 . The separation measure 𝑑SME(𝑂𝑖,Λ)
represents how well the correct model is separated from its
competing models regarding 𝑂𝑖. If the separation measure is
not large enough, i.e. smaller than 𝜌, a loss is generated that
equals to 𝜌−𝑑SME(𝑂𝑖,Λ). In (3), the loss of a single utterance
is smoothed by a sigmoid function such that the loss function
is easier to be optimized, and 𝛾 is used to control the slope
of the sigmoid. The 𝜆 is used to control the relative weights
of generalization risk and empirical risk. With a large 𝜆, the
training process will focus on reducing the generalization risk
and the margin will be large, and vice versa.
The separation measure used in SME is the frame-

normalized log likelihood ratio (LLR) [17]:

𝑑SME(𝑂𝑖,Λ) =
1

𝑛𝑖

∑
𝑗∈𝐹𝑖

log

[
𝑃Λ(𝑂𝑖𝑗 ∣𝑆𝑖)
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]
(4)
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Fig. 1. Loss from a single utterance as a function of 𝑑.

where 𝑆𝑖 and 𝑆𝑖 represents the correct and most competing
transcriptions of 𝑂𝑖, respectively, 𝐹𝑖 is the set of frames in 𝑂𝑖

that have different state identities in 𝑆𝑖 and 𝑆𝑖, and 𝑛𝑖 is the
number of frames in 𝐹𝑖.
In MCE, the loss function is defined as:

𝐿MCE(𝜌,Λ) =
1

𝑁

𝑁∑
𝑖=1

1

1 + 𝑒−𝛾𝑑MCE(𝑂𝑖,Λ)+𝜃
(5)

which is the average approximated classification error of
training utterances. Unlike SME, there is no approximation
of generalization risk in the MCE loss function. Therefore,
MCE only reduces empirical risk. In this study, the following
separation measure is used in MCE:

𝑑MCE(𝑂𝑖,Λ) = − log𝑃Λ(𝑂𝑖∣𝑆𝑖) +

log
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𝑃Λ(𝑂𝑖∣𝑆𝑗)
𝜂

⎤
⎦
1/𝜂

(6)

where𝑀 is the number of state-level alignments considered in
the training, including the correct one. Note that 𝑑MCE(𝑂𝑖,Λ)
is not normalized by the number of confusing frames 𝑛𝑖 while
𝑑SME(𝑂𝑖,Λ) is normalized in (4).
To briefly compare SME and MCE, we plot their losses

from a single utterance against the separation measure in
Fig. 1. Note that the parameters here are for illustration
purpose only. From the figure, MCE approximates the string
classification error: when 𝑑MCE(𝑂𝑖,Λ) > 0, the utterance is
correctly classified, and the loss is 0, and vice versa. There is a
smooth transition around 𝑑MCE(𝑂𝑖,Λ) = 0 due to the sigmoid
function. The smoothing makes the surface of the loss function
continuous for easier optimization. On the other hand, the loss
of SME approximates a straight line when 𝑑SME(𝑂𝑖,Λ) < 𝜌,
and zero when 𝑑SME(𝑂𝑖,Λ) > 𝜌. There is some imperfect
transition around 𝑑SME(𝑂𝑖,Λ) = 𝜌, which does not affect the
performance of SME significantly in our study.
In our study, the loss functions of both MCE and SME are

minimized by using generalized gradient descent (GPD) [17,
21], where the first order partial differentiation of the loss
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Fig. 2. Weight of a single utterance as a function of 𝑑.

function w.r.t. model parameters are used
∂𝐿

∂Λ
=

∂𝐿

∂𝑑

∂𝑑

∂Λ
(7)

where 𝐿 can be either 𝐿MCE(𝜌,Λ) or 𝐿SME(𝜌,Λ), 𝑑 can be
either 𝑑MCE(𝑂𝑖,Λ) or 𝑑SME(𝑂𝑖,Λ). We focus our comparison
here on ∂𝐿

∂𝑑 , which will explain the major difference between
MCE and SME. The gradient of the acoustic model parameters
from one utterance can be represented as follows:

∂𝑙SME𝑖

∂𝑑
=

−1
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]
(8)

∂𝑙MCE𝑖

∂𝑑
=

−𝛾𝑒−𝜃+𝑑𝛾

(𝑒𝑑𝛾 + 𝑒−𝜃)2
(9)

where 𝑙SME𝑖 is the simplified notations for 𝑙SME(𝑂𝑖, 𝜌,Λ) and
𝑙MCE𝑖 is the loss of MCE due to utterance 𝑂𝑖. The negative
values of ∂𝑙SME𝑖 /∂𝑑 and ∂𝑙MCE𝑖 /∂𝑑 can be seen as the weights
of utterance 𝑂𝑖 in the estimation process of SME and MCE
respectively. These two variables are plotted against 𝑑 in Fig. 2.
Note that the maximum weight for MCE is normalized to 1 for
better comparison. From the figure, SME approximates a step
function, where the weight of an utterance is zero if 𝑑 > 𝜌 and
1 otherwise. A larger 𝜌 will increase the separation measures
more aggressively and produce larger margin in the resulting
model. In our study, we find that the imperfect transitions
around 𝜌 do not affect the performance significantly. Unlike
SME, MCE only assigns large weights around 𝜃/𝛾. As 𝜃 is
usually set to zero, MCE uses mainly utterances around the
decision boundary. The sigmoid slope is controlled by 𝛾 and
is very important for the generalization capability of MCE-
trained model. A smaller 𝛾 will make the plot of MCE in Fig. 2
fatter and hence utterances far from the decision boundary will
be active during training. As a result, a smaller 𝛾 produces
larger margin and better generalization capability.

III. EFFECT OF SME AND MCE ON SEPARATION
MEASURES

Let’s first look at how SME and MCE improves the sep-
aration measure. Note that the separation measure used here

is computed using (4), even for MCE, for a more consistent
comparison. Both SME and MCE are implemented using
GPD. N-best competing transcriptions (N=2) are used as the
source of confusion patterns. The features are processed by
MVN [3] in an utterance-by-utterance fashion.
Fig. 3(a) shows the histograms of separation measures

of 8440 clean training utterances defined by Aurora-2 task.
From the figure, it is observed that the histograms obtained
with both SME model and MCE model are shifted right
significantly compared to that obtained with ML model, while
the improvement of SME is much bigger than that of MCE.
This may indicate a better generalization capability of the SME
and MCE models than the ML model. Furthermore, SME and
MCE also reduce empirical error significantly, as demonstrated
by the reduced histogram on the left hand side of the xy-plane
(x=0).
In Fig. 3(b), the same study is carried out on the clean

test data. There are totally 10,010 test utterances in the
clean test set, the same as the following 10dB and -5dB
test sets. Compared to ML, SME significantly increases the
separation measures of testing data as it has a larger margin
than ML as shown in Fig. 3(a). Similarly, MCE also improves
the separation measures of testing data over ML, but less
significant than SME.
Fig. 3(c) shows the histograms obtained from 10dB test

data. It is observed that the effect of the two DT methods
becomes less significant in 10dB test set than in clean test
set. One reason for this observation is that, as the mismatch
becomes larger, the margin becomes less effective in covering
the mismatch. Another reason is that the confusion pattern of
noisy testing data may be different from that of clean training
data. Hence, what SME and MCE learn from training data
becomes less relevant on noisy testing data. In addition, it
is observed that the improvement of SME is still significantly
better than that of MCE, this should be due to the larger margin
of SME than MCE on the training data shown in Fig. 3(a).
In Fig. 3(d), the histograms of -5dB test sets are shown.

As the SNR level is extremely low, noise is more dominant
than speech, and both SME and MCE actually decrease the
mean of the histogram. This shows that when the mismatch
is too big, the generalization capability will fail to improve
robustness as it is meant to be applied on matched testing
data. However, the area under the histogram on the right of
x=0 is increased by SME and MCE, indicating a better string
accuracy. The reason may be that SME and MCE is able to
improve separation measures for those utterances in relatively
good condition, while it degrades separation measures for bad
utterances.
In summary, both SME and MCE are able to improve the

margin of the model on training data significantly. The im-
proved margin indicates a better generalization of the model,
which results in better robustness on the test data, especially
for less mismatched cases. In addition, SME is shown to be
more effective than MCE. This should be due to the fact that
SME is designed to explicitly increase the margin, while MCE
focuses mainly on reducing empirical error.
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Fig. 3. Effect of SME and MCE on the separation measures of speech. For each of the 4 scenarios from Aurora-2 task under study, separation measures of
utterances belonging to the scenario are computed using (4) with ML-, SME-, and MCE-trained acoustic models and represented as histograms. The y-axis
(i.e. x=0) is also plotted for analysis. The separation measures are collected from: (a) clean training data; (b) clean testing data; (c) 10dB test data; (d) -5dB
test data.

IV. SPEECH RECOGNITION EXPERIMENTS

A. System Description

The performance of SME and MCE is evaluated on Aurora-
2 [23] and Aurora-3 [22] tasks. Aurora-2 is a noisy English
connected digit task, where the noisy speech data are artifi-
cially generated by adding recorded noises to clean speech. In
Aurora-3 task, there are 5 noisy connected digit sub-tasks, each
for one European language. Furthermore, the data in Aurora-3
task are all recorded in real noisy car environments. Therefore,
Aurora-2 and Aurora-3 tasks are complementary.
The acoustic models use standard “simple back-end” config-

urations but without short pause model. Each digit is modeled
by a 16-state HMM with 3 Gaussian mixtures per state. Mel-
frequency cepstral coefficients (MFCC) are used as features
and extracted using the WI007 feature extraction program
provided by Aurora-2. There are 39 raw features, including
13 static features and their first and second order differential
features. Cepstral energy C0 is used instead of log energy
(This is slightly different from the system in [21]).
The value of 𝜆 in (1) is set to be 5 for all following

experiments as SME performance is not very sensitive to 𝜆
if 𝜆 is within a proper range. Readers are referred to [21] for
a more detailed examination of 𝜆’s effects on Aurora-2 task.
The 𝛾 used for SME in (3) is set to 2. For MCE, 𝛾 affects the
resulting model’s generalization significantly. We empirically
set 𝛾 to 0.05 for clean condition training and 0.1 for multi-
condition training of Aurora-2 task, respectively. Note that
𝛾 used in SME is very different from 𝛾 used in MCE as
𝑑MCE(𝑂𝑖,Λ) is not normalized and 𝑑SME(𝑂𝑖,Λ) is normalized.

B. Performance with Raw MFCC Features on Aurora-2

The performance of SME and MCE on Aurora-2 task is
shown in Table I. Note that the R.R. columns represent the
relative reduction of word error rate (WER) achieved by SME
over ML baseline, i.e. R.R. = WERML−WERSME

WERML × 100. From
the table, both SME and MCE improve recognition accuracy
significantly over ML for both clean and multi-condition
training schemes, with SME delivers moderately better re-
sults than MCE. This observation shows the effectiveness of
generalization capability for improving robustness of speech
recognition. Different improvement patterns are observed on
the two training schemes. In clean condition training, SME and
MCE performs better at high SNR levels (15dB and above)
than at low SNR levels (5dB and below). In multi-condition
training, as the training data include noisy data down to 5dB,
more even improvements are observed at all SNR levels. This
shows that improving model’s generalization capability is able
to cover moderate mismatch but less effective in covering large
mismatch due to the limited margin for handling mismatch as
shown in Figure 3(a). As speech recognition is a multi-class
problem, there is a limit on the margin we can obtain.
We also examine the performance of SME and MCE for the

3 test sets in multi-condition training scheme in Table II. The
4 types of noises in test set A are observed during training
while the 4 types of noises in test set B are not. The test set
C is corrupted by both additive noise and convolutive channel
distortion. One of the two noises in test set C is observed
during training and the other is not. Generally speaking, test
set A represents the most matched scenario, and test set B
represents the most mismatched scenario. From Table II, it
is observed that SME and MCE general produce the highest
improvement for test set A and the least improvement for
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TABLE I
PERFORMANCE OF SME AND MCE WITH RAW MFCC FEATURES ON

AURORA-2 TASK. WORD ACCURACIES OF BOTH CLEAN AND
MULTI-CONDITION TRAINING SCHEMES ARE SHOWN AT DIFFEREN SNR
LEVELS. ML REPRESENTS THE MAXIMUM LIKELIHOOD BASELINE. R.R.
REFERS TO THE RELATIVE REDUCTION OF WORD ERROR RATE ACHIEVED

BY SME OVER THE CORRESPONDING ML BASELINE RESULTS.

SNR Clean Condition Multi-Condition
ML MCE SME R.R. ML MCE SME R.R.

Clean 99.04 99.61 99.64 62.04 98.60 99.08 99.13 37.89
20dB 94.36 97.40 97.67 58.71 97.66 98.44 98.67 43.11
15dB 85.58 92.27 92.95 51.11 96.69 97.81 98.05 41.17
10dB 66.82 75.23 76.32 28.64 94.38 95.66 96.38 35.66
5dB 39.20 45.86 47.32 13.35 86.77 89.31 90.18 25.81
0dB 17.14 21.56 22.93 6.99 59.46 65.99 66.51 17.39
-5dB 9.78 10.98 11.70 2.12 24.27 26.49 26.65 3.14
0-20dB 60.62 66.47 67.44 17.31 86.99 89.44 89.96 22.82

TABLE II
PERFORMANCE OF SME AND MCE WITH RAW FEATURES ON THE 3 TEST
SETS OF AURORA-2 TASK USING MULTI-CONDITION TRAINING. ACC.

REFERS TO AVERAGE WORD ACCURACY AND R.R. IS THE RELATIVE WER
REDUCTION ACHIEVED OVER THE CORRESPONDING ML BASELINES.

Test Set ML MCE SME
Acc. Acc. R.R. Acc. R.R.

A 87.60 91.68 32.93 91.93 34.90
B 87.86 88.87 8.34 89.44 13.01
C 84.04 86.11 12.94 87.07 18.96

Average 86.99 89.44 18.85 89.96 22.82

test set B. This is reasonable given their different levels of
mismatches with the training data. It is also observed that
SME has more advantage over MCE in test set B and C than
in test set A. This shows that for more mismatched scenarios,
SME may have a larger advantage over MCE as it is more
aggressive in increasing margin.

C. Interaction with MVN

The effect of generalization capability for improving ro-
bustness is limited when there is large mismatch between the
training and testing data. In this section, we will reduce the
mismatch and examine its effect. MVN [3] is used to process
both the training and testing features before model training
and testing. Each of the 39 MFCC features are processed by
utterance-based MVN individually.
The performance of the combined system is shown in

Table III. Comparing Table III with Table I, we can observe
that SME produces even better improvement when MVN is
used in terms of relative error reduction (R.R.), especially at
low SNR levels. This is because when the mismatch is reduced
by MVN, it is easier for SME to cover the mismatch. Similar
trend is also observed for MCE. It may be a good strategy to
combine feature domain robustness techniques with SME and
MCE for better robustness.
Similar to Table II, we also examine the performance of

SME and MCE on the three test sets for multi-condition
training scheme in Table IV. Compare the results of these
two tables, it is observed that the performance gap between
test set A and test set B and C becomes smaller after
MVN processing. This is because after the MVN processing,
the feature distortion is reduced and training set can better

TABLE III
PERFORMANCE OF SME AND MCE WITH MVN-PROCESSED FEATURES

ON AURORA-2 TASK.

SNR Clean Condition Multi-Condition
ML MCE SME R.R. ML MCE SME R.R.

Clean 99.16 99.59 99.68 61.86 98.23 99.08 99.20 54.80
20dB 97.42 98.34 98.51 42.19 98.53 99.15 99.28 51.19
15dB 95.17 96.67 96.85 34.76 97.70 98.77 98.93 53.71
10dB 89.34 92.06 93.09 35.16 96.09 97.63 97.92 46.67
5dB 74.48 80.15 82.93 33.12 90.71 93.66 94.02 35.63
0dB 45.21 54.06 58.67 24.57 74.26 78.98 79.28 19.49
-5dB 17.81 22.76 24.90 8.63 40.87 44.66 45.43 7.70
0-20dB 80.33 84.25 86.01 28.89 91.46 93.64 93.89 28.42

TABLE IV
PERFORMANCE OF SME AND MCE WITH MVN-PROCESSED FEATURES

ON THE THREE TEST SETS OF THE AURORA-2 TASK USING
MULTI-CONDITION TRAINING.

Test Set ML MCE SME
Acc. Acc. R.R. Acc. R.R.

A 91.44 93.92 28.97 94.10 31.07
B 91.64 93.42 21.29 93.81 25.96
C 91.13 93.51 26.83 93.61 27.96

Average 91.46 93.64 25.53 93.89 28.42

represent test set B and C. Furthermore, it is also observed in
Table IV that the improvement of SME over MCE is larger for
test set B than for test set A. This is similar to the observation
in Table II and further shows the advantage of SME.

D. Performance on Aurora-3
We also evaluate SME on Aurora-3 task, in which the

data were recorded in real noisy environments. As we have
shown that SME is a more direct way of improving model’s
generalization capability and performs better than MCE on
Aurora-2 task, we will only show results of SME on Aurora-3
task in this section for brevity.
The performance of SME with raw MFCC features is shown

in Table V. From the results, we have two observations.
First, SME improves performance for all cases except for
the high-mismatch (HM) of German. This suggests that better
generalization capability is also able to improve robustness
for realistic tasks. Second, SME produces higher improvement
when the mismatch is relatively low. The improvements for
well-match (WM) sub-tasks are always the highest, followed
by medium-mismatch (MM), and improvements are usually
the lowest for HM. The mismatch in HM may be beyond the
generalization capability of the SME-trained acoustic model
to tolerate. Similar results are observed on Aurora-2 (Table I),
where performance at very low SNR levels is usually less
improved due to the high level of mismatch.
The performance of SME with MVN-processed MFCC

features is shown in Table VI. Although the improvements
are quite different for different sub-tasks due to their different
characteristics, on average, SME with MVN delivers better
performance improvement than SME alone. This further shows
the complementary effects of SME and MVN.

V. CONCLUSION AND FUTURE WORK

In this paper, we have shown that by improving the margin
and generalization capability of the acoustic model using
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TABLE V
PERFORMANCE OF SME WITH MFCC ON AURORA-3 TASK. THE THREE TRAINING SCHEMES ARE: WELL-MATCHED (WM), MEDIUM-MISMATCH (MM)

AND HIGH-MISMATCH (HM). IN AVERAGED RESULTS, THE WEIGHTS OF WM, MM AND HM ARE 40%, 35% AND 25%, RESPECTIVELY.

Scheme Finnish Spanish German Danish Italian
ML SME R.R. ML SME R.R. ML SME R.R. ML SME R.R. ML SME R.R.

WM 92.00 96.97 62.13 86.08 94.69 61.85 90.62 92.59 21.00 77.92 89.24 51.28 94.70 97.02 43.77
MM 69.36 78.39 29.47 73.28 84.53 42.10 79.28 80.97 8.16 53.11 64.41 24.09 85.30 86.38 7.35
HM 42.61 56.47 24.15 41.29 54.05 21.73 72.66 72.66 0.00 38.01 43.14 8.28 40.58 45.62 8.48
Avg. 71.73 80.34 30.47 70.40 80.97 35.72 82.16 83.54 7.73 59.26 69.02 23.97 77.88 80.45 11.60

TABLE VI
PERFORMANCE OF SME WITH MVN-PROCESSED MFCC FEATURES ON AURORA-3 TASK.

Scheme Finnish Spanish German Danish Italian
ML SME R.R. ML SME R.R. ML SME R.R. ML SME R.R. ML SME R.R.

WM 89.24 97.82 79.74 93.16 96.35 46.64 93.01 94.27 18.03 85.12 91.82 45.03 94.59 97.79 59.15
MM 76.68 89.12 53.34 86.55 89.28 20.30 84.63 85.21 3.77 62.71 71.47 23.49 82.26 90.81 48.20
HM 79.65 82.90 15.97 81.65 83.31 9.05 86.63 86.63 0.00 62.38 72.49 26.88 81.02 83.99 15.65
Avg. 82.45 91.05 48.98 87.97 90.62 22.00 88.48 89.19 6.14 71.59 79.87 29.12 86.88 91.90 38.23

SME and MCE, the robustness of speech recognition can be
improved significantly. Our results also showed that improv-
ing generalization capability is complementary to traditional
feature normalization method MVN. Our results on Aurora-2
and Aurora-3 tasks are very attractive given the fact that there
is no online adaptation during testing.
There are several issues needed to be investigated in the fu-

ture. Although margin/generalization is shown to be correlated
with robustness, big improvement of margin achieved by SME
does not deliver proportionally big improvement in robustness
when we compare SME and MCE (see Fig. 3 and Table III).
One reason may be that the current separation measure only
considers the most competing transcription and may not be
able to represent the true generalization capability of the
model. Besides, both Aurora-2 and Aurora-3 are connected
digit tasks. It will be interesting to investigate whether the
observations in this paper also applies to more complex tasks.
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